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We consider a spatially extended box-shaped wave field that consists of a plane wave (the condensate) in the
middle and equals zero at the edges, in the framework of the focusing one-dimensional nonlinear Schrodinger
equation. Within the inverse scattering transform theory, the scattering data for this wave field is presented
by the continuous spectrum of the nonlinear radiation and the soliton eigenvalues together with their norming
constants; the number of solitons N is proportional to the box width. We remove the continuous spectrum from
the scattering data and find analytically the specific corrections to the soliton norming constants that arise due to
the removal procedure. The corrected soliton parameters correspond to symmetric in space N-soliton solution,
as we demonstrate analytically in the paper. Generating this solution numerically for N up to 1024, we observe
that, at large N , it converges asymptotically to the condensate, representing its solitonic model. Our methods can
be generalized for other strongly nonlinear wave fields, as we demonstrate for the hyperbolic secant potential,
building its solitonic model as well.
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I. INTRODUCTION

The focusing one-dimensional nonlinear Schrödinger
equation (1D-NLSE),

iψt + 1
2ψxx + |ψ |2ψ = 0, (1)

where t is time, x is spatial coordinate, and ψ is a com-
plex wave field, is a universal model of nonlinear physics,
describing the evolution of a narrow-band signal in weakly
nonlinear media. As such, it is widely applicable in dif-
ferent fields of studies ranging from nonlinear optics to
hydrodynamics and Bose-Einstein condensates [1–3]. The
simplest solution of Eq. (1) is a plane wave (also called
the condensate), which appears as a background in various
nonlinear processes, such as development of the modula-
tional instability, propagation of breatherlike structures, and
formation of rogue waves [2,4–6]. The condensate of unit
amplitude can be simply written as ψc = eit ; it is mod-
ulationally unstable with respect to long-wave harmonic
perturbations having wave vectors k ∈ (−2, 2). At the linear
stage of the modulation instability (MI), the perturbations
grow as ∝ eγ t , where γ is the well-known MI growth
rate [7,8]:

γ = |k|
√

1 − k2/4. (2)

From a mathematical point of view, the 1D-NLSE belongs
to a remarkable class of the so-called integrable systems, as
it can be integrated using the inverse scattering transform
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(IST) technique [9–11]. Specifically, the 1D-NLSE allows
transformation to the so-called scattering data, which is in
one-to-one correspondence with the wave field and, similarly
to the Fourier harmonics in the linear wave theory, changes
trivially during the motion. Transformation to the scatter-
ing data includes calculation of the eigenvalue spectrum for
specific auxiliary linear systems, in which the wave field of
the 1D-NLSE plays the role of the potential. For spatially
localized wave fields, the eigenvalue spectrum contains the
discrete (solitons) and continuous (nonlinear dispersive waves
or nonlinear radiation) parts. In contrast to the linear wave
theory, where the arithmetic sum of Fourier harmonics con-
stitutes the wave field, the scattering data reconstructs it via
the nonlinear system of integral Gelfand-Levitan-Marchenko
(GLM) equations. In the pure solitonic case, these equations
can be solved analytically to the exact formulas describing
multi-soliton solutions.

In the limit of weak nonlinearity (small-amplitude waves),
the solitonic part of the scattering data vanishes and the
remaining continuous spectrum coincides at the leading or-
der with the Fourier spectrum of the wave field [3]. On the
other hand, when nonlinearity is substantial, solitons should
dominate the dynamics [9], which is currently under active
investigation in nonlinear optics and hydrodynamics, see, e.g.,
Refs. [12–17]. Additionally, a rapidly developing area of theo-
retical and experimental research on the statistics of integrable
systems with random input, called, in general, integrable tur-
bulence [18], brings to the agenda the fundamental question
concerning the role of solitons in shaping the major statisti-
cal characteristics of the wave field, such as the wave-action
spectrum and distribution of intensity [19–26].
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For the 1D-NLSE, the condensate solution represents one
of the most well-known examples of strongly nonlinear wave
fields. In the present paper, we build its solitonic model, that
describes the condensate asymptotically at large number of
solitons. The idea of leaving only the solitonic part of the
wave field comes from a recent study [26], where it has been
demonstrated numerically that the modulationally unstable
condensate, at its long-time statistically stationary state, can
be accurately modeled (in the statistical sense) with a dense
bound-state soliton gas designed to follow the solitonic struc-
ture of the condensate. Here we develop this idea further
and establish an analytical correspondence between the con-
densate at the initial time and specific multisoliton solution.
We believe that, in the solitons-only approximation, this cor-
respondence will provide access to analytical description of
various nonlinear phenomena developing on the condensate
background, e.g., development of the modulational instability,
propagation of breatherlike structures, and formation of rogue
waves, and we are going to explore this line of research in the
near future.

As a model of the condensate, we consider a spatially
extended box-shaped (rectangular) wave field that consists
of a plane wave in the middle and equals zero at the edges
[see Eq. (23) below], similar to some laboratory experiments,
see, e.g., Refs. [25,27]. For this model, the scattering data is
known analytically within the IST theory [28]: it contains both
the continuous (nonlinear radiation) and discrete (solitons)
parts of eigenvalue spectrum, with the number of solitons
proportional to the box width. We remove the continuous
spectrum from the scattering data and find analytically the
specific corrections to the soliton norming constants that arise
due to the removal procedure; the necessity for such correc-
tions is explained in Sec. IV. The corrected soliton parameters
correspond to multisoliton solution that is symmetric in space,
as we demonstrate analytically. Generating this solution nu-
merically for the number of solitons N of up to 1024, we
observe that it is similar to the initial box-shaped wave field,
but contains residual oscillations as a manifestation of the
Gibbs-like phenomenon. These oscillations have finite ampli-
tude at the edges, but are small in a broad central region, so our
solitonic model converges asymptotically to the condensate at
large number of solitons (or, equivalently, at large box width).

Note that wave fields, consisting of a large number of
solitons and often called soliton gases, may have various
configurations characterized by different soliton amplitudes,
velocites, and spatial densities with all these quantities be-
ing random. While rarefied soliton gas can be modelled
straightforwardly with two-soliton interaction formulas [29],
perturbation theory [30,31], and adiabatic approximation
[32–34], the case of a dense soliton gas requires usage of exact
multisoliton solutions obtained via IST techniques [24,26,35],
as we apply in the present paper.

The paper is organized as follows. In the next section, we
give a brief overview of the IST theory in relation to the
1D-NLSE model. In Sec. III, we recall the scattering data
of the box potential. In Sec. IV, we remove the continu-
ous spectrum component and find analytically the specific
corrections to the soliton norming constants. In Sec. V, we
study—both analytically and numerically—the multisoliton
solution corresponding to the corrected soliton parameters.

The last two Secs. VI and VII, contain discussions and con-
clusions, respectively. The paper also has several Appendices,
where we study the constructed multisoliton solution in more
detail and provide some calculations related to corrections of
the soliton norming constants. Additionally, in Appendix C,
we build solitonic model for the hyperbolic secant potential,
demonstrating that our methods can be generalized straight-
forwardly for other strongly nonlinear wave fields.

II. THE IST AND MULTI-SOLITON SOLUTIONS

A. The IST formalism

Formulation of the scattering problem for the 1D-NLSE (1)
starts from introduction of the following auxiliary Zakharov-
Shabat (ZS) linear system for the two-component vector wave
function �(x, t, λ) = (φ1, φ2)T , see Ref. [9]:

�x =
( −iλ ψ

−ψ∗ iλ

)
�, (3)

�t =
( −iλ2 + i

2 |ψ |2 λψ + i
2ψx

−λψ∗ + i
2ψ∗

x iλ2 − i
2 |ψ |2

)
�, (4)

from which the 1D-NLSE is obtained as compatibility condi-
tion

�xt = �tx.

