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Tipping elements in the Earth system have received increased scientific attention over recent years due to their
nonlinear behavior and the risks of abrupt state changes. While being stable over a large range of parameters, a
tipping element undergoes a drastic shift in its state upon an additional small parameter change when close to
its tipping point. Recently, the focus of research broadened towards emergent behavior in networks of tipping
elements, like global tipping cascades triggered by local perturbations. Here, we analyze the response to the
perturbation of a single node in a system that initially resides in an unstable equilibrium. The evolution is
described in terms of coupled nonlinear equations for the cumulants of the distribution of the elements. We
show that drift terms acting on individual elements and offsets in the coupling strength are subdominant in the
limit of large networks, and we derive an analytical prediction for the evolution of the expectation (i.e., the
first cumulant). It behaves like a single aggregated tipping element characterized by a dimensionless parameter
that accounts for the network size, its overall connectivity, and the average coupling strength. The resulting
predictions are in excellent agreement with numerical data for Erdös-Rényi, Barabási-Albert, and Watts-Strogatz
networks of different size and with different coupling parameters.
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I. INTRODUCTION

Hysteresis is a hallmark of first-order phase transitions.
For thermodynamic systems it leads to supercooling and su-
perheating with subsequent explosive phase changes [1,2].
These rapid changes are well-understood for common ther-
modynamic phase transitions (see, e.g., [3–5]). However,
they still pose challenges for systems with nonstandard
interaction rules, like the Achlioptas Process [6–10], or non-
standard interaction topologies like processes on networks,
where hysteresis can lead to cascading failure [11–14]. Hys-
teresis and explosive transitions between (meta)stable states
are also commonly observed in other systems. In ecolog-
ical and climate systems [15], and in finance, economics,
and politics [16], they are commonly denoted as tipping
processes. Further applications are discussed in the recent
reviews [12,17].

The present study is inspired by current models of climate
change that are formulated in terms of networks of interacting
tipping elements [18–25]. The interactions provide long-lived
metastable states and rapid cooperative transitions between
the states. Often such a stabilization and cooperation in a
tipping event is caused by positive feedback effects, i.e., cou-
pling or interactions that tend to align individual elements.
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For ferromagnetic systems the interaction tends to align in-
dividual spins with the molecular field. An example in the
Earth system is the surface albedo of sea ice [26,27]. A
decrease in the ice-covered surface area due to an increase
in global mean temperature decreases the surface albedo.
This, in turn, increases the temperature and causes higher
rates of melting [28,29]. The interaction between the elements
leads to cascading behavior when the abrupt state shift of
an element causes the tipping of another [30]. The resulting
rapid nonlinear changes of the climate were predicted almost
40 years ago [31]. Early on they were investigated regard-
ing a snowball-Earth/warm-Earth-state transition [32–35],
and more recently a transition towards a potential hothouse
state [15,23].

The present paper adds to the ongoing research on the
dynamic behavior of coupled tipping elements by identify-
ing universal behavior in the tipping of large-scale systems.
Tipping in a network comprising a large number of tipping
elements will be characterized by the first two cumulants
(expectation and variance) of the distribution of tipping ele-
ments. In large networks, the expectation behaves like a single
aggregated tipping element. Moreover, the variance remains
small, and for small noise it rapidly decays except for an initial
transient growth early on. Hence, we adopted the expectation
as an order parameter of the transition, and we will show
that the tipping dynamics depends only on two dimensionless
control parameters. These parameters take an analogous rise
to the temperature and the external field in the thermodynamic
treatment of magnetic phase transitions [36].
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FIG. 1. Dynamics of the nodes in a network of tipping elements. (a) Bifurcation diagram of Eq. (1) where solid and dashed red lines show
the positions of the stable and unstable steady states, respectively. In the range between rcrit, low and rcrit, high there are two stable states and one
unstable state. At the borders of the interval, a stable state merges with the unstable state, and they disappear in a saddle-node bifurcation, and
systems at that position will decay to the remaining stable state. The trembling blue line illustrates the stochastic fluctuations around the stable
state that we are using here; see Eq. (2a). (b) Nodes in an exemplary network of interacting tipping elements [see Eq. (2a)], where each node
is of the form shown in panel (a).

The paper is organized as follows. In Sec. II we intro-
duce the system of nonlinear differential equations that are
analyzed in the present study, and we describe how they are
coupled in network structures. Moreover, we also describe
how the systems are simulated. In Sec. III we present our
main results. First, the cumulants of the distribution of states
of a network of unbiased tipping elements are defined, and
their time evolution is derived (Sec. III A). Then, we intro-
duce rescaled coordinates that allow us to discuss universal
aspects of the late-time dynamics (Sec. III B). In Sec. IV the
dynamics of the expectation is worked out and compared to
numerical data. Section V addresses the impact of additional
forcing terms (bias) and offsets in the coupling coefficients. In
Sec. VI, we discuss the main findings of our work, its relations
to other work, and we suggest follow-up work. Section VII
concludes the paper with an exposition of our most important
findings.

II. THEORY AND METHODS

The present study addresses the collective response of N
tipping elements that are coupled linearly through network
links distributed according to paradigmatic network types
(Erdös-Rényi, Barabási-Albert, and Watts-Strogatz). The tip-
ping elements are described by a system of differential
equations adapted from Refs. [24,25] using the software pack-
age PYCASCADES [37]. A Gaussian white noise is applied to
the tipping elements to model stochastic fluctuations.

A. Equations of motion

Many natural systems show tipping paired with hysteresis-
like behavior [16]. The behavior of such a tipping element is
commonly modeled by cubic differential equations [24,25,38]
with normal form [39],

dx

dt
= −x3 + x + r, (1)

where r is the bifurcation parameter. The system is in a
bistable state when its right-hand side has three roots, i.e.,
for r ∈ (rcrit,low, rcrit,high) = (−√

4/27,
√

4/27). At rcrit,low and
rcrit,high two of the roots disappear in a saddle-node bifurcation.
The bifurcation diagram of a single node including noise is
shown in Fig. 1(a).

Commonly, tipping elements are not isolated. For instance,
Krönke et al. [25] suggested to study the dynamics of N cou-
pled tipping elements k ∈ {1, . . . , N} that are linearly coupled
to other nodes l �= k [see Fig. 1(b)],

dxk

dt
= −x3

k + xk +
∑

l

′
dkl xl + ξ

dWk

dt
. (2a)

The prime at the sum indicates that l takes values in l ∈
{1, . . . , N}\{k}. On average, a node k is coupled to pN other
elements. Wk denotes a Wiener process and ξ is the strength
of the noise.

