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Dynamical system analysis of a data-driven model constructed by reservoir computing
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This study evaluates data-driven models from a dynamical system perspective, such as unstable fixed points,
periodic orbits, chaotic saddle, Lyapunov exponents, manifold structures, and statistical values. We find that these
dynamical characteristics can be reconstructed much more precisely by a data-driven model than by computing
directly from training data. With this idea, we predict the laminar lasting time distribution of a particular
macroscopic variable of chaotic fluid flow, which cannot be calculated from a direct numerical simulation of
the Navier-Stokes equation because of its high computational cost.
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I. INTRODUCTION

Reservoir computing, a brain-inspired machine-learning
technique that employs a data-driven dynamical system, is
effective in predicting time series and frequency spectra in
chaotic behaviors, including fluid flow and global atmospheric
dynamics [1-10]. Pathak et al. [3] examined the Lorenz
system and the Kuramoto-Sivashinsky system and reported
that the data-driven model obtained from reservoir computing
could generate an arbitrarily long time series that mimics the
dynamics of the original systems.

The extent to which a data-driven model using reservoir
computing can capture the dynamical properties of original
systems should be determined. Lu et al. [11] reported that a
data-driven model has an attractor similar to that of the orig-
inal system under an appropriate choice of parameters. Nakai
and Saiki [12] confirmed that a single data-driven model
could infer the time series of chaotic fluid flow from various
initial conditions. Zhu et al. [13] identified some unstable
periodic orbits of a data-driven model through delayed feed-
back control. They suggested that a data-driven model could
reconstruct the attractor of the original dynamical system.

This paper clarifies that a data-driven model using reservoir
computing has richer information than that obtained from
training data, especially from dynamical system point of view,
suggesting that dynamical properties of the original unknown
dynamical system can be estimated by reservoir computing
from a relatively short time series. Besides the invariant sets,
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such as fixed points and periodic orbits, the dynamical prop-
erties, such as Lyapunov exponents and manifold structures
between stable and unstable manifolds, can be reconstructed
by the data-driven model through reservoir computing, even if
the system does not have structural stability.
We mainly deal with the Lorenz system [14]:

dx 10 dy dz 8 !
g =000 gy =y =gz ()
and will be denoted as the actual Lorenz system in this paper.
A data-driven model is constructed from short time training
data created from (1), the method of which is explained later.
Two different parameter values of r are considered. One of
the parameters (r = 28) has hyperbolic dynamics, whereas the
other (r = 60) generates dynamics with tangencies between
stable and unstable manifolds [15]. The latter property is
one of the two primary sources for the breaking structural
stability [16], which often appears in the real-world physical
phenomena. We also deal with the Rossler system [17]:

dx dy dz

o Y TE oy, =x+0.2y, 7
in order to confirm that the similar properties hold. As an
application of the obtained knowledge, this study exam-
ines high-dimensional chaotic fluid flow to determine if the
laminar lasting time distribution can be predicted using the
data-driven model constructed from short training time-series
data.

After introducing the method of reservoir computing in

Sec. II, we investigate the dynamical system properties of
the data-driven model obtained from the reservoir computing
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TABLE 1. The list of parameters and their values used
in the reservoir computing in each section. We use u(r) =
[x(2), y(2), z(t), x(t — A7), y(t — AT), z(t — At)] for the input vari-
able, where At is the delay time.

parameter r=28 r =60
M dimension of input and output variables 6
N dimension of reservoir state vector 2000
At time step for a model (3) 0.01
P maximal eigenvalue of A 0.99
o nonlinearity degree in a model (3) 0.3 0.4
B regularization parameter 0.002 0.001
At delay time for input and output variables 0.11 0.07

for the Lorenz system in Sec. III and the Rossler system in
Sec. IV. Applying the obtained implications, in Sec. V, we
estimate the state-lasting time distribution. We conclude our
remarks in Sec. VL.