Here λ = ξ + iη is complex-valued spectral parameter and the
star stands for the complex conjugate.

The first equation of the ZS system can be rewritten in the
form of the eigenvalue problem for the spectral parameter λ:

L̂� = λ�, L̂ = i

(
1 0
0 −1

)
∂

∂x
− i

(
0 ψ

ψ∗ 0

)
. (5)

For each solution �(x, t, λ) = (φ1, φ2)T , corresponding to
an eigenvalue λ, there exists a counterpart �̃(x, t, λ∗) =
(−φ∗

2 , φ∗
1 )T corresponding to the complex-conjugate eigen-

value λ∗. Thus, without loss of generality, we consider the
spectral parameter in the upper half of the complex plane only,
η = Im λ � 0.

Similarly to quantum mechanics, see, e.g., Ref. [36], the
scattering problem (5) for the wave function � is introduced
on the real line λ = ξ (ξ ∈ R) with the following asymptotics
at infinity (the so-called right scattering problem, in contrast
to the left scattering problem; see, e.g., Ref. [37]):

lim
x→−∞

{
� −

(
e−iξx

0

)}
= 0, (6)

lim
x→+∞

{
� −

(
a e−iξx

b eiξx

)}
= 0. (7)

In this problem, the wave field ψ of the 1D-NLSE is consid-
ered as a potential for the scattering wave �, while a and b
represent the scattering coefficients satisfying

a(ξ )a(ξ )∗ + b(ξ )b(ξ )∗ = 1. (8)

In the present paper, we consider only wave fields belonging
to the Schwartz space, i.e., that are spatially localized and
rapidly decaying. In this case, the eigenvalues λ of the ZS sys-
tem are usually presented by a finite number of discrete points
λn (discrete spectrum) with ηn = Im λn > 0, n = 1, ..., N , and
the real line λ = ξ ∈ R (continuous spectrum), see Ref. [9].
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Note that there are some exceptions when wave fields from
the Schwartz space are characterized by an infinite number of
eigenvalues, see Ref. [38], that is not the case for this work.

The coefficient a(ξ ) can be analytically continued to the
upper half of the λ plane as a function a(λ) having simple
zeros at the eigenvalue points, a(λn) = 0 (we do not consider
the degenerate case when an eigenvalue point represents a
multiple zero). In addition to the real line λ = ξ , the coeffi-
cient b can also be defined, in general, only at the eigenvalue
points λn. However, it can be analytically continued to the
whole upper half-plane if the potential ψ has a compact sup-
port [39]. Bounded solutions (6) and (7) exist for real-valued
spectral parameter, λ = ξ , and also for complex-valued λ,
η = Im λ > 0, if and only if a(λ) = 0.

The full set of the scattering data represents a combination
of the discrete {λn, ρn} and continuous {r} spectra,

{λn | a(λn) = 0, Im λn > 0},
ρn = b(λn)

a′(λn)
, r(ξ ) = b(ξ )

a(ξ )
, (9)

where a′(λ) is complex derivative of a(λ), ρn are the so-called
norming constants associated with the eigenvalues λn, and
r(ξ ) is the reflection coefficient defined at the real line ξ ∈ R.
Most importantly, the time evolution of the scattering data (9)
is trivial,

∀n : λn = const,

ρn(t ) = ρn(0)e2iλ2
nt , (10)

r(ξ, t ) = r(ξ, 0)e2iξ 2t ,

and the wave field ψ can be recovered with the IST by solving
the integral GLM equations [10]. Note, however, that in the
general case the latter procedure can only be done numer-
ically, asymptotically at t → ±∞, or in the semiclassical
approximation, see, e.g., Refs. [40,41].

The reflection coefficient r(ξ ) corresponds to nonlinear
dispersive waves, while the discrete eigenvalues λn together
with the norming constants ρn correspond to solitons. In
particular, for n = 1, ..., N , the eigenvalues λn = ξn + iηn

contain information about the soliton amplitudes, An = 2ηn,
and group velocities, Vn = −2ξn, while the soliton norming
constants—about their positions in space x(IST)

n ∈ R and com-
plex phases θ (IST)

n ∈ [0, 2π ), see Ref. [37]:

ρn = −iAn exp
[ − 2iλnx(IST)

n − iθ (IST)
n

]
. (11)

Here the IST superscripts designate that the positions and
phases are written for the IST formalism, in contrast to the
DM formalism, which we will discuss below. Note that x(IST)

n
and θ (IST)

n equal to the observed in the physical space position
and phase of a soliton only for the one-soliton solution,

ψ(1)(x, t ) = A1
exp

[
iV1(x − x(IST)

1 ) + iθ (IST)
1

]
cosh A1

(
x − x(IST)

1

) ,

x(IST)
1 = x(IST)

10
+ V1t,

θ
(IST)
1 = θ

(IST)
10

+ 1

2

(
A2

1 + V 2
1

)
t,

where x(IST)
10

and θ
(IST)
10

are the position and phase at t = 0.
In the presence of other solitons or dispersive waves, the ob-
served position and phase of a soliton may differ considerably
from x(IST)

n and θ (IST)
n .

For the reflectionless case r(ξ ) = 0, the dispersive waves
are absent and the IST procedure can be performed analyti-
cally, leading to an exact N-soliton solution (N-SS) ψ(N )(x, t )
which we write in the following form, see Refs. [10,42]:

ψ(N )(x, t ) = −2iρ∗
k (t )e−iλ∗

k x [{E + B∗(x, t )B(x, t )}−1]k, j

× e−iλ∗
j x. (12)

Here k, j = 1, .., N are summation indexes, E is N × N unit
matrix, and B is N × N matrix with elements

Bk, j (x, t ) = iρ j (t )(λ∗
k − λ j )

−1e−i(λ∗
k −λ j )x. (13)

B. The dressing method formalism

An alternative to the IST procedure for construction of a
N-SS is the so-called dressing method (DM) [10,43], also
known as the Darboux transformation [44,45]. The DM allows
us to add solitons to the resulting solution recursively one at
a time using special algebraic construction [10,43,45]. The
numerical implementation of the DM turns out to be much
more stable than the IST approach (12) that allows us to use it
for computing multisoliton wave fields [24].

The dressing procedure starts from the trivial potential of
the 1D-NLSE, ψ(0)(x) = 0 for x ∈ R, and the corresponding
matrix solution of the ZS system (3),

�(0)(x, λ) =
(

e−iλx 0
0 eiλx

)
; (14)

here we fix time, t = 0, for definiteness. At the nth step of
the recursive method, the n-soliton potential ψ(n)(x) is con-
structed via the (n − 1)-soliton potential ψ(n−1)(x) and the
corresponding matrix solution �(n−1)(x, λ) as

ψ(n)(x) = ψ(n−1)(x) + 2i(λn − λ∗
n )

q∗
n1qn2

|qn|2 , (15)

where vector qn = (qn1, qn2)T is determined by �(n−1)(x, λ)
and the scattering data of the nth soliton {λn,Cn}:

qn(x) = [�(n−1)(x, λ∗
n )]∗

(
1

Cn

)
. (16)

Here Cn, n = 1, ..., N , are the soliton norming constants in the
DM formalism, see the discussion below. The corresponding
matrix solution �(n)(x, λ) of the ZS system is calculated via
the so-called dressing matrix σ (n)(x, λ),

�(n)(x, λ) = σ (n)(x, λ)�(n−1)(x, λ), (17)

