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Local time of random walks on graphs
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We investigate the local (or occupation) time of a discrete-time random walk on a generic graph, and present
a general method for calculating sample-path averages of local time functionals in terms of the resolvent of the
transition matrix.
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I. INTRODUCTION

The notion of local (or occupation) time of a stochastic
process was introduced by Lévy [1] as a measure of time that
a stochastic trajectory spends in the vicinity of a given point
in state space. Among continuous stochastic processes, most
attention has been given to the Brownian motion on a real
line, whose local time was investigated, e.g., in Refs. [2–4]. In
Ref. [5] we studied the so-called Lévy random walks, which
generalize the Brownian motion, and whose characteristic
feature is the polynomial decay of transition functions (the
heavy tails).

In the present article we will be concerned with discrete
state spaces, in which case the random walks are commonly
referred to as Markov chains [6]. These are used as statis-
tical models of various, effectively memoryless, real-world
processes [7], such as the growth of populations, or can
be employed, for example, to design efficient sampling al-
gorithms [8]. For an overview of physics-related results on
random walks on graphs see, e.g., Ref. [9].

The local time of a discrete random walk with discrete
time evolution is simply the number of times the walker visits
a given location [10–12]. For continuous time evolution, the
local time is the total amount of time the walker spends at
a given location [12–14]. (In this article only discrete time
evolution will be considered.)

To be specific, let V denote a set of vertices, the state space,
and E a set of edges that describes possible movements of the
walker. Together they form a graph (or network) G = (V, E ).
In general, we consider oriented (or directed) edges.1 To each
edge (v, v′) we assign a strictly positive number, which rep-
resents the probability that the walker localized at a vertex
v moves to vertex v′. These transition probabilities, denoted
pvv′ , must satisfy the normalization conditions∑

v′∈V

pvv′ = 1, ∀v ∈ V. (1)

*zatlovac@gmail.com; zatlovac.eu
1An unoriented edge can be realized as a composition of two edges

in opposite directions.

The ensuing matrix P = (pvv′ ) is stochastic, and is referred to
as the transition matrix.

The probability that the walker is found at position vb after
n steps of the walk, starting with certainty at position va, is
given by the corresponding matrix element of the nth power
of the transition matrix P:

〈va|Pn|vb〉 ≡ (Pn)vavb . (2)

Here, and in the following, we use the Dirac’s braket nota-
tion [15], defining |v〉 the column vector with all entries 0,
except for the v-the entry, which is equal to 1; and denoting by
〈v| = |v〉T the dual row vector. We believe that this notation,
common in quantum theory, proves practical also in the field
of stochastic processes. (A brief introduction into the bra-ket
formalism is provided in Appendix A.)

The n-step transition probability of Eq. (2) can be visu-
alized as a sum over all paths of length n that start at va,
and end at vb. This sum is a discrete analog of the Wiener
integral of continuous stochastic processes [16] (which was a
precursor of the Feynman’s path integral approach to quan-
tum mechanics [17]). Indeed, the present work is inspired by
the path-integral techniques, which were already successfully
applied to investigate the local times of continuous random
walks in Ref. [5].

The article is organized as follows. In Sec. II we provide
the precise definition of the local time for a given sample
trajectory, and study its statistical properties. For this pur-
pose we cast sample-path averages of generic functionals
of the local time (using the method of source potentials
and generating functionals) in terms of the resolvent oper-
ator, Eq. (9). In Sec. II A we derive formulas for the mean
local time spent at a given site, and for correlations of
local times between two sites, and study their large-time
asymptotics (Sec. II C). In Sec. II B we obtain more de-
tailed information about the local time at a given vertex
(namely, its distribution function) by investigating one-point
functionals.

Section III is dedicated to examples of graphs, for which
the resolvent, a key object in our treatment, can be calculated
in closed form. We treat the complete graph, the star graph,
and the (infinite) discrete line.
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FIG. 1. Sample paths of a discrete random walk on an (undi-
rected) 4-vertex graph, and the corresponding local time profiles after
n = 5 time-steps.