II. RESERVOIR COMPUTING

A reservoir is a recurrent neural network whose internal
parameters are not adjusted to fit the data in the training
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FIG. 1. Poincaré sectionlike plots [r = 28 (left) and 60 (right)].
The sets of points (x, z) [(a), (b)] along a trajectory of the data-driven
model using reservoir computing, [(c), (d)] along a long trajectory of
the actual Lorenz system, and [(e), (f)] along a short trajectory used
for the training data are plotted when |x — y| < €,, where €, = 0.05.
The time lengths of the three trajectories are T = 10°, 10°, and 5000,
respectively.
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FIG. 2. Density distributions of a variable [r =28 (top) and
r = 60 (bottom)]. (a), (c) The density distribution of the x variable
calculated from a length T = 10° trajectory of the data-driven model
by reservoir computing (Pres) is plotted together with that computed
from the length T = 10° long trajectory of the actual Lorenz system
(dact) and with that computed from the length 7 = 5000 short tra-
jectory (dtra) used as training data for constructing the data-driven
model. Here the length T = 10° long trajectory is used to obtain a
distribution which approximates the limiting distribution. (b), (d) The
differences in the distributions are shown. The average x and the stan-
dard deviation o of the density distribution are as follows; (¥, 0) =
(—0.004, 7.924) for the data-driven model, and (0.009,7.925) for
the Lorenz system with » = 28; (x, o) = (—0.018, 12.092) for the
data-driven model, and (—0.018, 12.091) for the Lorenz system with
r=060. [|®res— Pact|dx/ [ |Ptra — Pact|dx ~ 1/8 for r =28,
and ~1/6 for r = 60.
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process [18,19]. The reservoir can be trained by feeding it an
input time series and fitting a linear function of the reservoir
state vector to the desired output time series. We do not use
physical knowledge in constructing a model. The data-driven
model using reservoir computing we study is the following:

{u(t) = W, r(t), 3)
r(t + A1) = (1 — @)r(t) + o tanh[Ar(r) + Winu(0)],

where u(t) € RM is a vector-valued variable, the com-
ponent of which is denoted as an output variable;
r(t) € RN (N > M) is a reservoir state vector; A € RV*V,
Wi, € RVM ) and Wi, € RM*V are matrices; o (0 <
o < 1) is a coefficient; Ar is a time step. We define
tanh(q) = [tanh(q,), tanh(g>), ..., tanh(gy)]T, for a vector
q=(q1,92....,qy)", where T represents the transpose of a
vector.

We explain how to determine W} in (3). Time develop-

ment of the reservoir state vector r(/Ar) are determined by

r(t + At) = (1 — a)r(t) + o tanh[Ar(z) + Wi,u(@)], @)

together with training time-series data {u(/Af)}(—Lo < <
L), where L is the transient time and L is the time length to
determine W} . For given random matrices A and Wj,, we
determine W, so that the following quadratic form takes the
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TABLE II. Coordinates and eigenvalues of the Jacobian matrix at each of the three unstable fixed points. Ly, Ryes, and Oy are fixed points
of the data-driven model, whereas Lcqal, Ractual, a0d Oyeqya are fixed points of the actual Lorenz system with » = 28. The coordinates (x*, y*, z*)
and the eigenvalues (A, A,, A3) of the Jacobian matrix at each fixed point of the data-driven model are close to those of the corresponding

fixed point of the actual Lorenz system.

Lres Rres Ores Laclual Raclual Oaclual
x* —8.47 8.50 0.04 —8.49 8.49 0.00
y* —8.47 8.50 0.02 —8.49 8.49 0.00
4 27.04 27.01 0.54 27.00 27.00 0.00
A 0.09 +10.19i 0.10 + 10.21i 11.67 0.09 4 10.20i 0.09 + 10.20i 11.83
A; 0.09 — 10.19i 0.10 — 10.21i —2.66 0.09 — 10.20i 0.09 — 10.20i —2.67
Aj —13.84 —13.86 —22.68 —13.85 —13.85 —22.83
minimum: of the actual system. The sets of parameter values used to
L construct the data-driven model are shown in Table 1.
_ 2 T Poincaré sectionlike plots. The Poincaré section of the
; IWour(TAn) —u({@ + DADI" + ,B[Tr(WoutWOln)], data-driven model of the Lorenz system has been studied [3].
(3) We compare the shape and size of the attractor of a data-driven
where ||q||> = q"q for a vector q. The minimizer is model (3) with those of the attractor of the actual Lorenz
system (1), and also with those of the set of points along the
Wi, = SUSR” (SRR + BI) ", (6)  training time series data. Figure 1 presents their Poincaré sec-

where I is the N x N identity matrix, SR (§U) is the matrix
whose /th column is r(/At) (u(lAt)). (see Refs. [20], p. 140,
and [21], chap. 1, for details).

Note that A is chosen to have a maximum eigenvalue
o (Ip] < 1) in order for (4) to satisfy so-called echo state
property. It is known that adding noise to the training time-
series data can be useful in the construction of a data-driven
model [2]. For the computation of the data-driven model of
the Rossler system, a small amplitude of noise is added. More
details about the reservoir computing can be found elsewhere
[3.6].