σ
(n)
ml (x, λ) = δml + λn − λ∗

n

λ − λn

q∗
nmqnl

|qn|2 , (18)

where m, l = 1, 2 and δml is the Kronecker delta. The time de-
pendency is recovered using the time evolution of the norming
constants,

Cn(t ) = Cn(0)e−2iλ2
nt , (19)

and repeating the DM for each moment of time.
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The outcome of the DM for a N-SS can be written as a ratio
of two determinants,

ψ(N )(x, t ) = −2i
detM̃
detM

, Mk j = (q̃k · q̃∗
j )

λk − λ∗
j

,

M̃ =

⎛⎜⎜⎜⎜⎝
0 q̃1,2 · · · q̃N,2

q̃∗
1,1

...

q̃∗
N,1

MT

⎞⎟⎟⎟⎟⎠, (20)

where we use the new two-component vectors q̃n,

q̃n(x, t ) =
(

q̃n,1

q̃n,2

)
=

(
C−1/2

n eiλnx

C1/2
n e−iλnx

)
,

and the dot in (q̃k · q̃∗
j ) = q̃k,1q̃∗

j,1 + q̃k,2q̃∗
j,2 means the real-

symmetric vector scalar product. The DM norming constants
Cn are related to the IST norming constants ρn as follows, see
Refs. [42,46]:

ρn(t ) = 1

Cn(t )

N∏
k=1

(λn − λ∗
k ) ×

N∏
j 	=n

1

λn − λ j
. (21)

Note that this equation is valid for pure multisoliton solutions
only.

Within the DM formalism, the norming constants Cn con-
tain information about soliton positions x(DM)

n and phases
θ (DM)

n :

Cn = − exp
[
2iλnx(DM)

n + iθ (DM)
n

]
. (22)

These parameters do not coincide in the general case with the
IST positions x(IST)

n and phases θ (IST)
n , since the IST is built

on a nonsymmetric formulation of the scattering problems (6)
and (7), while the DM is symmetric by construction, see, e.g.,
Refs. [43,45]. Similar to the IST formalism, x(DM)

n and θ (DM)
n

are equal to the observed physical space position and phase of
a soliton, but only for the one-soliton solution; in the presence
of other solitons or dispersive waves, the observed position
and phase may differ considerably from x(DM)

n and θ (DM)
n .

Equations (12) and (20) represent the exact same multisoli-
ton solution, in which the soliton norming constants ρn (for
the IST formalism) and Cn (for the DM formalism) are param-
eterized in a different way, with the relation (21) connecting
the two parametrizations. In the present paper, we need both
parametrizations. In particular, to construct the wave field for
a multisoliton solution, we need the DM as it is much more
stable numerically, see Ref. [24] for details. On the other
hand, to our knowledge, a procedure that would allow us to
calculate the scattering data in the DM formalism directly
from the wave field, without solving the ZS system in the IST
formalism and the subsequent transition to the DM formalism,
has not been developed yet. For these reasons, we start with
the scattering data in the IST formalism, then remove the
nonlinear radiation and calculate the specific corrections to
the soliton norming constants and, finally, perform transition
to the DM formalism and construct the wave field for the
corresponding multisoliton solution numerically.

III. SCATTERING DATA FOR THE BOX POTENTIAL

We model the condensate with a box (rectangular) potential
of unit amplitude and width L:

ψ (x) =
{

1, |x| � L/2

0, |x| > L/2.
(23)

For real spectral parameter λ = ξ ∈ R, the scattering coeffi-
cients for this wave field can be found in the following closed
form [28]:

a(ξ ) = eiLξ

{
cos(χL) − iξ

sin(χL)

χ

}
, (24)

b(ξ ) = − sin(χL)/χ, (25)

where

χ =
√

1 + ξ 2,

so the reflection coefficient is written as

r(ξ ) = − e−iξL sin(Lχ )

χ cos(Lχ ) − iξ sin(Lχ )
. (26)

The scattering coefficients can be analytically continued to
the upper half-plane by replacement ξ → λ; for the coefficient
b, this is possible since the box potential has compact support
x ∈ [−L/2, L/2]. The condition a(λ) = 0 leads to transcen-
dental equation defining the soliton eigenvalues:

cos(L
√

1 + λ2) − iλ√
1 + λ2

sin(L
√

1 + λ2) = 0. (27)

For η = Im λ > 0, Eq. (27) has N simple discrete roots λn,
representing the solitonic structure of the box-shaped wave
field (23); here

N = integer[L/π + 1/2]. (28)

These roots lie on the imaginary axis in the interval (0, i), see
Refs. [47–49],{

{λn} = {iηn}
∣∣ tan

(
L
√

1 − η2
n

) = −
√

1 − η2
n

ηn
,

0 < ηn < 1, n = 1, .., N

}
, (29)

meaning that the solitons of the box potential have zero veloc-
ities, Vn = −2 Re λn = 0. Here and below we assume that the
eigenvalues are sorted in descending order, ηm < ηl for m > l .

When the box width L increases, the number of solitons N
changes discretely according to Eq. (28), with the N th soliton
emerging at L = π (N − 1/2). Hence, the box width can be
parameterized as

L = LN + �L, LN = π (N − 1/2), �L ∈ [0, π ), (30)

meaning that the number of solitons N remains constant until
the next jump by one soliton at L = LN + π . Note that for
L � 1, the ZS scattering problem can be solved within the
semiclassical approach, leading to an approximate formula for
the soliton eigenvalues [40]:

λ(sc)
n = i

√
1 −

[
π (n − 1/2)

L

]2

. (31)
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The soliton norming constants in the IST formalism can
be computed from the definition (9) using the transcendental
condition (29),

ρn = eηnL
(
1 − η2

n

)
i(1 + ηnL)

, (32)

that completes the full set of the scattering data for the box
potential (23).

IV. REMOVAL OF THE NONLINEAR RADIATION

Without nonlinear radiation, when only one soliton is
present, its observed physical position in space and its phase
coincide with the corresponding IST parameters (11) obtained
from the solution of the ZS system (5). For definiteness,
we place a single soliton with eigenvalue λn = ξn + iηn far
away to the left of the coordinate origin x = 0. Let us
now add to the wave field a localized nonlinear radiation
near x = 0 which does not have solitonic content. The soli-
ton and radiation practically do not interact in the physical
space as both structures are localized, so we can construct
the soliton-and-radiation potential as arithmetic sum of the
soliton-only and radiation-only potentials. The observed soli-
ton parameters are not influenced by addition of the radiation,
but the corresponding IST parameters must acquire specific
shifts.