Equation (2) describes homogeneous systems where all
nodes follow the same dynamics and have the same critical
parameter values for tipping. Such systems are discussed in
Secs. III and IV. In Sec. V we expand that discussion to treat
dynamics with additional drift terms, dk , and offset terms, rkl ,

dxk

dt
= −x3

k + xk + dk +
∑

l

′
dkl (xl − rkl ) + ξ

dWk

dt
. (2b)

B. Network topologies

There is ample room for different types of interaction net-
works when one only specifies that a node is connected to
p (N − 1) other nodes on average. We will therefore consider
three types of networks to explore the impact of the structure
of the interaction network on the tipping dynamics:

ER: The connections form an Erdös-Rényi network [40]
when they are assigned randomly with probability p. The
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probability distribution to be connected to m nodes, i.e., the
degree distribution, amounts to a binomial distribution.

BA: Barabási-Albert networks [41] are built by sequen-
tially adding connections under the constraint of preferential
attachment: elements with a higher number of connections
have a larger chance to receive more links. This leads to scale-
free networks where the degree distribution has a power-law
tail that decays like m−3.

WS: Watts-Strogatz [42] networks are built by arranging
the elements as a one-dimensional ring, where each node is
connected to its pN nearest neighbors. Subsequently, a frac-
tion β of the links is reconnected at random to a new element.
This generates networks with the small-world property.

C. Numerical methods

Tipping behavior in ER, BA, and WS networks has
been analyzed previously by Krönke et al. [25]. Wunderling
et al. [37] developed the PYTHON package PYCASCADES to
create the directed network of coupled tipping elements with
the PYTHON NETWORKX2.3 package [43] and analyze the dy-
namics of tipping cascades based on the package SDEINT [44]
for the integration of stochastic differential equations. These
programs are used here to generate the networks and integrate
the stochastic differential equations (2a). If not stated other-
wise, the system is integrated up to t = 100, using a step size
of �t = 0.01. The coupling strengths dkl will be drawn from
a uniform distribution with 0 < dkl < 2d .

In the simulation runs, the nodes are initially placed at
x = 0, i.e., the unstable fixed point, and the cascade is started
by setting ν nodes to x = 1. Thus, we focus on the transient
behavior of tipping.

At times, the noise turns the point x = 0 into a stable fixed
point of the dynamics [45]. Then, we study cases in which the
coupling of the system is strong enough such that all nodes
follow the initial displacement of the displaced node.

III. MEAN-FIELD EVOLUTION

We characterize the state of the network of tipping ele-
ments by the expectation of the state xk of the elements,

x = 〈xk〉 = 1

N

N∑
k=1

xk, (3a)

and by their variance,

v = 〈(xk − x)2〉 = 〈
y2

k

〉
, (3b)

where yk = xk − x denotes the deviation of xk from the ex-
pectation x. In Sec. III A we derive the equations for the time
evolution of x and v that derive from Eq. (2a). To this end, we
adopt a closure where we suppress higher-order moments and
correlations. Then we point out universal aspects of the time
evolution towards the asymptotic steady state (Sec. III B).

A. Moment expansion

To evaluate the time evolution of the cumulants of the xk

distribution, we note that taking averages 〈_〉 is a linear oper-

ation such that it commutes with taking the time derivative,

ẋ = d

dt
〈xk〉 = 〈ẋk〉,

v̇ = d

dt

〈
y2

k

〉 = 2 〈yk ẋk〉.

To evaluate the averages, we express Eq. (2a) as

ẋk = −(x + yk )3 + x + yk +
∑

l

′
dkl (x + yl ) + ξ

dWk

dt

= x

(
1 − x2 +

∑
l

′
dkl

)
+ yk (1 − 3 x2) − 3 x y2

k

− y3
k +

∑
l

′
dkl yl + ξ

dWk

dt
. (4)

Taking the average of Eq. (4) and observing that 〈yk〉 = 0
provides

ẋ = x

(
1 − x2 − 3 v +

〈∑
l

′
dkl

〉)

− 〈
y3

k

〉 +
〈∑

l

′
dkl yl

〉
+

〈
ξ

dWk

dt

〉
. (5)

The expressions in the second line of this equation account
for the third cumulant of the distribution of the state variables
xk , a biased average of the deviations yk from the average of
the state variables, and the impact of noise on the dynamics,
respectively. In the present study, we consider a closure of
the dynamics where the third cumulant and the biased aver-
age will be suppressed. Moreover, we focus on the average
behavior of an ensemble of systems, where we perform two
averages at the same time: (i) we average over the coupling
strength in the network realizations, and (ii) we average over
the noise Wk . Hence, the noise term vanishes, and 〈∑l

′dkl〉
takes the value p (N − 1) d , since each node is connected to
p (N − 1) other nodes with an average coupling strength d .
Potential subtleties involved in taking the different averages
will be addressed in a forthcoming paper. Altogether, we thus
find

ẋ = x (1 + p (N − 1) d − x2 − 3 v). (6a)

The evolution of v is obtained by multiplying Eq. (4) by
2yk and taking the average,

v̇ = 2〈yk ẋk〉 = 2 v (1 − 3 x2) +
〈
yk ξ

dWk

dt

〉

− 6 x
〈
y3

k

〉 − 2
〈
y4

k

〉 + 2

〈∑
l

′
dkl yk yl

〉
.

The term involving noise vanishes on account of considering
a small-noise limit of the dynamics. The terms in the second
row of the equation are higher-order moments and correlations
that are dropped due to the assumptions of our closure of the
moment hierarchy. Hence, we obtain

v̇ = 2 v (1 − 3 x2). (6b)
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FIG. 2. Asymptotic values of the evolution. (a) Phase-space flow of the dynamical system, Eq. (9), for
√

α � 1/3. The analytical solutions
of the nullclines are marked by gray lines, and fixed points are marked by black circles. The red line shows the numerical solution for N = 80
tipping elements that are connected by an ER network with d = 0.1 and p = 0.25. The numerical solutions for the blue vectors have been
computed using the function matplotlib.pyplot.streamplot in PYTHON. (b) The red and the green lines show the time evolution of the
expectation and the variance of the numerical solution shown in panel (a). The thinner blue line shows the prediction, Eq. (13), for x(0) = 1/N
(for an explanation see Sec. IV B). The dotted line shows the same function shifted by �τ = 1.24. The shifted curve provides an excellent
description of the late-time evolution of the expectation. (c) The data points show the asymptotic values x∗ of numerical simulations of Eq. (2a)
with p = 0.25 and couplings dkl drawn from a uniform distribution dkl ∈ (0, 0.2). Error bars indicate the standard deviation derived from
50 realizations of the network configuration and the noise. The connectivity λd is varied by increasing N from 20 to 400 [cf. Eq. (7)]. The
numerical values agree very well with the prediction Eq. (10) that is shown by a solid blue line. The parameter value of the trajectory shown
in panels (a) and (b) is indicated by a vertical red line. For small networks, the system occasionally tips into the direction opposite to the
perturbation. Hence, we plot the absolute value of x∗.