III. LORENZ SYSTEM

In this section we evaluate a data-driven model (3) con-
structed using short training time series data from a dynamical
system perspective. The main focus is on the properties in the
space of output variables (corresponding to x, y, and z for the
case of the Lorenz system), which compare them with those
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FIG. 3. Fixed points. (a) The three fixed points (x*, y*, z*) of the
data-driven model and (b) the corresponding unstable fixed points
of the actual Lorenz system are plotted together with trajectory
points with the time length T = 10*. The three fixed points of the
data-driven model are close to those of the actual Lorenz system,
despite the fixed points being outside the training data, which is part
of the actual trajectory. See the coordinates and the eigenvalues of
the Jacobian matrix at each fixed point in Table II.

tionlike plots for » = 28 and 60. For each of the two parameter
cases, a set of trajectory points generated from the data-driven
model seem to coincide with the chaotic attractor of the actual
Lorenz system. Furthermore, the data-driven model has an
attractor, which is significantly larger than the set of training
data used to construct the model.

Density distribution. The density distribution of x variable
along a trajectory of the data-driven model is presented in
Fig. 2. We compare the distribution with that obtained from
the trajectory of the actual Lorenz system (1) and that calcu-
lated directly from the training data. The distribution of the
actual Lorenz system can be captured by employing the data-
driven model. Remarkably, the distribution with a singular
structure [22] in » = 60 can be recovered using the data-driven
model.

Fixed points and their stabilities. Fixed points, which are
fundamental structures of dynamical systems, are examined.
We identify fixed points in the space of the output variables
directly, even though they were identified through the fixed
points in the space of the reservoir state vector using the
directional fibers method [23]. We also study the stability of

reservoir -
actual —~

reservoir -
actua[— 15

FIG. 4. A periodic orbitlike trajectory. (a) A periodic orbit-
like trajectory obtained from the data-driven model is plotted
together with the corresponding unstable periodic orbit (period 7,
=5.9973192969) of the actual Lorenz system with r» =28, and
(b) their time developments of the x variable.
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TABLE III. Lyapunov exponents and Lyapunov dimensions. Lyapunov exponents of the data-driven model using reservoir computing

AW 2D X3y and those of the actual Lorenz system (A" 2

res? “*res? “*res

actual’ Mactual® )L;}Czual) are listed. The values are computed using the four-stage and

fourth-order Runge-Kutta method with time step 2At¢ from the points along an orbit trajectory and the estimated Jacobian matrices. The

Lyapunov dimensions DX! for the data-driven model and DXY

for the actual Lorenz system are estimated from the Kaplan-Yorke formula

res actual
[24].
r )‘1(*;5) )"gs) )"gs) D o )"z(x]czual )"gil)ual )"S:l)ual D :Ii(c)t/ual
28 0.901 0.000 —14.570 2.06 0.902 0.000 —14.570 2.06
60 1.402 0.000 —15.070 2.09 1.404 0.000 —15.071 2.09

each unstable fixed point in the space of output variables. For
the data-driven model we consider a point x* = (x*, y*, z*) as
a fixed point, when the following condition is satisfied: § =
MaX,e(0,n] 1X* — Y= (nAL)||2 < €9 for some ¢ sufficiently
small and for some n sufficiently large, where 1y« (nAt) is the
point iterated n times from x* by the data-driven model with
the time step Ar. For the computation of a trajectory from a
given point x* of the data-driven model, reservoir state vector
r(0) is determined to correspond to x* by the preiterates. The
echo state property [18] in which our choice of parameters
in the data-driven model (3) is satisfied guarantees that for
each x*, the corresponding reservoir state vector is determined
uniquely.

Table II lists the obtained coordinates of the three fixed
points, Lies, Rres, and Oy, together with those of the actual
Lorenz system. We fix (ep, ng) = (0.01, 10000) for L..s and
R, and (€, ng) = (1, 30) for Oy. Figure 3 shows the fixed
points together with the trajectory points. Table II also lists
the eigenvalues of the Jacobian matrix at each fixed point.
The values are obtained from the estimated formula of the
Jacobian matrix described later for calculating the Lyapunov
exponents and vectors.