The appearance of these shifts can be traced back to the so-
lution of the direct scattering problem. Indeed, the ZS system
(5) has two different solutions �(s) and �(sr) characterized
by the same discrete eigenvalue λn for the soliton-only and
soliton-and-radiation potentials ψ (s) and ψ (sr), respectively.
From definition of the right scattering problem (6) and (7),
these solutions have the same asymptotic behavior at x →
−∞, i.e., to the left of both the soliton and radiation. Then,
both solutions should also coincide in the coordinate region
between the soliton and radiation, far away from the radi-
ation, since they propagate to this region through the same
nonlinear structure—the soliton. On the other hand, to the
right of the radiation, the solution �(sr) must differ from
the soliton-only case �(s). The reflected wave at x → +∞
with the scattering coefficient a 	= 0 cannot appear due to
presence of the soliton with eigenvalue λn, a(λn) = 0. How-
ever, since the function a(ξ ), ξ ∈ Re, is now different in the
presence of the radiation, it is continued differently to the
upper half of the λ plane, that results in different complex
derivative a′(λn); and also the scattering coefficient b(λn)
may change as well. Both effects result in correction to the
soliton norming constant ρn, see Eq. (9), and from where—to
the IST position x(IST)

n and phase θ (IST)
n , see Eq. (11). The

latter corrections are described by the following equations, see
Refs. [50–53], connecting the observed soliton position x(O)

n
and phase θ (O)

n with the corresponding IST parameters x(IST)
n

and θ (IST)
n :

x(O)
n = x(IST)

n + �x±
n ,

�x±
n = − 1

2π

∫ ∞

−∞
H∓(2ξ+ξn )

ln[1 + |r(ξ )|2]

(ξ − ξn)2 + η2
n

dξ, (33)

FIG. 1. Qualitative illustration of the difference between the ob-
served x(O)

n and IST x(IST)
n positions of soliton in presence of localized

nonlinear radiation. The solid black line shows the soliton-and-
radiation potential, in which the soliton has the observed position
x(O)

n and the IST position x(IST)
n , while the dashed red line indicates

single soliton reconstructed at x(IST)
n .

θ (O)
n = θ (IST)

n + �θ±
n ,

�θ±
n = − 1

π

∫ ∞

−∞
(ξ − ξn) H∓(2ξ+ξn )

× ln[1 + |r(ξ )|2]

(ξ − ξn)2 + η2
n

dξ . (34)

Here �x±
n and �θ±

n correspond to corrections at t →
±∞ due to presence of the radiation characterized with
the reflection coefficient r(ξ ), while H stands for the
Heaviside step function. The qualitative difference be-
tween the observed and IST positions is illustrated in
Fig. 1.

Note that the IST position and phase change with time
linearly as

x(IST)
n = x(IST)

n0
+ Vnt,

θ (IST)
n = θ (IST)

n0
+ 1

2

(
A2

n + V 2
n

)
t,

where x(IST)
n0

and θ (IST)
n0

are the corresponding parameters at
t = 0, and An = 2ηn, Vn = −2ξn are the soliton amplitude and
group velocity; see Eqs. (10) and (11).

Let us now suppose that the IST position x(IST)
n and phase

θ (IST)
n of a soliton are calculated in presence of the nonlinear

radiation, as in the case of the box potential (23), see the
corresponding relation (32) for the soliton norming constants.
Then, if we remove radiation from the scattering data, we must
also remove the described above corrections, built into x(IST)

n
and θ (IST)

n . Assuming that the observed position x(O)
n and phase

θ (O)
n must not change due to the removal procedure, we must

renormalize the IST parameters as

x̃(IST)
n = x(IST)

n + �x±
n , (35)

θ̃ (IST)
n = θ (IST)

n + �θ±
n , (36)
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where x̃(IST)
n and θ̃ (IST)

n are the renormalized space position and
phase without the nonlinear radiation, while �x±

n and �θ±
n are

given by Eqs. (33) and (34).
Equations (35) and (36) can be used to remove the nonlin-

ear radiation if it is far away from the soliton, so the nonlinear
structures practically do not interact in the physical space.
However, removal of the radiation from the box potential
(23) requires additional assumptions. Indeed, in this case the
solitonic content and the radiation are both situated in the
same region of space, and in addition to the renormalization
shifts discussed above, there might be interaction shifts due to
ongoing interaction between the soliton and radiation in the
physical space. We consider the latter shifts in the following
way.

Since the solitonic content of the box potential has zero
velocities, see Eq. (29), we rewrite the asymptotic expressions
(33) and (34) for the corrections �x±

n and �θ±
n to the limit of

vanishing soliton velocity ξn → 0:

�x±
n = − 1

4π

∫ ∞

−∞

ln[1 + |r(ξ )|2]

ξ 2 + η2
n

dξ, (37)

�θ±
n = ± 1

π

∫ ∞

0

ξ ln[1 + |r(ξ )|2]

ξ 2 + η2
n

dξ . (38)

Here we have used that the absolute value of the reflec-
tion coefficient (26) is even function, |r(ξ )| = |r(−ξ )|. From
Eq. (37), one can see that the position shift is the same before
(t → −∞) and after (t → +∞) the collision of soliton with
the nonlinear radiation, �x−

n = �x+
n ; here we assume that

the soliton has infinitesimally small positive velocity, so at
some finite time it passes through the radiation. This allows
us to suggest that the interaction shift of the soliton position
is zero and the total position shift equals the renormalization
shift only, �xn = �x±

n . The phase shift, on the other hand,
changes its sign as the soliton passes through the radiation,
�θ−

n = −�θ+
n . From this behavior, we assume that the total

phase shift equals to the sum of the renormalization shift,
�θ−

n , and half of the full interaction shift, (�θ+
n − �θ−

n )/2,
i.e., it is simply zero, �θn = 0. In total, this yields the follow-
ing correction to the soliton norming constants, see Eq. (11):

ρ̃n = ρne− ηn
2π

IN,n , (39)

where IN,n represents the integral

IN,n =
∫ +∞

−∞

ln(1 + |r(ξ )|2)

ξ 2 + η2
n

dξ, (40)

with ηn satisfying Eq. (29) and r(ξ ) given by Eq. (26).
Note that the general N-soliton variant of Eqs. (33) and

(34) contains an additional term due to presence of other
solitons, see Refs. [50,51]. Here we use the one-soliton for-
mulas and apply the derived corrections to each of the N
solitons individually, since, by removing only the continuous
spectrum, we do not change the mutual soliton influence on
their IST parameters.

The integral (40) for the box potential case can be analyt-
ically evaluated using the contour integration in the complex
plane and the so-called Blaschke factors, leading to the fol-

lowing result:

IN,n = 2πL − 2π

ηn

{
ln

[
2ηn(1 + ηnL)

1 − η2
n

]

+ ln

[
(−1)n−1

N∏
j 	=n

ηn + η j

ηn − η j

]}
, (41)

see Appendix B and also Chap. I in monograph Ref. [39],
where the similar integrals were considered. The dependency
of the last term in Eq. (41) on the other solitons’ eigenvalues
comes from continuation of the integrand to the upper-half
plane, where it has poles at the corresponding points.

Substituting Eqs. (32) and (41) into Eq. (39), we find the
corrected IST norming constants:

ρ̃n = 2iηn(−1)n
N∏

j 	=n

ηn + η j

ηn − η j
. (42)

Then, using the transformation (21), we obtain the corre-
sponding corrected DM norming constants in the following
simple form:

C̃n = (−1)n. (43)

The eigenvalues (29) together with the norming constants
(42) (for the IST formalism) or (43) (for the DM formalism)
provide the complete set of the scattering data for the (re-
flectionless) solitonic model of the box potential. Note that
Eq. (43) is consistent with the semiclassical approximation,
asserting that real-valued single-humped wave field having a
finite integral is characterized by the same norming constants,
see, e.g., Ref. [35].

Also note that without correction of the norming constants
(39), i.e., with the soliton parameters taken directly from
Eqs. (29) and (32), the corresponding multisoliton solutions
turn out to be nonsymmetric in the physical space with respect
to mirror transformation x → −x, as we discuss in Sec. VI
and demonstrate in Appendix A. This asymmetry is removed
after the norming constants are corrected, as described above.

V. SOLITONIC MODEL OF THE BOX POTENTIAL

A. Analytical properties

Let us consider the general properties of an N-soliton so-
lution (N-SS) having the imaginary soliton eigenvalues λn =
iηn, ηn ∈ R, and the DM norming constants that equal either
plus or minus unity Cn = (−1)βn , βn ∈ N.