B. Asymptotics of the order parameter

The dynamics, Eq. (6), involves a single dimensionless
parameter,

λd = 1 + p (N − 1) d, (7)

that depends on the average number of connections, p (N−1),
of a tipping element and on the average coupling strength, d .
Hence, we denote it as connectivity.

Rescaled variables that are based on the connectivity will
allow us to discuss the asymptotics of the order parameter in
a more transparent form,

x(τ ) = x/
√

λd ,

y(τ ) = v/λd ,

τ = λd t . (8)

Denoting the derivatives of x(τ ) and y(τ ) with respect to τ as
ẋ and ẏ provides

ẋ = dx

dτ
= x (1 − x2 − 3 v), (9a)

v̇ = dv

dτ
= 6 v (α − x2), (9b)

where α = (3λd )−1.
In Fig. 2(a) we show the phase-space flow of Eq. (9). The

evolution has nullclines with ẋ = 0 at x = 0 and v = (1 −
x2)/2 that are marked by solid gray lines. The nullclines with
v̇ = 0 lie at v = 0 and x = √

α. They are marked by dashed
lines. The three fixed points, p0 = (0, 0), (

√
α, (1 − α)/3),

and (1,0), are located at the intersections of the v̇ = 0 and
ẋ = 0 nullclines.

By inspection of the flow crossing the nullclines, one read-
ily verifies that the fixed point pi has i stable directions. For all

α > 0, the trajectories approach a state with x = ±1 and van-
ishing variance. A representative sample trajectory is given by
a solid red line in Fig. 2(a). Panel (b) shows the time evolution
of x(τ ) (red line) and v(τ ) (green line) of this trajectory.

The approach towards the stable fixed point at x = 1 im-
plies that

x∗ = lim
τ→∞ x =

√
λd =

√
1 + d p (N − 1). (10)

Fig. 2(c) shows that this dependence is indeed observed by our
numerical data. Only for small connectivities, λd , do the data
tend to lie closely below the prediction. We will come back to
this point when we discuss Fig. 4.

IV. LATE-TIME EVOLUTION

The ẋ = 0 nullcline always takes the same form [solid
gray line in Fig. 2(a)], while the v̇ = 0 nullcline is a vertical
(dashed) line whose position, xc = √

α = (3 λd )−1/2, depends
on the system parameters. For trajectories that proceed to
the left of xc, the order parameter x remains small while v

diverges. This behavior is unphysical and it lies outside of
the scope of our model because our closure assumption can
only be expected to work for small v. However, for large N
the fixed point p1 lies very close to (0, 1/3), and we only
consider initial conditions where 0 < v < x � 1. For these
initial conditions, one encounters trajectories as shown by a
solid red line. Its x coordinates grows monotonically from 0
towards 1. Initially, the variance grows rapidly. Subsequently
(after crossing the nullcline at x = √

α) it decays towards
zero. For larger networks (N  1) and for more strongly cou-
pled networks (increasing pd) the crossover arises very close
to zero (

√
α = [3 (N − 1) p d]−1/2 � 1), and the maximum

value of the variance decreases.
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FIG. 3. Collective tipping behavior of different network types. The left and right panels show the evolution of the order parameter and
relative deviation of numerical data from Eq. (2a) and the prediction from Eq. (13). The rows show data for (a,b) Erdös-Rényi, (c,d) Barabási-
Albert, and (e,f) Watts-Strogatz networks with reconnection probability β = 0.8. The other parameters of the simulations are fixed to N = 100,
p = 0.1, d = 1.5, and ξ = 0.1, such that λd � 16. The data points and the error bars represent the expectation and the standard deviation over
50 realizations of the network and the noise, respectively. The prediction, Eq. (13), is indicated by a solid line in the left panels. It is shifted by
�τ to match the data at x = 0.5 (see the main text for details).

A. Approach to the stable fixed point

The approach towards p2 is governed by the linearized
Eq. (9) of the deviations ε = x − 1 and v from the fixed point.
We take into account that α � 1/3 for large connectivity, λd ,
and we find

(
ε̇

v̇

)
�

(−2 −3

0 −4

)(
ε

v

)
. (11)

The eigenvalue for the decay in v is therefore twice as large
as the one in x, such that v ∼ (1 − x)2 close to the fixed point,
in line with the flow lines of the phase-space plot shown in
Fig. 2(a).

To discuss the evolution of x, we introduce the variable
w = x2 and observe that

ẇ = 2 w (1 − w − 3 v), (12a)

v̇ = 2 v (1 − 3 w). (12b)
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FIG. 4. Trajectories for different initial displacements x(0) = ν/N . Calculations using Eq. (2a) have been conducted for ER networks with
d = 0.1, p = 0.25, ξ = 0.1, N ∈ {100, 200, 300, 800}, and ν ∈ {1, 2, 3}, with couplings dkl drawn from a uniform distribution dkl ∈ (0, 0.2).
This amounts to connectivities of λd = 3.475, 5.975, 10.975, and 20.975, respectively. The data and their error bars in the upper panels
represent the expectation and standard deviation of 100 simulations runs with independent realizations of the network and the noise. The
corresponding lower panels show the relative deviation of the trajectory from the prediction Eq. (15) with x0 = ν/N and a time shift �τ

provided in the respective legends.
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The evolution of w(τ ) for identically vanishing variance,
v ≡ 0, is readily obtained by variable separation and partial
fraction decomposition,

2 τ =
∫ w(τ )

w(0)

dw

w (1 − w)
=

∫ w(τ )

w(0)
dw

[
1

w
+ 1

1 − w

]

= ln

[
w(τ )

w(0)

1 − w(0)

1 − w(τ )

]
,

such that

x(τ ) =
√

w(τ ) =
[

1 + 1 − x2(0)

x2(0)
e−2 τ

]−1/2

. (13)

For late times, τ  1, we hence obtain the expected exponen-
tial decay

1 − x(τ ) � 1 − x2(0)

2 x2(0)
e−2 τ for τ  1. (14)

To discuss the impact of finite values of v, we look for the
solutions of Eq. (12) for w = 1 − ε, where

ε̇ = −2 ε (1 − ε) − 6 v (1 − ε),

v̇ = −4 v
(
1 + 3

2 ε
)
.