Periodic trajectory. Periodic orbits are also the funda-
mental structures of dynamical systems. We confirm that
the data-driven model of discrete time has a periodic orbit-
like trajectory that travels near the corresponding periodic
orbit of the actual Lorenz system (1) of continuous time.
We call {Yx0)(nAf)}neo.n,) @ periodic orbitlike trajectory if
the following value is sufficiently small for a periodic tra-
jectory {x(¢)} of period T, of the actual Lorenz system:
dp = max,e(o,n,) IX(nAL) — Yy)(nAL)||;2, where n), is the
smallest integer satisfying n,At > T,. Among the periodic
orbitlike trajectories of the data-driven model corresponding
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FIG. 5. Distribution of the angle between stable and unstable
manifolds along a trajectory [(a) r = 28 and (b) r = 60]. The density
distribution of the manifold angles (degree) at points along a tra-
jectory is shown for a data-driven model using reservoir computing
together with that of the actual Lorenz system.

to the 50 periodic orbits with low periods, §, < 0.1 for 40
cases and &, < 0.4 for the other 10 cases. Figure 4 gives
an example of a periodic orbitlike trajectory, which has the
largest value of §, among the 50 periodic orbits with low
periods.

Lyapunov exponents and Lyapunov vectors. The Lyapunov
exponents are used to evaluate the degree of instability and
estimate the Lyapunov dimension of a dynamical system. In
some studies, the Lyapunov exponents of a data-driven model
by reservoir computing were calculated in the space of N-
dimensional reservoir state vector [3,4,25,26]. Pathak et al. [3]
computed Lyapunov exponents for the reservoir state vector
and found that they almost coincide with those of the original
system for the case of a partial differential equation, whereas
only positive and neutral exponents coincide with those for the
Lorenz system. To the best of the authors’ knowledge, they
have not been computed in a space of output variables.

First we compute the first Lyapunov exponent using the
traditional method, which has been used to estimate the Lya-
punov exponent from an experimental data without the
knowledge of the equation [27]. The first Lyapunov expo-
nent estimated from a time series of the data-driven model
and that of the actual Lorenz system are 0.962 and 0.954,
respectively.!

In this paper, an attempt is made to compute Lyapunov ex-
ponents in the space of output variables corresponding to x, y,
and z for the Lorenz system. Here we describe how to compute
Lyapunov exponents and vectors in the original variables nu-
merically from a trajectory of the data-driven model. We first
estimate the Jacobian matrix at each point (x, y, z) along the
trajectory of the data-driven model as follows: (i) apply the
Taylor series expansion of order six to estimate X = dx/dt,
y=dy/dt, and z = dz/dt at each sample point along the
discrete trajectory; (ii) apply linear regression to the estimated
values of x, y, andibyx’y’”z" OLI+m+n<3, I,mn>
0) as explanatory variables; (iii) obtain the Jacobian matrix
J(x) at each point x by differentiating polynomials with the
regression coefficients estimated in (ii).

We compute Lyapunov exponents and vectors by in-
tegrating the linear ordinary differential equation having
coefficients determined by the Jacobian matrices [x(z) =

"'We choose parameters in Ref. [27] to be
(DIM, TAU, SCALMX, SCALMN, EVOLV, ANGLMX ,..i,) =
(3,11, 0.1, 0.001, 600, 0.013). Note that the estimated exponents
are found to be robust (within 10% of the error) under the
choices of parameters (SCALMX, EVOLV, ANGLMX.in) =
(0.1 £0.01, 600 + 20, 0.013 £ 0.002).
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TABLE IV. Coordinates and eigenvalues of the Jacobian matrix at each of the three unstable fixed points. F are fixed points of the
data-driven model, whereas F,., are fixed points of the actual Rossler system. The coordinates (x*, y*, z*) and the eigenvalues (A, A,, Aj)
of the Jacobian matrix at each fixed point of the data-driven model are close to those of the corresponding fixed point of the actual Rossler

system.

x* y* z* Ay Ay As
Ficwal 0.0070 —0.0351 0.0351 0.0970 + 0.9952 0.0970 — 0.9952i —5.6870
Fres 0.0015 —0.0315 0.0317 0.0926 + 0.9702i 0.0926 — 0.9702i —5.6833

J(x(1))x(t)], while the orbit is given by the trajectory of the
data-driven model. Note that in this computation the discrete
time trajectory points of a data-driven model are considered
samples of the continuous time trajectory. For the high-
accuracy computation with a rather large time step Ar = 0.05
of the reservoir computing, we employ four-stage and fourth-
order Runge-Kutta method with time step 2A¢ from the points
along an orbit trajectory.