First, such a solution is real-valued, as can be easily ver-
ified with analysis of Eq. (20). Indeed, for Cn = ±1, the
vectors q̃n in Eq. (20) are either purely real or imaginary;
additionally, each vector can be multiplied by an individ-
ual nonzero constant, since this constant is canceled anyway
during division of the determinants. This means that we can
always make all vectors q̃n purely real, making the matrix
elements Mk j purely imaginary, so the ratio of the two de-
terminants is imaginary and the final result for the wave field
is real.

Second, for the imaginary soliton eigenvalues and DM
norming constants that equal unity in absolute value, |Cn| = 1,
the N-SS is symmetric with respect to mirror transformation,
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ψ(N )(−x) = ψ(N )(x), which results in transposition of the ma-
trices M(−x) = M(x)T and M̃(−x) = M̃(x)T ; see Eq. (20).
Note that time dependency of the norming constants (19)
changes their phases but not the absolute values, i.e., the
symmetry x → −x is preserved during the evolution in time.

Third, in terms of the DM formalism, all the solitons for
such a N-SS are located at the symmetry point x = 0 for
all times, see Eq. (22); in particular, the imaginary soliton
eigenvalues mean that such a solution is a bound state. For the
corrected DM norming constants (43), the DM space positions
and phases are written as

x̃(DM)
n = 0, θ̃ (DM)

n = π

2
[1 − (−1)n−1]. (44)

Interestingly, the largest soliton λ1 always has zero phase,
θ̃

(DM)
1 = 0, and if we gradually increase the box width L so

the number of solitons N in Eq. (28) increases, then each
new soliton appears with the opposite phase compared to the
previous one.

Finally, for Cn = ±1, the wave field at the symmetry point
x = 0 can be found explicitly via the soliton eigenvalues [44].
For this purpose, we note that, at x = 0 and for each n, the
matrices �(n) and σ (n) in Eqs. (15)–(18) are real, symmetric,
and have equal elements at their diagonals, while the vector
qn has specific form

�
(n)
ml (0, λ) ∈ R, σ

(n)
ml (0, λ) ∈ R, (45)

�
(n)
ml (0, λ) = �

(n)
lm (0, λ), σ

(n)
ml (0, λ) = σ

(n)
lm (0, λ), (46)

�
(n)
11 (0, λ) = �

(n)
22 (0, λ), σ

(n)
11 (0, λ) = σ

(n)
22 (0, λ), (47)

qn(0) = Qn

(
1

Cn

)
, (48)

where Qn is real parameter. Indeed, since all the eigenvalues
are imaginary, λn = iηn, ηn ∈ R, then at the first step n = 1
we have

�(0)(0, λ) = E,

q1(0) =
(

1

C1

)
,

σ (1)(0, λ) = E + η1

η − η1

(
1 C1

C1 1

)
,

where η ∈ R parameterizes the spectral parameter λ = iη and
E is 2 × 2 unit matrix. Then, from Eqs. (16)–(18) and with
Cn = ±1, it is easy to prove the properties (45)–(48) at each
successive step of the recursive procedure.

The property (48) allows us to find the combination

q∗
n1qn2

|qn|2 = Cn

2

in Eq. (15) and ultimately yields the wave field at the symme-
try point:

ψ(N )(0) = −2
N∑

n=1

Cnηn. (49)

The discussed above analytical properties of the solitonic
model are obtained from analysis of the determinant formula

(20) and the dressing procedures (15)–(18). Note that other
ways to construct multisoliton solutions, such as the tradi-
tional IST formalism (12) and the Riemann-Hilbert problem
approach [39], might turn out to be more convenient for ana-
lytical considerations, which we are going to explore in future
studies.

B. Numerical results

Using the efficient numerical scheme for the DM devel-
oped previously in Ref. [24] in combination with 2000-digit
precision arithmetic, we construct wave field ψ(N )(x) for the
N-SS with the scattering data (29), (43), for the number
of solitons ranging from N = 32 to 1024. In the numerical
scheme, high-precession arithmetics is applied to accurately
resolve large number of arithmetic operations with exponen-
tially large and small numbers coming from the elements of
vectors qn, see Eqs. (14)–(18). Though this inherent issue of
the DM cannot be entirely avoided, the optimized algorithm
developed in Ref. [54] (which wasn’t used in the present
paper) allows one to minimize the necessary numerical pre-
cision.

Note that, according to Eq. (30), for fixed number of
solitons N , we may choose the parameter L describing the
width of the box potential (23) differently. In this section, we
choose �L = π/4 in Eq. (30), that yields close to minimal
residual oscillations, as well as close to minimal impact of
the continuous spectrum on the integral characteristics of the
wave field; the results for other choices of �L are qualitatively
the same, as discussed in Appendix A.

As shown in Figs. 2(a) and 2(b), the constructed multisoli-
ton solution resembles the box potential of the same width;
in particular, it is purely real and positive, i.e., has the same
complex phase as the condensate (the positivity is numerical
observation for all choices of �L that we have tried). Oscilla-
tions of the wave field around unity shown in Figs. 2(a)–2(c)
come from subtraction of the continuous spectrum from the
box potential, i.e., appear due to reconstruction of the (box)
potential having nonzero reflection coefficient with the re-
flectionless potential (multisoliton solution). At the edges, the
oscillations resemble the well-known Gibbs phenomenon for
reconstruction of a jump discontinuity with the Fourier trans-
form. The amplitude of these oscillations is maximal at the
edges, where it is close to 0.3, and decreases monotonically
to the center of the box. Note that, at the edges, the amplitude
varies moderately with parameter �L in Eq. (30), but does
not change significantly with increasing number of solitons
N ; see Figs. 2(a) and 2(b) and Appendix A. As we discuss
in Appendix A, the similar oscillations are seen for the N-SS
built from noncorrected norming constants, too.

In the central region, the amplitude of the oscillations
decreases with increasing N as ∝ N−1/2, as demonstrated
in Fig. 2(c) for several examples of the wave field and in
Fig. 2(d) for the difference |ψ(N )(x) − 1| at x = 0 computed
for N ranging from 32 to 8192. Interestingly, the period of
the oscillations is close to π , Fig. 2(c), that corresponds to the
shortest modulationally unstable mode |k| = 2, see Eq. (2),
so, between the two absolute maximums at the edges, the total
number of periods nO equals the number of solitons N minus
one, n0 = N − 1.
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FIG. 2. (a)–(c) Wave field of the N-soliton solution (N-SS) for N = 32 (red), 64 (green), 128 (blue), 256 (purple), and 1024 (brown): (a) in
linear scales, (b) in logarithmic horizontal scale, (c) in linear scales at the center of the box. Each N-SS curve is marked with the corresponding
number of solitons. (d) Amplitude of the residual oscillations at the center |ψ(N )(0) − 1| as a function of N (blue points). The dashed black
line indicates the fit ∝ N−1/2. The N-SS for all the figures are constructed from the scattering data (29) and (43) with �L = π/4 in Eq. (30).
The inset in panel (b) shows dependency of (1 − Ls/L) (red circles) and (1 − Lc/L) (blue squares) on N in double logarithmic scales, where Ls

and Lc are defined according to Eqs. (50) and (51), respectively. The short-dashed red line indicates the fit (1 − Ls/L) ∝ N−αs with αs ≈ 0.37,
while the long-dashed blue line—the fit (1 − Lc/L) ∝ N−αc with αc ≈ 0.89. The inset in panel (d) represents the same plot as in the main
figure, but in double logarithmic scales.