II. LOCAL TIME OF A DISCRETE RANDOM WALK

The (discrete-)path-integral representation of the transi-
tion probabilities of Eq. (2) is obtained easily, by expanding
the matrix multiplications. This introduces n − 1 summation
indices v1, . . . , vn−1, which form, together with the initial
vertex va = v0, and the final vertex vb = vn, sample paths
�v = (v0, v1, . . . , vn). We have

〈va|Pn|vb〉 =
vn=vb∑

�v
v0 = va

w(�v), (3)

where the weight function (i.e., the probability of a path �v)
reads

w(�v) = pv0v1 pv1v2 . . . pvn−1vn . (4)

For a given sample trajectory �v, the local time at vertex v

is defined

L(v; n, �v) =
n∑

m=1

δv,vm . (5)

[We often write L(v) for brevity.] The function (or, the local
time profile) L(v) counts the number of times the vertices of
the trajectory �v coincide with v (see Fig. 1 for an illustration).
Note that the initial position is not included in the counting,
so the sum

∑
v∈V L(v) equals the total number of steps n.

The dependence of L(v) on the stochastic trajectory �v
implies that it is itself a random function (a family of random
variables indexed by v). In order to quantify the local time of
a random walk, we shall be therefore interested in ensemble
(or sample-path) averages of functionals F [L(v)] of the local
time profiles. These functionals include, for example, L(v1),
L(v1)L(v2), . . ., which yield the moments of the local time
distribution functions, or δL1,L(v1 ), δL1,L(v1 )δL2,L(v2 ), . . ., which
yield the distribution functions themselves.

The (unnormalized) average (or expectation value) of a
functional F [L(v)] can be expressed as the discrete path
integral

〈F [L(v)]〉 =
vn=vb∑

�v
v0 = va

w(�v)F [L(v)]. (6)

Ultimately, this quantity should be normalized by the factor
〈1〉 in order to possess the usual probabilistic interpretation.
The normalization factor depends on the set of trajectories
considered. In Eq. (6) both the initial point, and the final point
are fixed, and, in general, 〈1〉 = 〈va|Pn|vb〉 	= 1, but we will
also consider ensembles of paths with final point unspecified.
In the latter case we denote ensemble averages by 〈. . .〉∗, and
observe that 〈1〉∗ = 1 in consequence of the normalization
conditions, Eq. (1), for the transition matrix P.

The method we now use to manipulate the right-hand side
of Eq. (6) is inspired by the quantum-field-theoretical method
of sources and generating functionals (see, e.g., the mono-
graph [18]), and is entirely analogous to the approach used
in Ref. [5].

We start by introducing an auxiliary function (the source
potential) U : V → R, and observe that, by definition (5), for
any path �v,

n∑
m=1

U (vm) =
∑
v∈V

U (v)L(v). (7)

Rather than being a specific function, the source potential
should be understood as a collection of variables U (v), in-
dexed by v, with respect to which we can differentiate (setting
U (v) = 0, ∀v ∈ V , at the end of the calculation), so as to
generate a desired functional F [L(v)]:

〈F [L(v)]〉 = F

[
∂

∂U (v)

] vn=vb∑
�v

v0 = va

w(�v) exp

(
n∑

m=1

U (vm)

)∣∣∣∣∣
U=0

= F

[
∂

∂U (v)

]
〈va|(PeU)n|vb〉

∣∣∣∣
U=0

. (8)

In the second line we have introduced the diagonal matrix
U = ∑

v∈V U (v)|v〉〈v|, which conveniently assembles the val-
ues of the source potential, and allows us to cast the result
in a compact form, exhibiting the source potential as a de-
formation of the transition matrix P. Note that the quantity
〈F [L(v)]〉 depends on time n (as well as on the initial and final
positions va and vb), although this dependence is not displayed
explicitly in our notation.