The results are compared with those of the actual Lorenz
system (1) for two sets of parameters. Table III shows the
agreement of the Lyapunov exponents and the Lyapunov di-
mensions. We also compute (covariant) Lyapunov vectors,
which measure the degree of hyperbolicity by calculating
the angle between the stable and unstable manifolds at some
trajectory point [28].

Manifold structure and tangency. Using the computed Lya-
punov vectors we investigate the manifold structures of the
data-driven model, particularly the degree of hyperbolicity
and the tangencies between the stable and the unstable man-
ifolds. We consider the Lorenz system of r = 28 without
tangencies and of r = 60 with tangencies for the comparison
[15]. Figure 5 shows the probability density function of an
angle between a tangent vector of a stable manifold and that
of an unstable manifold along an orbit trajectory for each of
the actual system and the data-driven model. For each case of
the parameters, r = 28 and r = 60, the angle distributions are
quite similar in shape, indicating that the data-driven model
can reconstruct the manifold structures. Moreover, Fig. 5(b)
suggests that the data-driven model can represent a nonhyper-
bolic structure with tangencies between stable and unstable
manifolds.
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FIG. 6. Fixed point. (a) The fixed point (x*, y*, z*) of the data-
driven model and (b) the corresponding unstable fixed point of the
actual Rossler system are plotted together with trajectory points with
the time length 7 = 2500. The fixed point of the data-driven model
are close to those of the actual Rossler system. See the coordinates
and the eigenvalues of the Jacobian matrix at each fixed point in
Table IV.

IV. ROSSLER SYSTEM

We confirm that for the Rossler system a data-driven model
using reservoir computing has quite similar dynamical system
properties to those of the original system.

Fixed points and their stabilities. Table IV lists the obtained
coordinates of a fixed point, Fyg, together with that of the
actual Rossler system. We fix (eg, ng) = (0.01, 800) for Fies.
Figure 6 shows the fixed points together with the trajectory
points. Table IV also lists the eigenvalues of the Jacobian
matrix at the fixed point. The values are obtained from the
estimated formula of the Jacobian matrix described later for
calculating the Lyapunov exponents and vectors.

Periodic trajectory. We confirm that the data-driven model
of discrete time has a periodic orbitlike trajectory that travels
near the corresponding periodic orbit of the actual Rossler
system (2) of continuous time. Figure 7 gives an example of
periodic orbit-like trajectories.

Lyapunov exponents and Lyapunov vectors. We compute
the Lyapunov exponents in the space of output variables cor-
responding to x, y, and z for the Rossler system. The results
are compared with those of the actual Rossler system (2). By
using the Wolf’s method we compute the first Lyapunov ex-
ponent from a time series of the data-driven model as 0.0707
and that of the actual system as 0.0708, which almost coincide
with each other.

Table V shows the agreement of the Lyapunov exponents
and the Lyapunov dimensions by using our method. We also
compute (covariant) Lyapunov vectors, which measure the
degree of hyperbolicity by calculating the angle between the
stable and unstable manifolds at some trajectory point.

Manifold structure and tangency. The degree of hyperbol-
icity and the tangencies between the stable and the unstable
manifolds are investigated for the Rossler system. Figure 8

20 -
reservoir
reservoir actual
30 actual 10
2 x
0
15
-10

0 10 20 30
t

(a) (b)

FIG. 7. A periodic orbitlike trajectory. A periodic orbitlike tra-
jectory obtained from the data-driven model is plotted together
with the corresponding unstable periodic orbit with period 7,
=35.06122601174815. (a) The projections and (b) the time series
are shown.
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TABLE V. Lyapunov exponents and Lyapunov dimensions. Lyapunov exponents of the data-driven model using reservoir computing

AW A® () and those of the actual Réssler system (A 1@

res? “*res? “*res

23

actual” ““actual > ““actual

) are listed. The values are computed using the four-stage and

fourth-order Runge-Kutta method with time step 2At from the points along an orbit trajectory and the estimated Jacobian matrices.

)‘Sels) )\'lgi) )“gs) D I{Z: gtlct)ual ;igual z(tit)ual fn(c{ual
0.07150 0.00004 —5.38813 2.013 0.07151 0.00001 —5.38809 2.013

shows the probability density function of an angle between
a tangent vector of a stable manifold and that of an unsta-
ble manifold along an orbit trajectory for each of the actual
system and the data-driven model. The angle distributions are
quite similar in shape, indicating that the data-driven model
can reconstruct the manifold structures.