Computing amplitude of the oscillations ε(x) at different
sections x = κL/2 of the box with κ ranging from 0 to 0.8
and for the number of solitons N from 32 to 1024, we observe
the same convergence law to unity, ε(x) ∝ N−1/2 for fixed
κ, see Appendix A. This leads us to the suggestion that the
fraction of the box width Ls/L, within which the oscillations
vanish with increasing number of solitons N , approaches unity
as N → +∞. To test this hypothesis, we define Ls as length
of the coordinate region |x| � Ls/2, where

|ψ(N )(x) − 1| � |ψ(N )(0) − 1| N1/4. (50)

Here the multiplier N1/4 on the right-hand side (RHS) is taken
abitrarily, provided that with increasing N (i) it is growing and
(ii) the whole RHS decreases. Taking into account that the
wave field at the center approaches unity as |ψ(N )(0) − 1| ∝
N−1/2, the particular choice N1/4 leads to the RHS of the
criterion (50) vanishing with increasing N as N−1/4. As shown
in the inset of Fig. 2(b), length Ls approaches box width L
as (1 − Ls/L) ∝ N−αs with αs ≈ 0.37. Hence, we can con-
clude that the presented solitonic model (29), (43) approaches
asymptotically to the condensate with increasing number of
solitons N .

Note that the fraction of the box occupied by the pro-
nounced edge oscillations decreases with increasing N , as can
be seen directly from Figs. 2(a) and 2(b) for several examples
of the multisoliton solution. In particular, length Lc of region
|x| � Lc/2, where the oscillations are twice smaller than at the
edges,

|ψ(N )(x) − 1| � εmax/2, (51)

approaches the box width L as (1 − Lc/L) ∝ N−αc with αc ≈
0.89, see the inset of Fig. 2(b). Here, the amplitude at the
edges is defined as maximum of the wave field minus unity,
εmax = max |ψ(N )(x)| − 1.

VI. DISCUSSION

By analogy with the Gibbs phenomenon, the presence of
the edge oscillations with finite amplitude in Figs. 2(a) and
2(b) might be explained by the jump discontinuity of the
box potential at x = ±L/2, which is not resolved adequately
when reconstructing the wave field with solitons only. If this
suggestion is true, then the oscillations might be significantly
decreased when an appropriate smoothing is applied at the box
edges. One way to verify this conjecture would be to construct
a solitonic model of a smoothed box-shaped potential, for
instance, using the numerical tools developed in Refs. [55,56];
currently, we leave this line of research for future studies. Note
that, as was demonstrated for the semiclassical approximation
in Ref. [57], any smoothing, no matter how small, has a
leading order effect on the time evolution of the potential.
The other way is to consider another analytically solvable
case of the potential without discontinuities, for instance, the
hyperbolic secant potential ψ (x) = sech (x/L).

In Appendix C, we study the latter case using the same
techniques as discussed previously and arrive at exactly the
same corrected DM norming constants (43). For different
values of the parameter L, the constructed wave field turns
out to be very similar to the original sech-potential one, and
the residual oscillations, present for noninteger L (otherwise,
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the sech-potential is a pure N-SS with N = L), vanish with
increasing N in the entire coordinate space. Note that our
conjecture that the edge oscillations can be significantly di-
minished for a potential with smooth edges is also consistent
with the semiclassical approximation, stating that a smooth
large wave field can be approximated by solitons [35].

As shown in the previous section for the box potential
(23), and also in Appendix C for the sech potential, the con-
structed solitonic models are symmetric with respect to mirror
transformation x → −x, as well as the original wave fields.
Meanwhile, both the corrected IST soliton parameters (that
correspond to the solitonic models) and the noncorrected IST
parameters (that together with the nonlinear radiation corre-
spond to the original wave fields) do not show this symmetry.
Indeed, the IST space positions are connected with the norm-
ing constants as x(IST)

n = ln(|ρn|/2ηn)/2ηn, see Eq. (11), so for
the box potential case the corrected positions are positive for
all the solitons, x̃(IST)

n > 0, due to the inequality |̃ρn|/2ηn =
| ∏N

j 	=n
ηn+η j

ηn−η j
| > 1, see Eq. (42). And since the noncorrected

norming constants are connected with the corrected ones as

ρn = ρ̃ne
ηn
2π

IN,n ,

and the integral IN,n is positive, see Eqs. (39) and (40), the
noncorrected space positions are positive as well, x(IST)

n > 0.
The same inequalities are valid for the sech-potential when
L is noninteger, for both the corrected and noncorrected IST
space positions.

This asymmetry in IST space positions observed for the
symmetric wave fields comes from the nonsymmetric for-
mulation of the scattering problem (6) and (7). In contrast
to the IST formalism, the DM does not have such left-right
asymmetry in its construction [43,45], and the DM space
positions turn out to be symmetric, x(DM)

n = 0. Note that we
cannot find the DM norming constants corresponding to the
box potential (23) that contains both solitons and nonlinear
radiation, since, from the one hand, there are no developed
methods that would allow us to solve the direct scattering
problem to the DM scattering data directly, and, on the other
hand, Eq. (21) connecting the IST and DM norming constants
is valid only when the nonlinear radiation is absent.

Meanwhile, if we build N-SS from the noncorrected IST
norming constants (32) by calculating the DM norming con-
stants via Eq. (21),

C′
n = −2ηn(1 + ηnL)

eηnL(1 − η2
n )

N∏
j 	=n

ηn + η j

ηn − η j
≡ C̃ne− ηn

2π
IN,n , (52)

and then applying the dressing procedure, we arrive to non-
symmetric DM space positions and nonsymmetric wave field.
Indeed, in Eq. (52) we have IN,n > 0 and |C̃n| = 1, so the
corresponding DM space positions are negative for all the
solitons, x(DM)

n < 0, for both the box potential and the sech-
potential (when L is noninteger) cases. The resulting wave
fields turn out to be nonsymmetric, see Appendices A and C.

Note that, in the DM formalism, the location of all soli-
tons at the symmetry point x = 0 for both solitonic models
should follow from the symmetry considerations. Indeed, the
original wave fields are symmetric, so the solitonic models
are expected to be symmetric as well. Then, in the symmetric

formalism of the DM, the solitons should have symmetric
positions. Since all the soliton eigenvalues are different, this
is only possible when all the solitons are located at x = 0.

In the present paper, the box potential is considered at a
single moment of time t = 0; meanwhile, its time evolution
represents an important problem called the dam break. Due to
the presence of the continuous spectrum for any box length
L, the analytical consideration of this evolution within the
IST approach is problematic, that led to broad application of
approximation techniques and numerical methods, see, e.g.,
Refs. [35,41,58,59]. In our approach, we completely neglect
the nonlinear radiation content of the wave field that allows
us to examine N-soliton description of the wave field at any
moment. Leaving this for further studies, we highlight the
question of comparing our N-soliton model with the models
of the dam break problem mentioned above.

VII. CONCLUSIONS

In the present paper, we have introduced an IST-based
approach to the studies of strongly nonlinear wave fields, that
consists of construction of their purely solitonic models. In
particular, on the examples of the box potential and the sech
potential, we have found specific corrections to the soliton
norming constants that arise due to removal of the continuous
spectrum and constructed their solitonic models that approach
asymptotically to the original wave fields at large number
of solitons. We think that the developed technique can be
applied for other symmetric wave fields governed by various
integrable partial differential equations, in particular, using the
scattering data found numerically [55,56] or in the semiclas-
sical approximation [60]. For nonsymmetric wave fields, the
solitons may have nonzero velocities and the absolute value
of the reflection coefficient may not be an even function, so
the interaction shifts discussed in Sec. IV may not be as easily
assumed.