In the next step we pass from the discrete time variable
n to a continuous variable z via the so-called (unilateral) z
transform [19], [20, Chap. 18]. That is, we convert time series
in n into (their generating) functions of a new variable z. The
functional averages in the z space read

〈F [L(v)]〉z =
∞∑

n=0

〈F [L(v)]〉z−n

= −z F

[
∂

∂U (v)

]
〈va|RU (z)|vb〉

∣∣∣∣
U=0

, (9)

where

RU (z) ≡ (PeU − z I)−1 (10)

is the resolvent corresponding to the matrix PeU, and I de-
notes the identity matrix. The z transform can be viewed as a
discrete analog of the Laplace transform.

To pass back to the time domain one may expand the
function of z, 〈F [L(v)]〉z, in powers of 1/z, or use contour in-
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tegration techniques in the complex z plane. In addition, there
exist asymptotic formulas, which relate the large-n behavior
with the limit z → 1 (see Appendix C).

To proceed further we need to specify the local time
functional F [L(v)]. In the following, we will consider the
cases L(v1) and L(v1)L(v2), where v1 and v2 are some fixed
vertices; and the case f (L(v1)), where f is specified as
f (L(v1)) = δ�,L(v1 ). (Hence � plays a role of the variable of the
ensuing local time probability distribution at a given position
v1.)

A. Mean and correlations

First, let us take F [L(v)] = L(v1), and calculate

〈L(v1)〉z = −z
∂

∂U (v1)
〈va|

(
PeU − z I

)−1|vb〉
∣∣∣∣
U=0

= z〈va|(P − z I)−1P|v1〉〈v1|(P − z I)−1|vb〉
= z〈va|RP|v1〉〈v1|R|vb〉, (11)

where we have made use of the differential identity ∂A−1

∂u =
−A−1 ∂A

∂u A−1 for matrix-valued functions A(u).
The result of Eq. (11) is formulated in terms of the “free”

resolvent R ≡ RU=0 = (P − z I)−1, which is essentially the
random walk’s generating function [21, Chap. 2]. It simplifies
further if we consider paths with unspecified final point. This
amounts to a summation over vb, that is, to a replacement of
|vb〉 by |1〉 ≡ (1, 1, . . . , 1)T. Since P|1〉 = |1〉, due to Eq. (1),
we obtain

〈v1|R|1〉 = 1

1 − z
, (12)

and hence

〈L(v1)〉∗z = z

1 − z
〈va|RP|v1〉. (13)

One may expand the right-hand side in powers of 1/z to
obtain the mean local time at position v1 after n steps in the
form of a sum of powers of the transition matrix,

〈L(v1)〉∗ =
n∑

m=1

〈va|Pm|v1〉. (14)

Note that the same result can be obtained directly, without
the resolvent method, by plugging the functional F [L(v)] =
L(v1) into Eq. (6), using the definition of the local time,
Eq. (5), and casting the ensuing discrete path integral in terms
of the transition matrix P. However, the resolvent method is
more flexible, and easier to implement for more complicated
functionals.

Next, consider the functional F [L(v)] = L(v1)L(v2),
which captures correlations of the local times at points v1 and
v2. Analogous calculations as in the previous case yield

〈L(v1)L(v2)〉z = −z2〈va|RP|v1〉〈v1|R|v2〉〈v2|R|vb〉
− z〈va|RP|v2〉〈v2|RP|v1〉〈v1|R|vb〉 (15)

for fixed final point vb, and

〈L(v1)L(v2)〉∗z = z2

z − 1
〈va|RP|v1〉〈v1|R|v2〉

+ z

z − 1
〈va|RP|v2〉〈v2|RP|v1〉 (16)

for free final point.

B. One-point functionals

Suppose the functional F depends on the value of local
time only at a single point v. It is then sufficient to consider the
source potential that is zero everywhere except at this vertex:

Uv = u|v〉〈v|, u ∈ R. (17)

In this case eUv = I + (eu − 1)|v〉〈v|, and we can express the
“full” resolvent in terms of the “free” resolvent as

RU = (P − z I + (eu − 1)P|v〉〈v|)−1

= (I + (eu − 1)RP|v〉〈v|)−1 R

= R + (1 − eu)RP|v〉〈v|R
1 − (1 − eu)〈v|RP|v〉 . (18)