We approximate the equation for ε̇ by inserting v = c ε2 [cf.
the discussion of the relation of v and ε below Eq. (11)], and
we consider terms only until order ε3 and v ε. As a conse-
quence,

(1 + 3c) ε̇ = −2 (1 + 3c) ε (1 − (1 + 3c) ε)

such that ε(τ ) = 1 − x(τ ) remains unchanged up to multipli-
cation by the factor 1 + 3c. However, in view of Eq. (14), such
a factor can be accounted for by a shift, �τ , of time, yielding
the following prediction for the time evolution of the order
parameter:

xtheory(τ ) �
[

1 + 1 − x2(0)

x2(0)
e−2 (τ−�τ )

]−1/2

. (15)

This expression has a single free parameter �τ that
amounts to a time delay to reach the half-time τ1/2, where
xtheory(τ1/2) = 1/2,

τ1/2 = �τ − 1

2
ln

3 x2(0)

1 − x2(0)
. (16)

B. Numerical test of Eq. (15)

The left columns of Fig. 3 show the evolution of the or-
der parameter for ER, BA, and WS networks. As an initial
condition we consider a system where one node, say �, is
displaced to a value x� = √

λd , and all other nodes, m �= �,
start at xm = 0. This amounts to initial conditions with

x(0) = 〈xk〉τ=0√
λd

= 1√
λd

1

N

N∑
k=1

xk (0)

= 0 × (N − 1) + 1 × √
λd

N
√

λd

= 1

N
.

For each type of network, we perform 50 runs with different
realizations of the networks and noise. The expectation of the

order parameter, xsim, for the resulting evolution is given by a
circle, and the error bars mark the standard deviation over the
simulation runs.

The theoretical prediction, xtheory, is provided by a solid
line. The time offsets are determined such that the numeri-
cal data and theoretical prediction match for x = 1/2. In a
logarithmic plot of the relative deviation (xsim/xtheory)/xtheory

[Figs. 3(b), 3(d) and 3(f)] this results in a singularity at time
τ1/2 that is marked by vertical dotted lines. The lines align
with the singularity for

�τER = 0.577,

�τBA = −0.96,

�τWS = 0.527. (17)

ER and WS networks have very similar time offsets of about
�τ � 0.5. In contrast, BA networks decay significantly faster.
The negative value of �τBA implies that these networks de-
cay even faster than predicted by the v = 0 result, Eq. (13).
Follow-up work will have to clarify if and how this intriguing
finding is related to the existence of hubs in BA networks,
nodes with a degree greatly exceeding the average.

In addition to the position of τ1/2, Figs. 3(b), 3(d) and 3(f)
demonstrate that the prediction, Eq. (15), provides an excel-
lent description of the data for times beyond τ1/2. The time
offset �τ is the only fitting parameter in this description.

C. Influence of initial displacement

In the previous sections, one node has been perturbed by
a fixed value initially. To discuss the effect of larger initial
perturbations, we explore now systems where initially ν nodes
are tipped to the asymptotic equilibrium value x∗ = √

λd .
Consequently,

x(0) = 〈xk〉t=0√
λd

= 1√
λd

1

N

N∑
k=1

xk (0)

= 0 × (N − ν) + ν × √
λd

N
√

λd

= ν

N
. (18)

According to Eq. (15), this change in x(0) will be the only
change in xtheory. This prediction is scrutinized in Fig. 4 where
we show data for ER networks with 100, 200, 400, and 800
nodes, where we excited initially ν = 1, 2, or 3 nodes:

(i) For a given value of N the time offsets for different ν are
indeed constant to within our numerical accuracy. Moreover,
the positions of the dotted lines clearly show the decrease of
τ1/2 that is predicted by Eq. (16).

(ii) For increasing N the time offset decreases. This is in
line with the expectation that the variance reaches smaller
values for increasing λd such that the dynamics more closely
follows the v = 0 dynamics.

(iii) The relative deviation does not decay to zero. Indeed,
at second glance one recognizes that the data in Fig. 3 also
tend to saturate at a 10−5 level. Hence, the data do not quite
saturate at

√
λd but at a slightly smaller value, as also observed

for the small connectivity data in Fig. 2. We attribute this
effect to the small noise that enforces v to take a small positive
value. According to Eq. (9a), this reduces the asymptotic value
of x by a factor of

√
1 − 3 v2. Consequently, the relative error
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decreases like 1 − √
1 − 3v � 1.5v/λd . The trend is clearly

visible in the data.
Altogether, we established an analytic description for the

time evolution of the order parameter of coupled networks
subject to small noise levels. For different paradigmatic net-
work types, the collective dynamics of the network behaves
just as a single aggregated tipping element with a new
timescale and equilibrium values selected by the connectivity
λd , as provided by the scaling in Eq. (8).

V. DYNAMICS AND STABILITY BEYOND
THE NORMAL FORM

Up to now, we considered systems that evolve according
to Eq. (2a). In this section, we explore how the dynamics
changes when there are additional drift and offset terms, and
how rescaling and shifting the variables xk affects the param-
eters of the resulting description.

A. Influence of drift and offset terms

To discuss the impact of drift and offset terms, we write
Eq. (2b) in the form of Eq. (4) with two additional terms,

ẋk =x

(
1 − x2 +

∑
l

′
dkl

)
+ yk (1 − 3 x2) − 3 x y2

k

− y3
k +

∑
l

′
dkl yl + ξ

dWk

dt

+ dk −
∑

l

′
dkl rkl .

The terms in the first row contributed to the average of ẋk ,
as evaluated in Eq. (5). The terms in the second row amount
to higher-order cumulants, correlations, and noise that are
dropped for the closure and the weak-noise limit adopted here.
The terms in the third row account for the drift and offset
terms. Let the expectation of the drift terms dk be rD, and for
the offsets rkl in the coupling terms we introduce〈∑

l

′
dkl rkl

〉
= p (N − 1) d rO = (λd − 1) rO.

(Again, there may be correction terms that are subdominant
for the considered closure.) With these notations, the average
of ẋk takes the form

ẋ = x (λd − x2 − 3 v) + rD − (λd − 1) rO (19)

and v̇ still takes the form of Eq. (6b). After all, the additional
terms are constant such that they average to zero when mul-
tiplied by yk . In terms of the rescaled variables [Eq. (8)], we
hence find

ẋ = x (1 − x2 − 3 v) + rD + rO

λ
3/2
d

− rO√
λd

, (20a)

v̇ = 6 v (α − x2). (20b)

We note that for large connectivity λd = 1 + p d (N − 1),
the drift and offset terms are subdominant in the order-
parameter dynamics, and they disappear in the large-network

limit. Hence, the order parameter of strongly coupled large
networks evolves according to Eq. (9), as discussed in Sec. III.

For large connectivity, λd  1, every system that crosses
a tipping point relaxes to its new equilibrium value according
to these equations. The intrinsic order-parameter dynamics is
symmetric. In terms of the effective coupling

reff = rD − rO

λ
3/2
d

− rO√
λd

, (21)

one encounters saddle-node bifurcations at reff = ±√
4/27

[cf. Fig. 1 and the discussion below Eq. (1)].