We believe that the proposed approach will benefit the
studies of various nonlinear phenomena that occur in strongly
nonlinear wave fields. For instance, the constructed solitonic
model of the condensate can be used to investigate the modu-
lational instability [4,21,26,61] and the dam break problems
[27,41,58,59,62]. Another possible application is related to
the theory of rogue waves on the condensate background, see,
e.g., Refs. [2,5,6] and also the recent theoretical and experi-
mental studies where the typical spatiotemporal profiles of the
rogue waves were interpreted as a result of soliton interactions
[24,63,64].
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APPENDIX A: WAVE FIELD FOR THE SOLITONIC
MODEL OF THE BOX POTENTIAL

In the main part of the paper, we have presented the
solitonic model of the box potential characterized by the
eigenvalues λn (29) and the corrected norming constants ρ̃n

(42)—for the IST formalism, or C̃n (43)—for the DM for-
malism. The eigenvalues λn depend on width L of the box
potential, which is parameterized as L = LN + �L, where LN

and �L are given by Eq. (30). The presented wave fields
have been computed for the parameter �L = π/4, which
yields close to minimal residual oscillations. In this Appendix,
we examine the constructed wave fields in more detail and
consider different modifications of the scattering data for the
solitonic model.

First, we demonstrate convergence of the solitonic model
to the condensate in a broad region of the box when the
number of solitons N increases. For this purpose, using the
parameter �L = π/4 in Eq. (30) and increasing N from 32 to
1024, we compute amplitude of the oscillations ε(x) around
the condensate at different sections of the box x = κL/2 with
κ ranging from 0 to 0.8 and discover that, for fixed κ, the os-
cillations vanish as ε(x) ∝ N−1/2, see Fig. 3. The amplitude is
calculated as maximum deviation from the condensate ε(x) =
maxy∈� |ψ(N )(y) − 1| over the oscillation period π centered
at x = κL/2, � = [κL/2 − π/2, κL/2 + π/2]. This result
has lead us to suggest the criterion (50) for the length Ls

of the coordinate region |x| � Ls/2 where the oscillations
vanish with increasing N and, as has been discussed in Sec. V,
this length Ls approaches the whole box L by power law as
N → +∞.

Second, we consider how the solitonic model is changed
when the exact formula for the eigenvalues (29) is replaced

FIG. 3. Amplitude of the oscillations ε(x) at different sections
of the box x = κL/2 versus the number of solitons N , for κ = 0
(red triangles), 0.2 (magenta squares), 0.4 (green dots), 0.6 (blue
diamonds), and 0.8 (black crosses); note the double logarithmic
scales. The dashed lines show the fits ∝ N−1/2. The amplitude ε(x) is
calculated for the N-SS constructed from the scattering data (29) and
(43) with �L = π/4 in Eq. (30).

FIG. 4. Wave fields of N-SS for N = 32 (red), 64 (green), and
128 (blue), constructed from (a) the box eigenvalues λn (29) and the
corrected DM norming constants C̃n (43), (b) the semiclassical box
eigenvalues λ(sc)

n (31) and the corrected DM norming constants C̃n,
and (c) the box eigenvalues λn and the noncorrected DM norming
constants Cn (52). Each N-SS curve is marked with the corresponding
number of solitons. The parameter �L in Eq. (30) is the same for all
cases, �L = π/4. The panel (a) coincides with Fig. 2(a). The inset
in panel (b) shows two 128-SS at the center of the box: constructed
from the box eigenvalues λn (dashed line) and from the semiclassical
eigenvalues λ(sc)

n (solid line).

by the semiclassical one (31). In this test, the DM norming
constants are taken according to Eq. (43) that corresponds to
all the solitons located at the symmetry point x = 0 with alter-
nating phases of zero and π , see Eq. (44), and the parameter
�L in Eq. (30) is fixed to π/4. As shown in Fig. 4(b), the
usage of the semiclassical eigenvalues leads to from slightly
(at the center) to moderately (at the edges) elevated resid-
ual oscillations compared to the exact eigenvalues, see also
Fig. 4(a).

Third, we examine the N-SS built without correction of the
norming constants, i.e., using the noncorrected IST norming
constants (32) corresponding to DM norming constants (52).
The result is demonstrated in Fig. 4(c) for N = 32, 64, and
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FIG. 5. The N-SS constructed from the scattering data (29) and
(43) for different values of the parameter �L in Eq. (30). (a) The
general form of the 32-SS, for �L = 0 (solid blue), π/4 (dash-dotted
red), and π/2 (dashed green). (b) The same solutions at the center of
the box. (c) Amplitude of the oscillations at the center, |ψ(N )(0) −
1|, versus the number of solitons N (points), in double logarithmic
scales. The blue circles mark the case �L = 0, the red triangles –
π/4, and the green squares – π/2. The dashed lines indicate the fits
∝ N−1/2.

128; the eigenvalues λn are given by the transcendental equa-
tion (29) and the parameter �L equals π/4. As one can see,
the wave fields turn out to be nonsymmetric with enhanced
oscillations at their left sides. Note that the norming constants
(52) correspond to negative DM space positions for all the
solitons, x(DM)

n < 0, see Sec. VI.
Finally, we examine influence of the parameter �L on the

solitonic model defined by the eigenvalues λn (29) and the
corrected norming constants C̃n (43). In Figs. 5(a) and 5(b),
we demonstrate 32-SS constructed for three different values of
this parameter: �L = 0, π/4, and π/2. Note that Eq. (29) de-
termining λn is transcendental, and for its numerical solution
at �L = 0 we have used small nonzero value of 10−4 order
for �L, avoiding the indeterminate expression which appears
for the root λn = 0. As shown in the figures, among the
three examples, the cases �L = 0 and π/4 are characterized

by the strongest and weakest oscillations, respectively. The
oscillation period is very close to π for all three cases. At the
center of the box, the amplitude of the oscillations vanishes
with increasing N as |ψ(N )(0) − 1| ∝ N−1/2, see Fig. 5(c).

Repeating the convergence study discussed in the begin-
ning of this Appendix, but now for the parameter �L = 0
corresponding to the strongest oscillations, we observe the
same asymptotic behavior for the oscillation amplitude ε(x) ∝
N−1/2 at different sections x = κL/2 of the box from κ = 0 to
0.8, and the same power-law convergence (1 − Ls/L) ∝ N−αs

with αs ≈ 0.43 for the length Ls of the coordinate region (50)
where the oscillations vanish with increasing N . We have
checked that other values of �L yield the similar results.

We conclude that, irrespective of the specific choice of
parameter �L, our solitonic model of the box potential has
the same basic properties that have been discussed in Sec. V
on the example of the case �L = π/4, namely, the N-SS
built according to our model are purely real and symmetric,
the amplitude of the residual oscillations is maximal at the
edges, where it is close to 0.3, and minimal at the center of
the box, where it vanishes with increasing number of solitons
N as ∝ N−1/2, while the region Ls, where the oscillations are
vanishing with increasing N , approaches asymptotically to the
whole box, Ls → L, as N → +∞.

The residual oscillations are minimal—both at the edges
and at the center of the box—for the parameter �L close
to π/4. This is demonstrated in Figs. 6(a) and 6(b), where
the oscillation amplitude at the edges εmax and at the center
εmin is shown for �L changing continuously from 0 to π ,
for 32-SS, 64-SS, and 128-SS. At the edges, the amplitude
is calculated as the maximum of the wave field minus unity,
εmax = max |ψ(N )(x)| − 1, while at the center—as maximum
deviation from the condensate εmin = maxx∈� |ψ(N )(x) − 1|
over the oscillation period � = [−π/2, π/2] centered at x =
0. Note that the minimal edge oscillations are achieved for �L
slightly larger than π/4, while the minimal center oscillations
for �L slightly smaller than π/4.