To be more specific, let us choose the one-point functional

δ�,L(v) = 1

2π

∫ 2π

0
eiϕ(�−L(v))dϕ, (19)

which gives 1 for trajectories with local time at v equal to
�, and 0 otherwise. The sample-path average 〈δ�,L(v)〉 is the
(unnormalized) distribution function (in variable � � 0) of the
local time at point v. Equation (9) now reads

〈δ�,L(v)〉z = − z

2π

∫ 2π

0
dϕ eiϕ�〈va|RU (z)|vb〉|u=−iϕ, (20)

so substituting from Eq. (18), using Formula (B1) together
with (B2), and the fact that RP = I + zR, we obtain

〈δ�,L(v)〉z = −z〈va|R|vb〉δ�,0

+ 〈va|RP|v〉〈v|R|vb〉
〈v|RP|v〉

(
z δ�,0 + 〈v|RP|v〉�

z�〈v|R|v〉�+1

)
.

(21)

This is the most general formula for the one-point local time
distribution in the z domain.

A more compact result is obtained when we focus on the
distribution at the origin of the walk (v = va), and do not
specify the final point (|vb〉 = |1〉):

〈δ�,L(va )〉∗z = 〈va|RP|va〉�
(1 − z)z�〈va|R|va〉�+1

. (22)

A remarkably simple result is also obtained for � = 0 (and
v arbitrary), i.e., for the probability that the walker, during the
steps 1, . . . , n, never visits a site v:

〈δ0,L(v)〉 = 〈va|(P − P|v〉〈v|)n|vb〉, (23)

where P − P|v〉〈v| is the matrix P with v-th column set to zero
(which effectively assigns zero weights to all paths entering
the vertex v). To verify this result, we observe that for � = 0
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Eq. (21) reduces to

〈δ0,L(v)〉z = −z〈va|
(

I − RP|v〉〈v|
z〈v|R|v〉

)
R|vb〉, (24)

and that the same expression results by z transforming
Eq. (23). 〈δ0,L(v)〉 is in fact the initial condition for recurrence
relations that allow us to determine the quantities 〈δ�,L(v)〉 also
for � � 0 [12, Sec. 3.1].

In this article we do not consider the general problem of
functionals that depend on the local time at multiple points,
although such analysis, along the lines of Appendix A in
Ref. [5] or Ref. [11], is certainly possible. Alternatively, one
can use the recurrence relations of Ref. [12, Sec. 4.1].

C. Large-time asymptotics

In general, the transition from the z-domain averages 〈. . .〉z

to the time-domain averages 〈. . .〉 is a hard task, since the
free resolvent R can be a complicated function of z. In this
subsection we focus on the regime when the number of time
steps n goes to infinity, and make use of the final value theo-
rem of Appendix C, which relates this limit to the limit of z
approaching 1 from above.

We will assume that the transition matrix P corresponds
to a finite strongly connected underlying graph, meaning that
there is a path between any two vertices in both directions.
Since P is stochastic, it has a (right) eigenvector |1〉 cor-
responding to eigenvalue 1, and, by the Perron-Frobenius
theorem [22, Chap. 8.8], this eigenspace is one dimensional,
and all other eigenvalues have magnitude � 1.

The invariant (or stationary) distribution 〈π | is the left
eigenvector of P with eigenvalue 1, normalized so that
〈π |1〉 = 1. We can split the transition matrix P as

P = |1〉〈π | + (I − |1〉〈π |)P, (25)

where the first term is the (so-called Perron) projection on the
eigenspace corresponding to the eigenvalue 1.

Since the product of the projector |1〉〈π | with the projector
I − |1〉〈π | vanishes, the free resolvent decomposes analo-
gously,

R = 1

1 − z
|1〉〈π | + 1

P − z I
(I − |1〉〈π |). (26)

A crucial observation is that the second term drops out in the
following limit:

lim
z↘1

(1 − z)R(z) = |1〉〈π |. (27)

Equation (27) can now be used to investigate the large-n
behavior of the local time. To obtain finite results, we consider
the local time fraction 1

n L(v; n), i.e., the relative amount of
time spent at a vertex v.