B. Linear coordinate transformations

Scale changes can be expressed as a change of variables
where the state of the nodes is characterized by new variables
zk that are linear functions of xk ,

zk = m xk + n for fixed m, n. (22)

Consequently, z = 〈zk〉 = m x + n and żk = m ẋk . Averaging
the latter equation and using Eq. (19) provides

ż

m
= ẋ = x (λd − x2 − 3 v) + rD − (λd − 1) rO.

For z = z/(m
√

λd ), τ = λd t , and z0 = n/(m
√

λd ) we have
x = z − z0, and we find

ż(τ ) = dz

dτ
= (z − z0) [1 − (z − z0)2 − 3 v] + reff, (23a)

v̇(τ ) = 6 v (α − (z − z0)2) (23b)

with a macroscopic bifurcation parameter, reff, given by
Eq. (21).

The shift z0 of z can be interpreted as a vertical displace-
ment of the s-shaped red curve in Fig. 1. It affects the positions
of the steady states, but not the bifurcation parameters. The
intrinsic dynamics remains symmetric in the bifurcation pa-
rameter reff with saddle-node bifurcations at rcrit = ±√

4/27.
The dependence of the bifurcation parameter, Eq. (21),

on connectivity λd provides another important insight into
the stability of the networks: The drift dominates the control
parameter as long as the offset terms rkl are very small as com-
pared to the drift, (λd − 1) |rO| � |rD|, and the global system
is bistable for −λ

3/2
d � 2.5 rD � λ

3/2
d (after all

√
27/4 ≈ 5/2).

In view of Eq. (7), the connectivity λd increases linearly with
the network size such that the state of the network in this pa-
rameter range is very robust against perturbations. However,
for strong connectivity the offset terms will always dominate
the system response eventually,

(λd − 1) |rO|  |rD| for λd ≫ 1.

Eventually, the coupling terms govern the strength of the bi-
furcation parameter, and the range of stability increases more
slowly with the connectivity

−
√

4
27 λd � rO �

√
4
27 λd for λd ≫ 1.

Still, the range of stability increases with network size, and
for increasing network size the state will become ever more
robust against perturbations.
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FIG. 5. Asymptotic fixed point z∗ (a) and the critical points (b) for networks with an offset n and rkl = 0 in Eq. (24). All calculations are
conducted for an ER network with N = 100 nodes, couplings dkl drawn from a uniform distribution dkl ∈ (0, 1.2), λd = 16, and noise strength
ξ = 0.1. (a) For fixed values n = m = 1 and different drift rD we follow the dynamics for initial conditions xinit = −1 and one excited node
at z = 1 (orange) and xinit = 2 and one node at z = −1 (blue), respectively. The dots and the error bars indicate the average and the standard
deviation of the late-time asymptotic positions of 50 simulations with different realizations of the network and noise. They lie nicely on the
prediction for the positions of the fixed points, Eq. (25a), that is provided by the solid red line. The positions of the critical points, rcrit, are
identified as having the largest distance between subsequent data points. (b) The n-dependence of rcrit determined from data as shown in panel
(a), m = 1, and different values of n. The red lines provide the predicted positions, Eq. (25b), of the saddle-node bifurcations.

C. Coordinate transformations that do not involve the coupling

It is by no means self-evident that a change of coordinates
of individual tipping elements affects the coupling terms in
the same way. In particular, studies of climate networks [46]
address the situation where the individual tipping elements
are shifted at a fixed symmetric coupling. In other words, one
adopts Eq. (22) but considers the dynamics

d

dt

zk

m
= −

( zk − n

m

)3

+ zk − n

m
+ dk

+
∑

l

′
dkl

(
zl − rkl

) + ξ
dWk

dt
(24)

with 〈rkl〉 = 0. To identify the effects of this asymmetry in the
parameter change, we observe that

∑
l

′
dkl (zl − rkl ) =

∑
l

′
(m dkl )

( zl − n

m
− rkl − n

m

)

such that the substitution dkl → m dkl and rkl → (rkl − n)/m
provides the system treated in Sec. V B. On the level of the
coarse-grained system, this entails that for the present system
λd = 1 + (N − 1) p md and rO = 〈(rkl − n)/m〉 = −n/m =
−√

λd z0. Substitution into Eq. (23a) provides

ż = (z − z0) [1 − (z − z0)2 − 3 v] + rD + rO

λ
3/2
d

− rO√
λd

= (z − z0) [1 − (z − z0)2 − 3 v] + λd − 1

λd
z0 + rc

with control parameter

rc = rD/λ
3/2
d .

Now, the fixed points, ż = 0, are located on the line

rc = rD

λ
3/2
d

= −(z∗ − z0) [1 − (z∗ − z0)2] − λd − 1

λd
z0,

(25a)

and the saddle-node bifurcations arise when

rcrit = ±
√

4

27
− λd − 1

λd
z0. (25b)

Figure 5 demonstrates that this is indeed observed in sim-
ulations of the networks. The right-hand side of Eq. (25a)
mounts to the red s-shaped curve in Fig. 5(a). The data
points mark the positions of the fixed points z∗ adopted by
the system. For each value of z0 we thus find a hysteresis
loop that provides the critical driving parameters, rcrit, where
the saddle-node bifurcations arise. Figure 5(b) displays the
n-dependence of the positions of the saddle-node bifurcations.
The data nicely follow the expected behavior, Eq. (25b), with
z0 = n/(m

√
λd ). We conclude that incongruent response of

the tipping elements and their coupling to parameter changes,
as expressed by Eqs. (24) and (22), gives rise to dynamics
where the system is bistable in a range of control parameters
rc that is no longer symmetric around zero.

VI. DISCUSSION AND OUTLOOK

In the main part of the present paper, we set up an analytical
description of the collective tipping of a large number, N ,
of tipping elements that are coupled in a random network.
The present section discusses these findings in the context of
related literature, and it highlights prospective extensions.

A. Collective behavior

We characterized each tipping element k ∈ {1 · · · N} by
a scalar state variable xk ∈ R. It evolves in a double-well
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potential with a saddle at x = 0 that separates the domains
of attraction of two coexisting stable states at xk = ±1. The
elements are pairwise connected in a random network with
mean coupling strength d , and a probability p that there is a
connection for a given pair of elements.

The overall state of the system is characterized by the
expectation x and the variance v of the distribution of xk .
The evolution of these collective coordinates is derived based
on a closure where we drop higher-order cumulants and cor-
relations. In the weak-noise limit, they evolve according to
Eq. (6), which involves a single dimensionless parameter:
the connectivity λd = 1 + p (N − 1) d . The coarse-grained
dynamics has global fixed points at (x, v) = (±√

λd , 0), and
tipping proceeds in terms of a dimensionless time λd t (Fig. 2).