V. CHAOTIC FLUID FLOW

Laminar lasting-time distribution of chaotic fluid flow. We
have clarified that hyperbolic fixed points and their eigen-
values are estimated in high accuracy by constructing a
data-driven model using reservoir computing, even if the
training time-series data are far away from the fixed points.
We study a chaotic flow in macroscopic variables whose be-
havior has a random switching between laminar and bursting
states. Here we consider the set of laminar state as a cer-
tain chaotic saddle and compute the lasting-time distribution
staying in the neighborhood of it. We are interested in the
lasting-time distribution where an orbit stays in the neighbor-
hood, which we call the laminar lasting-time distribution. It
is expected that by using the data-driven model the laminar
lasting-time distribution can be estimated in higher accuracy
and in lower computational costs than by using the direct
numerical simulation of the Navier-Stokes equation. Here we
study a macroscopic quantity of chaotic fluid flow in three
dimensions under periodic boundary conditions [6,12]. The
distribution shown in Fig. 9 is generated from the very long
trajectory of the data-driven model constructed by reservoir
computing with a relatively low computational cost. The de-
tailed macroscopic dynamical structures can be determined
using the data-driven model constructed from time-series data
without referring to microscopic behaviors. We hardly obtain

0.12 reservoir ———
01t actual ——

0.08 ¢
0.06
0.04 -
0.02 |

PDF

O n L L L L n n n
0 10 20 30 40 50 60 70 80 90
angle
FIG. 8. Distribution of the angle between stable and unstable
manifolds along a trajectory of the Rossler system.The density dis-
tribution of the manifold angles (degree) at points along a trajectory

is shown for a data-driven model using reservoir computing together
with that of the actual Rossler system.

these structures from a direct numerical simulations of the
Navier-Stokes equation because of the high computational
cost. See the discrepancy in the distributions in Fig. 9(b).

It takes roughly 1/400 of time to obtain a time series of the
energy functions E (k) with the same time lengths, when we
use the model constructed by the reservoir computation. The
Navier-Stokes equation is calculated by 13718 dimensional
ODEs with the four-stage Runge-Kutta method (time step
0.05), whereas the model is calculated by 5000 dimensional
map whose iterate corresponds to the time step 2.

VI. CONCLUDING REMARKS

We have clarified by employing the time series of the
Lorenz system that a data-driven model using reservoir com-
puting has quite similar dynamical system properties to those
of the original Lorenz system, such as fixed points and their
eigenvalues, periodic orbits, Lyapunov exponents, and Lya-
punov vectors. It should be remarked that the fixed points
exist far away from the training time-series data, but the
corresponding points are found to exist nearby the original
ones in the data-driven model. We have also shown that the
negative Lyapunov exponent computed not in the space of the
reservoir state vector but in the space of output variables, and
the degree of hyperbolicity measured by the angle between
stable and unstable manifolds are shown to be quite similar to
those of the original system. Qualitatively the same results are
obtained for the Rossler system.

For a chaotic fluid flow we computed the lasting-time
distribution staying in the neighborhood of a certain chaotic

reservoir— _reservoir—
raining -~~~ -5, actual (Navier-Stokes)

108 103
102 107
10 10'
10%60 1000 1500 210001 2500 3000 3500 %500 1000 1600 2000 25010‘ 3060 3500

laminar lasting time laminar lasting time

(a) (b)

FIG. 9. Laminar lasting time distribution of a fluid flow. The lam-
inar lasting time normalized distribution of a certain energy function
E(¢) of a fluid variable (corresponding to E(3,¢) in Ref. [6]) esti-
mated from the trajectory of the data-driven model (7 = 2 x 10%)
is shown together with that from the short time training time series
data (T = 0.001 x Tp) (a) and with that by a long time actual time
series data (T = 0.05 x Tp) (b). The training data and actual data are
calculated from a direct numerical simulation of the Navier-Stokes
equation. E(¢) is the normalized variable (average 0, standard devia-
tion 1) and we consider the state is laminar when |E(¢)| < 1.8.
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saddle showing laminar behavior by using the data-driven
model. The model is constructed from a relatively short time-
series data created from the direct numerical simulation of the
Navier-Stokes equation. The obtained distribution cannot be
computed from the direct computation of the Navier-Stokes
equation because of its high computational cost. This result
implies that a chaotic saddle can be reconstructed by the
data-driven model.
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