As an illustration, let us calculate the mean and correla-
tions, which, in the z domain, are given by formulas (13)
and (16), respectively. By Eq. (C5), we find

lim
n→∞

〈L(v1)〉∗
n

= lim
z↘1

(z − 1)2〈L(v1)〉∗z = 〈π |v1〉, (28)

and

lim
n→∞

〈L(v1)L(v2)〉∗
n2

= lim
z↘1

(z − 1)3

2
〈L(v1)L(v2)〉∗z

= 〈π |v1〉〈π |v2〉. (29)

It is worth noting that these results do not depend on the
initial position va. That is, after sufficiently many time steps
the walker looses memory of where it started. Also, the co-
variance of local times at two points diminishes:

lim
n→∞

1

n2
〈(L(v1) − 〈L(v1)〉∗)(L(v2) − 〈L(v2)〉∗)〉∗ = 0. (30)

For v1 = v2 this implies that for any trajectory �v, the local
time fraction 1

n L(v1; n, �v) converges (in the quadratic mean,
and hence in probability [23, Chap. 17]) to the sample-path
average 1

n 〈L(v1)〉∗, which in turn is given by the invariant
distribution as 〈π |v1〉. Thus, we recover the ergodic theorem
of Ref. [6, Chap. 1.10].

In closing this section, let us remark that there is a natural
(unbiased) way of assigning a transition matrix to a graph with
adjacency matrix A, namely,

〈v|P|v′〉 = 〈v|A|v′〉
〈v|A|1〉 . (31)

If the graph is undirected, and hence the adjacency matrix
symmetric, the invariant distribution is given by a simple
explicit formula

〈π |v〉 = 〈v|A|1〉
〈1|A|1〉 . (32)

Here, 〈v|A|1〉 is the number of (unoriented) edges connected
with v (the so-called degree of v), and 〈1|A|1〉 is twice the
total number of edges in the graph.

The degree quantifies how well a given vertex v is con-
nected within the network (it is a measure of centrality of
the vertex [24, Chap. 7]). In view of Eqs. (28) and (32), it
coincides, up to the normalization factor 〈1|A|1〉, with the
average local time fraction at point v in the limit n → ∞,
which bears no trace of the initial position va. For finite times
n, therefore, 1

n 〈L(v)〉∗ can be thought of as a (time-dependent)
centrality of the vertex v relative to the initial position of the
walk va.

III. EXAMPLES

We provide several simple examples of (undirected) graphs
to illustrate the resolvent method for calculating local times.
In each example we calculate the free resolvent R(z), which
can then be used to determine sample-path averages of local
time functionals of interest.

A. Complete graph

The complete graph on N vertices [Fig. 2(a)] has the adja-
cency matrix

A = J − I, 〈v|J|v′〉 = 1 (∀v, v′). (33)

Let us define the transfer matrix according to Eq. (31),

P = J − I
N − 1

. (34)
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FIG. 2. Examples of (undirected) graphs: (a) complete graph,
(b) star graph, (c) discrete line.

Since J2 = NJ, the resolvent R = (P − z I)−1 must be a sum
of two terms; one proportional to the identity matrix I, and
the other proportional to the matrix J. Fixing the coefficients
yields

R = − 1

1 + z(N − 1)

(
(N − 1) I + J

z − 1

)
. (35)

Having an explicit form of the resolvent, we can calculate,
for example, the mean local time for paths with unspecified
final point. According to Eq. (13) we have

〈L(v1)〉∗z = z

1 − z

1

1 + z(N − 1)

(
〈va|v1〉 + z

1 − z

)
, (36)

which, upon expansion in powers of 1/z, yields for any vertex
v1 	= va

〈L(v1)〉∗ = 1

N

(
n + 1

N
− (−1)n

N (N − 1)

)
. (37)

For the initial vertex, the mean local time is delayed by one
time step: 〈L(va)〉∗|n = 〈L(v1)〉∗|n−1. Note that for sufficiently
large time n the mean local time on any vertex grows as n/N .