The dependence on λd t implies that tipping occurs more
abruptly for increasing network degree p (N − 1) and cou-
pling strength d . This provides a rationale for the observation
of Eom [47], who also observed these trends in numerical
data.

The parameter dependence of the timescale and the posi-
tion of the fixed points of the collective coordinates can be
absorbed by rescaling [Eq. (8)]. In line with the observations
of Wunderling et al. [24], this implies that systems with high
average degree p (N − 1) only require low coupling strengths
d to initiate a tipping cascade.

We have analyzed network-specific time delays in Eq. (17)
and found very similar offsets for ER and WS networks of
about �τ � 0.5. Interestingly, BA networks decay with a
significantly smaller time offset. We expect this to result from
the existence of hubs in the BA network that could force the
tipping process of the network. Follow-up work will have to
clarify if and how this finding is related to the existence of
hubs in the BA network.

B. Shape of the distribution

In terms of the rescaled collective coordinates x = x/
√

λd

and v = v/λd , the dynamics has a saddle point at position

(α, (1 − α2)/3) with α = (3λd )−1/2. Trajectories that proceed
to the right of the saddle show collective behavior. Up to
initial transients, the variance of the distribution of trajectory
states is small and the systems evolves according to a strongly
coupled collective dynamics. Due to the assumptions taken to
close the equations for x and v, the present theory does not
apply for trajectories that proceed to the left of the saddle.
Follow-up work will address higher-order closures in order
to deal with the broad and, at times, bimodal distributions of
tipping elements in this polydisperse parameter regime.

At this point, we observe that α approaches zero for in-
creasing connectivity. Hence, a rapidly increasing fraction of
initial conditions proceeds to the right of the saddle. In line
with the findings of Brummitt et al. [16], this explains that
increasing coupling strength d entails synchronous behavior
of tipping elements for a larger set of initial conditions.

C. Noise

Careful inspection of our data in Fig. 4 revealed that the
expectation x saturates at values slightly below

√
λd . We

argued that the variance v of the distribution remains finite

for a system subjected to small noise, and that this will de-
crease the asymptotic value by a factor 1 − 3 v/λd . Moreover,
preliminary data indicate that noise has a nontrivial impact
on the dynamics in the polydisperse parameter regime. An
expansion of our model that addresses the impact of noise is
in preparation.

D. Negative feedback and multiple scales

The derivation of the collective dynamics, Eqs. (6), does
not involve any assumptions on the distribution of the cou-
pling strength. The present study describes the time evolution
of systems where the feedback is positive on average, d > 0.
In this case, λd increases for larger and more strongly coupled
networks, and the dynamics does not much depend on the
structure and realization of the network (cf. Fig. 3).

For negative overall feedback, d < 0, and for larger net-
works, our connectivity as defined in Eq. (7) becomes negative
and thus no longer meaningful. The nondimensionalization
introduced in Eq. (8) to dimensionless parameters only works
for λd > 0. In the case of negative overall feedback, the flow
described by Eqs. (6) will always enter the realm of large v

that is out of the scope of the present assumptions for the
closure of the equations. An appropriate expansion of the
model will allow us to address phenomena such as Kadyrov
oscillations [14,48,49].

We also expect that systems with noticeable negative feed-
back and vast heterogeneity in the timescales of the tipping
elements and their tipping thresholds are much more suscep-
tible to correlations of the characteristics of tipping elements
and their network environment. Expansions that account for
these correlations will make it possible to investigate sys-
tems like the large-scale Amazon rainforest, where spatially
distant patches are dependent on each other via the atmo-
spheric moisture recycling feedback (see, e.g., [22,24,50]).
Instead of a microscale (local-scale tipping elements) and a
macroscale (entire forest), one will then also define an inter-
mediary mesoscale for strongly connected subcomponents of
the forest.

E. Time dependence of parameters

The present analysis provides a comprehensive framework
for the description of phase separation of networks of tipping
elements for fixed-in-time control parameters. However, the
Earth climate system is subjected to a sustained change of
its parameters due to the release of vast amounts of car-
bon dioxide into the atmosphere, and on historical scales
its energy input varies periodically due to Milankovitch cy-
cles [51,52]. Both effects can have a severe impact on the time
evolution. Parameter oscillations in a noisy bistable system
induce stochastic resonance [53,54]. Parameter drift induces
size focusing [55] as discussed recently for applications in
chemistry [56] and soft biological matter [57]. Nontrivial new
behavior emerges in the latter systems due to overall con-
straints on the dynamics due to mass conservation, or global
pressure and elastic fields. It will therefore be highly relevant
to explore how the dynamics is impacted by the coupling
to a global parameter, like temperature in the Daisyworld
models [31].
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VII. CONCLUSION

In the present paper, we established a description of the
collective tipping dynamics of an assembly of coupled tipping
elements that are set up in a slightly perturbed unstable steady
state. We described the assembly in terms of the expectation
and the variance of variables that describe the state of the
individual tipping elements. For a vast range of initial con-
ditions of the network, the variance remains small throughout
the evolution. In those cases, the expectation follows universal
dynamics, as shown in Figs. 3 and 4 for networks with vastly
different numbers of nodes, N , network degrees, p (N − 1),
network types (Erdös-Rényi [40], Barabási-Albert [41], and
Watts-Strogatz [42]), and average coupling, d , between the
elements. The dynamics is characterized by a single dimen-
sionless parameter, λd , that is defined in Eq. (7). Based on
the nondimensionalization, Eq. (8), it provides the timescale
of the dynamics and the parameter values of the expectation
and the variance of the target state of the dynamics (Fig. 2).
In Sec. V we showed that the description is robust in the large
network and strong coupling limit (see Fig. 5), as long as the
coupling provides a positive feedback on average. Expected
changes for negative feedback, d < 0, and other extensions of
the model were briefly discussed in Sec. VI.

In conclusion, in the present work we established an effec-
tive analysis of cascading tipping behavior in strongly coupled
networks. It provides a comprehensive analytical description
that is in excellent agreement with numerical simulations, and
it calls for extensions to address the tipping dynamics in other
parameter regimes and in settings with a global feedback or
other constraints.

ACKNOWLEDGMENTS

N.W. acknowledges support from the the IRTG 1740/TRP
2015/50122-0 funded by DFG and FAPESP. N.W. is
grateful for support from a scholarship from the Studi-
enstiftung des Deutschen Volkes. J.F.D. is thankful for
support by the Leibniz Association (project DominoES) and
the European Research Council project Earth Resilience
in the Anthropocene (743080 ERA). The authors grate-
fully acknowledge the European Regional Development Fund
(ERDF), the German Federal Ministry of Education and
Research, and the Land Brandenburg for supporting this
project by providing resources on the high performance com-
puter system at the Potsdam Institute for Climate Impact
Research.