B. Star graph

The star graph [Fig. 2(b)] with N peripheral vertices (la-
beled 1, . . . , N) situated around the central vertex (labelled 0)
defines the transfer matrix

P =

⎛
⎜⎜⎜⎝

0 1
N . . . 1

N

1 0 . . . 0
...

...
...

1 0 . . . 0

⎞
⎟⎟⎟⎠. (38)

We may observe that P3 = P, and so the resolvent contains at
most the second power of P. The coefficients of I, P, and P2

are readily determined, and we find

R = − I
z

+ P
1 − z2

+ P2

z(1 − z2)
. (39)

Let us calculate the mean local time fraction according to
Eq. (28):

lim
n→∞

〈L(v1; n)〉∗
n

= 1

2
〈va|P + P2|v1〉 =

{
1
2 if v1 = 0

1
2N if v1 	= 0

.

(40)
The result is indeed the invariant distribution as given by
Eq. (32). It is worth pointing out that in this example the
invariant distribution is not a limiting distribution of the walk,
limn→∞〈va|Pn, as the latter does not exist. (The walker oscil-
lates between the central vertex, and the peripheral vertices.)

C. Discrete line

Vertices of the discrete line graph are identified with inte-
ger numbers (v ∈ Z), and edges are placed between nearest
neighbors [see Fig. 2(c)]. The transition matrix reads

P = 1

2

∑
v∈Z

(|v〉〈v + 1| + |v + 1〉〈v|). (41)

To find the (free) resolvent R(z), we observe a generic re-
lation RP − zR = I, which for P defined in Eq. (41) provides
a linear recurrence equation for R (in variable v),

1
2 〈va|R|v + 1〉 + 1

2 〈va|R|v − 1〉 − z〈va|R|v〉 = 〈va|v〉. (42)

This has a solution (that remains finite as v → ±∞ for all
z > 1)

〈va|R|v〉 = − (z − √
z2 − 1)|va−v|

√
z2 − 1

. (43)

Let us calculate the local time distribution at the origin of
the walk for trajectories with unspecified final point. In the z
domain we have, according to Eq. (22),

〈δ�,L(va )〉∗z =
√

z + 1√
z − 1

(
1 −

√
z2 − 1

z

)�

. (44)

Consider, for simplicity, � = 0. The probability that the local
time observed at va is zero after n = 2m or 2m + 1 time steps
is

〈δ0,L(va )〉∗ = 1

22m

(
2m

m

)
, (45)

in agreement with Thm. 9.3 in Ref. [10]. This vanishes as
n → ∞, i.e., with probability 1, the walker hits the initial
position during an infinitely long random walk on a discrete
line, recovering the classical result of Pólya [25]. (For return
probabilities of random walks on infinite graphs and their
applications see Ref. [26].)

IV. CONCLUSION AND OUTLOOK

The local time is a natural, intuitively motivated, character-
istic of a random walk. As such, we believe, it can provide a
common ground for various random-walk-related problems.
For instance, in Example III C it was noted that the Pólya
recurrence problem is a question about the amount of trajecto-
ries with local time at the initial position strictly greater than
zero.
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The ballot problem can serve as another example
[27, Chap. III.1]. It can be formulated as a problem to count
the number of random walk trajectories on a discrete line,
which start at va = 0, end at vb � 0, and never visit negative-
numbered sites; in other words, the number of trajectories
whose local time at site −1 is zero.

In addition, the problem of self-avoidance of the random
walk trajectories can be phrased as a requirement that the local
time on all sites be at most 1.

In this article we showed how to write the sample-path
average of any local time functional in terms of the resolvent
matrix corresponding to the transition matrix of the walk.
To this end we employed a quantum-field-theory-inspired
method of source potentials, and the z transform, which turns
sequences indexed by the time variable n into (more conve-
nient) functions of a continuous variable z.

The presented method does not presume any particular
form of the underlying graph. However, to obtain explicit re-
sults, one needs to consider sufficiently simple and symmetric
graphs (some simple examples were provided in Sec. III),
so that the resolvent can be calculated, and also sufficiently
simple local time functionals, so that the z-transform inversion
is manageable. For complicated graphs one can use approx-
imation techniques, such as the large-time asymptotics of
Sec. II C.

Apart from the discrete time evolution considered here,
random walks on graphs can be defined also with a continuous
time variable t [6, Chap. 2]. The time evolution is then dictated
by the matrix etQ, where Q accommodates transition rates
between the vertices of the graph. The method of Sec. II
should be applicable, with appropriate modifications, also in
the continuous-time domain.
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APPENDIX A: THE BRA-KET NOTATION

Assume, for concreteness, that the vertices of the graph G
are labeled by integers, so that v = 1, . . . , |V |, where |V | is
the total number of vertices.

The kets |v〉, v ∈ V , denote the (column) vectors of the
standard basis of the |V |-dimensional real vector space of
functions from V to R:

|v〉 ≡ (δv,1, . . . , δv,|V |)T = (0, . . . , 0, 1
v
, 0, . . . , 0)T . (A1)

The bras are the dual (row) vectors

〈v| = |v〉T , hence 〈v|v′〉 ≡ 〈v||v′〉 = δv,v′ . (A2)

Matrix elements Avv′ of a |V | × |V | matrix A, and con-
versely the matrix A in terms of its matrix elements, are now
represented, respectively, as

Avv′ = 〈v|A|v′〉, A =
∑
v,v′

|v〉Avv′ 〈v′|. (A3)

For example, note that the identity matrix reads

I =
∑

v

|v〉〈v|, (A4)

where |v〉〈v| are projectors on the vertices v = 1, . . . , |V |.
Let us remark that it is common to regard the scalar

〈v|A|v′〉 as a single bracket, and write, for brevity, 〈v|A|v′〉�
instead of (〈v|A|v′〉)� [see, e.g., Eq. (21)].

A generic vector f (that is, a function f : V → R) is de-
noted by the ket | f 〉, and its value at a vertex v expressed
as f (v) = 〈v| f 〉. Note then that the standard scalar product
between any f and g can be cast as∑

v

g(v) f (v) =
∑

v

〈g|v〉〈v| f 〉 = 〈g|I| f 〉 = 〈g| f 〉. (A5)

APPENDIX B: LIST OF FORMULAS

Adapting row 3 in Table 18.4 of Ref. [20], we have, for an
integer �,∫ 2π

0

dϕ

2π

eiϕ�

1 − α (1 − e−iϕ )
=

{− α�

(α−1)�+1 for � � 0
0 for � < 0

, (B1)

provided that | α
α−1 | < 1, i.e., α ∈ (−∞, 1

2 ). In our case of
interest, Eq. (20),

α = 〈v|RP|v〉 = 〈v|
P
z

P
z − I

|v〉, (B2)

and the condition on α is met when z > 1, since all eigen-
values of the stochastic matrix P have magnitude � 1
(see Sec. II C).

APPENDIX C: FINAL VALUE THEOREM

Consider a sequence ( fn)∞n=0, and its z transform

F (z) =
∞∑

n=0

fnz−n, z > 1. (C1)

The final value theorem (see, e.g., Ref. [19, p. 101]) states that

lim
n→∞ fn = lim

z↘1
(z − 1)F (z), (C2)

provided the limit on the left-hand side exists.
Suppose f0 = 0 (which is the case for local time), divide

Eq. (C1) by z, and integrate to find

(IF )(z) ≡
∫ +∞

z
dz′ F (z′)

z′ =
∞∑

n=1

fn

n
z−n. (C3)

That is, the sequence fn

n has z transform IF (z), and we can cast
the finite value theorem in the form

lim
n→∞

fn

n
= lim

z↘1

IF (z)

(z − 1)−1
= lim

z↘1
(z − 1)2F (z), (C4)

where in the last step we have used the L’Hôpital rule, and
realized that F (z)

z ∼ F (z) in the limit z → 1. Iterating, we find
a formula for generic k ∈ N:

lim
n→∞

fn

nk
= lim

z↘1

(z − 1)k+1

k!
F (z). (C5)
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