[1] A. Safari, R. Saidur, F. A. Sulaiman, Y. Xu, and J. Dong, A
review on supercooling of phase change materials in thermal
energy storage systems, Renew. Sustainable Energy Rev. 70,
905 (2017).

[2] B. Wunderlich, One hundred years research on supercooling
and superheating, Thermochim. Acta 461, 4 (2007).

[3] K. Binder, Theory of first-order phase transitions, Rep. Prog.
Phys. 50, 783 (1987).

[4] H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritomo, and Y.
Tokura, A first-order phase transition induced by a magnetic
field, Science 270, 961 (1995).

[5] A. Onuki, Phase Transition Dynamics (Cambridge University
Press, Cambridge, 2002).

[6] R. A. da Costa, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F.
Mendes, Explosive Percolation Transition is Actually Continu-
ous, Phys. Rev. Lett. 105, 255701 (2010).

[7] R. M. D’Souza and M. Mitzenmacher, Local Cluster Aggre-
gation Models of Explosive Percolation, Phys. Rev. Lett. 104,
195702 (2010).

[8] R. M. D’Souza and J. Nagler, Anomalous critical and super-
critical phenomena in explosive percolation, Nat. Phys. 11, 531
(2015).

[9] P. Grassberger, C. Christensen, G. Bizhani, S.-W. Son, and M.
Paczuski, Explosive Percolation is Continuous, But with Unus-
ual Finite Size Behavior, Phys. Rev. Lett. 106, 225701 (2011).

[10] O. Riordan and L. Warnke, Explosive percolation is continuous,
Science 333, 322 (2011).

[11] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S.
Havlin, Catastrophic cascade of failures in interdependent net-
works, Nature (London) 464, 1025 (2010).

[12] A. E. Motter and M. Timme, Antagonistic phenomena in net-
work dynamics, Annu. Rev. Condens. Matter Phys. 9, 463
(2018).

[13] D. J. Watts, A simple model of global cascades on random
networks, Proc. Natl. Acad. Sci. (USA) 99, 5766 (2002).

[14] R. Abraham, A. Keith, M. Koebbe, and G. Mayer-Kress,
Computational unfolding of double-cusp models of opinion
formation, Int. J. Bifurcation Chaos 1, 417 (1991).

[15] T. M. Lenton, J. Rockström, O. Gaffney, S. Rahmstorf, K.
Richardson, W. Steffen, and H. J. Schellnhuber, Climate tip-
ping points-too risky to bet against, Nature (London) 575, 592
(2019).

[16] C. D. Brummitt, G. Barnett, and R. M. D’Souza, Coupled catas-
trophes: Sudden shifts cascade and hop among interdependent
systems, J. R. Soc., Interface 12, 20150712 (2015).

[17] U. Feudel, A. N. Pisarchik, and K. Showalter, Multistability and
tipping: From mathematics and physics to climate and brain—
minireview and preface to the focus issue, Chaos 28, 033501
(2018).

[18] M. Scheffer, Alternative stable states in eutrophic, shallow
freshwater systems: A minimal model, Hydrobiol. Bull. 23, 73
(1989).

[19] T. P. Hughes, S. Carpenter, J. Rockström, M. Scheffer, and
B. Walker, Multiscale regime shifts and planetary boundaries,
Trends Ecol. Evol. 28, 389 (2013).

[20] T. M. Lenton and H. T. P. Williams, On the origin of planetary-
scale tipping points, Trends Ecol. Evol. 28, 380 (2013).

[21] J. C. Rocha, G. Peterson, Ö. Bodin, and S. Levin, Cascad-
ing regime shifts within and across scales, Science 362, 1379
(2018).

[22] D. C. Zemp, C.-F. Schleussner, H. M. J. Barbosa, M. Hirota,
V. Montade, G. Sampaio, A. Staal, L. Wang-Erlandsson, and A.
Rammig, Self-amplified Amazon forest loss due to vegetation-
atmosphere feedbacks, Nat. Commun. 8, 1 (2017).

[23] W. Steffen, J. Rockström, K. Richardson, T. M. Lenton, C.
Folke, D. Liverman, C. P. Summerhayes, A. D. Barnosky, S. E.

044301-11

https://doi.org/10.1016/j.rser.2016.11.272
https://doi.org/10.1016/j.tca.2006.11.015
https://doi.org/10.1088/0034-4885/50/7/001
https://doi.org/10.1126/science.270.5238.961
https://doi.org/10.1103/PhysRevLett.105.255701
https://doi.org/10.1103/PhysRevLett.104.195702
https://doi.org/10.1038/nphys3378
https://doi.org/10.1103/PhysRevLett.106.225701
https://doi.org/10.1126/science.1206241
https://doi.org/10.1038/nature08932
https://doi.org/10.1146/annurev-conmatphys-033117-054054
https://doi.org/10.1073/pnas.082090499
https://doi.org/10.1142/S0218127491000324
https://doi.org/10.1038/d41586-019-03595-0
https://doi.org/10.1098/rsif.2015.0712
https://doi.org/10.1063/1.5027718
https://doi.org/10.1007/BF02286429
https://doi.org/10.1016/j.tree.2013.05.019
https://doi.org/10.1016/j.tree.2013.06.001
https://doi.org/10.1126/science.aat7850
https://doi.org/10.1038/ncomms14681


KOHLER, WUNDERLING, DONGES, AND VOLLMER PHYSICAL REVIEW E 104, 044301 (2021)

Cornell, M. Crucifix et al., Trajectories of the Earth system
in the Anthropocene, Proc. Natl. Acad. Sci. (USA) 115, 8252
(2018).

[24] N. Wunderling, B. Stumpf, J. Krönke, A. Staal, O. A.
Tuinenburg, R. Winkelmann, and J. F. Donges, How motifs
condition critical thresholds for tipping cascades in complex
networks: Linking micro-to macro-scales, Chaos 30, 043129
(2020).

[25] J. Krönke, N. Wunderling, R. Winkelmann, A. Staal, B. Stumpf,
O. A. Tuinenburg, and J. F. Donges, Dynamics of tipping
cascades on complex networks, Phys. Rev. E 101, 042311
(2020).

[26] J. Garbe, T. Albrecht, A. Levermann, J. F. Donges, and R.
Winkelmann, The hysteresis of the Antarctic ice sheet, Nature
(London) 585, 538 (2020).

[27] A. Robinson, R. Calov, and A. Ganopolski, Multistability and
critical thresholds of the greenland ice sheet, Nat. Clim. Change
2, 429 (2012).

[28] J. A. Curry, J. L. Schramm, and E. E. Ebert, Sea ice-albedo
climate feedback mechanism, J. Clim. 8, 240 (1995).

[29] M. Müller-Stoffels and R. Wackerbauer, Regular network
model for the sea ice-albedo feedback in the arctic, Chaos 21,
013111 (2011).

[30] E. Kriegler, J. W. Hall, H. Held, R. Dawson, and H. J.
Schellnhuber, Imprecise probability assessment of tipping
points in the climate system, Proc. Natl. Acad. Sci. (USA) 106,
5041 (2009).

[31] A. J. Watson and J. E. Lovelock, Biological homeostasis of the
global environment: The parable of Daisyworld, Tellus B 35,
284 (1983).

[32] M. I. Budyko, The effect of solar radiation variations on the
climate of the Earth, Tellus 21, 611 (1969).

[33] W. D. Sellers, A global climatic model based on the energy
balance of the Earth-atmosphere system, J. Appl. Meteorol.
Climatol. 8, 392 (1969).

[34] P. F. Hoffman, A. J. Kaufman, G. P. Halverson, and D. P. Schrag,
A neoproterozoic snowball Earth, Science 281, 1342 (1998).

[35] V. Lucarini and T. Bódai, Transitions Across Melancholia States
in a Climate Model: Reconciling the Deterministic and Stochas-
tic Points of View, Phys. Rev. Lett. 122, 158701 (2019).

[36] H. B. Callen, Thermodynamics and an Introduction to Thermo-
statistics (Wiley, New York, 1985).

[37] N. Wunderling, J. Krönke, V. Wohlfarth, J. Kohler, J. Heitzig, A.
Staal, S. Willner, R. Winkelmann, and J. F. Donges, Modelling
nonlinear dynamics of interacting tipping elements on complex
networks: The pycascades package, Eur. Phys. J.: Spec. Top.
(2021).

[38] A. K. Klose, V. Karle, R. Winkelmann, and J. F. Donges,
Emergence of cascading dynamics in interacting tipping ele-
ments of ecology and climate, R. Soc. Open Sci. 7, 200599
(2020).

[39] J. Murdock, Normal forms, Scholarpedia 1, 1902 (2006).

[40] P. Erdös and A. Rényi, On random graphs, Publ. Math. 6, 290
(1959).

[41] A.-L. Barabási and R. Albert, Emergence of scaling in random
networks, Science 286, 509 (1999).

[42] D. J. Watts and S. H. Strogatz, Collective dynamics of ’small-
world’ networks, Nature (London) 393, 440 (1998).

[43] A. Hagberg, P. Swart, and D. S Chult, Exploring network struc-
ture, dynamics, and function using NetworkX, Tech. Rep. (Los
Alamos National Lab., Los Alamos, NM, 2008).

[44] M. J. Aburn, sdeint: Numerical integration of stochastic differ-
ential equations (SDE), software available under GNU general
public license (2017), accessed: 2020-07-18.

[45] V. I. Arnold, Catastrophe Theory, 3rd ed. (Springer, Berlin,
1992).

[46] N. Wunderling, J. F. Donges, J. Kurths, and R. Winkelmann,
Interacting tipping elements increase risk of climate domino
effects under global warming, Earth Syst. Dyn. 12, 601 (2021).

[47] Y.-H. Eom, Resilience of networks to environmental stress:
From regular to random networks, Phys. Rev. E 97, 042313
(2018).

[48] M. N. Kadyrov, A mathematical model of the relations between
two states, in Global Development Processes: Modeling and
Analysis, Collected Papers Vol. 3 (Institute for System Studies,
Moscow, 1984), pp. 87–99.

[49] N. Wunderling, M. Gelbrecht, R. Winkelmann, J. Kurths, and
J. F. Donges, Basin stability and limit cycles in a conceptual
model for climate tipping cascades, New J. Phys. 22, 123031
(2020).

[50] A. Staal, O. A. Tuinenburg, J. H. C. Bosmans, M. Holmgren,
E. H. van Nes, M. Scheffer, D. C. Zemp, and S. C. Dekker,
Forest-rainfall cascades buffer against drought across the Ama-
zon, Nat. Clim. Change 8, 539 (2018).

[51] J. D. Hays, J. Imbrie, and N. J. Shackleton, Variations in the
earth’s orbit: Pacemaker of the ice ages, Science 194, 1121
(1976).

[52] A. L. Sørensen, A. T. Nielsen, N. Thibault, Z. Zhao, N. H.
Schovsbo, and T. W. Dahl, Astronomically forced climate
change in the late cambrian, Earth Planet. Sci. Lett. 548, 116475
(2020).

[53] R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, Stochastic
resonance in climatic change, Tellus 34, 10 (1982).

[54] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Stochas-
tic resonance, Rev. Mod. Phys. 70, 223 (1998).

[55] J. Vollmer, A. Papke, and M. Rohloff, Ripening and focusing of
aggregate size distributions with overall volume growth, Front.
Phys. 2, 18 (2014).

[56] M. D. Clark, S. K. Kumar, J. S. Owen, and E. M. Chan,
Focusing nanocrystal size distributions via production control,
Nano Lett. 11, 1976 (2011).

[57] K. A. Rosowski, T. Sai, E. Vidal-Henriquez, D. Zwicker, R. W.
Style, and E. R. Dufresne, Elastic ripening and inhibition of
liquid-liquid phase separation, Nat. Phys. 16, 422 (2020).

044301-12

https://doi.org/10.1073/pnas.1810141115
https://doi.org/10.1063/1.5142827
https://doi.org/10.1103/PhysRevE.101.042311
https://doi.org/10.1038/s41586-020-2727-5
https://doi.org/10.1038/nclimate1449
https://doi.org/10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2
https://doi.org/10.1063/1.3555835
https://doi.org/10.1073/pnas.0809117106
https://doi.org/10.3402/tellusb.v35i4.14616
https://doi.org/10.3402/tellusa.v21i5.10109
https://doi.org/10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2
https://doi.org/10.1126/science.281.5381.1342
https://doi.org/10.1103/PhysRevLett.122.158701
https://doi.org/10.1140/epjs/s11734-021-00155-4
https://doi.org/10.1098/rsos.200599
https://doi.org/10.4249/scholarpedia.1902
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1038/30918
https://doi.org/10.5194/esd-12-601-2021
https://doi.org/10.1103/PhysRevE.97.042313
https://doi.org/10.1088/1367-2630/abc98a
https://doi.org/10.1038/s41558-018-0177-y
https://doi.org/10.1126/science.194.4270.1121
https://doi.org/10.1016/j.epsl.2020.116475
https://doi.org/10.3402/tellusa.v34i1.10782
https://doi.org/10.1103/RevModPhys.70.223
https://doi.org/10.3389/fphy.2014.00018
https://doi.org/10.1021/nl200286j
https://doi.org/10.1038/s41567-019-0767-2