The oscillations are maximal for �L = 0, i.e., at the point
when a new soliton appears, see Eq. (29). Using the semi-
classical formula (31) for approximate calculations, one can
easily get that the two smallest eigenvalues for the �L = 0
case are located at λ

(0)
N = 0 and λ

(0)
N−1 ≈ i

√
2/N , while the

smallest eigenvalue for the �L = π/4 case – at λ
(π/4)
N ≈

i/
√

2N , that is, at the center of the interval [λ(0)
N , λ

(0)
N−1]. In

this sense, we think that the maximal oscillations at �L = 0
can be interpreted as a result of the new soliton appearance,
while the minimal oscillations at close to �L = π/4 as the
midpoint between the two emerging soliton events at L = LN

and L = LN + π ; see the discussion on soliton emergence in
Ref. [65].

The changes in the oscillations’ strength with increasing
box width L resemble the behavior of the box continuous
spectrum content. The relative impact of the nonlinear radia-
tion can be examined through the first integral of motion—the
wave action,

I1 =
∫ ∞

−∞
|ψ |2dx, (A1)
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FIG. 6. (a), (b) Amplitude of the oscillations (a) at the edges εmax

and (b) at the center εmin versus the parameter �L in Eq. (30), for
32-SS (solid red), 64-SS (dash-dotted green), and 128-SS (dashed
blue). The short-dashed vertical lines indicate �L = π/4, while the
long-dashed vertical lines mark the minimums of the 128-SS curves.
The inset in panel (b) shows zoom near the minimum. (c) Ratio
I (nr)

1 /I1 between wave actions of the nonlinear radiation I (nr)
1 (A2)

and the box potential I1, as a function of L in semilogarithmic
scales. The inset shows zoom near N = 64; the short-dashed red
and dashed black lines indicate �L = 0 and π/4, while the long-
dashed green line marks the local minimum of the presented curve.
The N-SS for all the figures are constructed from the scattering
data (29) and (43).

which for the box potential (23) equals I1 = L and for the
solitonic model can be found directly via soliton eigenvalues
(29) as I (sm)

1 = 4
∑N

j=1 η j , see, e.g., Ref. [10]. This allows us
to find wave action for the nonlinear radiation,

I (nr)
1 = I1 − I (sm)

1 = L − 4
N∑

j=1

ηk; (A2)

the ratio I (nr)
1 /I1 is shown in Fig. 6(c) as a function of L. For

L < π/2, the solitonic content is absent, see Eq. (28), and the
ratio equals to unity. For large L, the impact of the nonlin-

ear radiation decreases close to exponentially in accordance
with the semiclassical IST theory [10]; however, pronounced
oscillations with period π around the exponential trend are
visible and the function I (nr)

1 /I1 takes local maximums at
L = LN , i.e., at the points when a new soliton appears. The
local minima are located near the points corresponding to
�L = π/4, as shown in the inset of Fig. 6(c).

APPENDIX B: CALCULATION OF THE INTEGRAL IN,n

In this Appendix, we present calculation of the integral
IN,n, which defines corrections to the soliton norming con-
stants; see Eqs. (39) and (40).

Using the property of the scattering coefficients |a(ξ )|2 +
|b(ξ )|2 = 1, ξ ∈ R, together with definition of the reflection
coefficient r = b/a, see Eqs. (8) and (9), we rewrite the origi-
nal integral as

IN,n =
∫ +∞

−∞

ln[1 + |r(ξ )|2]

ξ 2 + η2
n

dξ

= −
∫ +∞

−∞

ln[|a(ξ )|2]

ξ 2 + η2
n

dξ, (B1)

where, for the box potential,

a(ξ ) = eiLξ

{
cos(χL) − iξ

sin(χL)

χ

}
, (B2)

χ =
√

1 + ξ 2. (B3)

The square modulus in the integral (B1) can be represented as
product |a(ξ )|2 = au(ξ ) · al (ξ ), ξ ∈ R, of the two functions,

au,l (ξ ) = cos(Lχ ) ∓ iξ sin(Lχ )/χ, (B4)

where the sign minus corresponds to au and the sign plus to
al . Then, using the relation au(ξ ) = al (−ξ ) valid for real ξ ,
we can further rewrite the integral as

IN,n = −
∫ +∞

−∞

ln[au(ξ )]

ξ 2 + η2
n

dξ −
∫ +∞

−∞

ln[al (ξ )]

ξ 2 + η2
n

dξ

= −2
∫ +∞

−∞

ln[au(ξ )]

ξ 2 + η2
n

dξ = −2 Ia. (B5)

Being analytically continued to the upper half-plane, the
function au has N roots, which coincide with the eigenvalues
λn of the box potential and are defined by Eq. (29), see
Refs. [47–49]. Similarly, being continued to the lower half-
plane, the function al has the same N roots, but mirrored
with respect to the real axis. Note that, being analytically
continued to the whole complex plane, both functions au and
al have additional roots in the lower and upper half-planes,
respectively.

The presence of roots under the logarithm in Eq. (B5)
doesn’t allow for straightforward contour integration in the
complex plane. To overcome this difficulty, we multiply the
function au by the so-called Blaschke factors, similarly to was
done in Ref. [39],

ãu(ξ ) = au(ξ ) ×
N∏

j=1

ξ + iη j

ξ − iη j
, (B6)
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where λ j = iη j , j = 1, ..., N , are the eigenvalues of the box
potential.

On the one hand, multiplication by the Blaschke factors
[i.e., replacement of au by ãu in Eq. (B5)] doesn’t change the
integral IN,n, since integration of each Blaschke factor alone
yields zero: ∫ +∞

−∞

dξ

ξ 2 + η2
n

ln

[
ξ + iη j

ξ − iη j

]
= 0. (B7)

On the other hand, the new function ãu has no roots in the
upper half-plane and, after the replacement, the integral

Ia =
∫ +∞

−∞

ln[̃au(ξ )]

ξ 2 + η2
n

dξ (B8)

can be readily taken.
Indeed, using the Cauchy’s integral theorem and the classi-

cal contour of integration which runs along the real axis from
minus to plus infinity and then returns back via the infinite
semi-ircle in the upper half-plane, we get

Ia + Ia∞ = (2π i) Res
λ=iηn

(
ln[̃au(λ)]

λ2 + η2
n

)
, (B9)

where Ia∞ is the integral over the semicircle and Res stands
for residue. The residue appears at the only pole λ = iηn due
to denominator of the integrand. The integral over the infinite
semicircle can be found using the polar coordinates in the
complex plane, λ = R eiφ , and the approximation

ãu(λ) ≈ au(λ) ≈ cos(Lχ ) − i sin(Lχ ) ≈ e−iLλ,

valid for |λ| � 1, so

Ia∞ =
∫ π

0

−iLReiφ

R2e2iφ
Reiφ idφ = πL. (B10)

As for the residue, we have

(2π i) Res
λ=iηn

(
ln[̃au(λ)]

λ2 + η2
n

)
= π

ηn

{ N∑
j 	=n

ln

[
iηn + iη j

iηn − iη j

]

+ ln
[
2iηna′

u(iηn)
]}

, (B11)

where the second term containing the derivative a′
u appears as

a result of indeterminate expression au/(λ − iηn) at λ = iηn;
recall that au(iηn) = 0.

To find the derivative, it is instructive first to rewrite the
condition a(λn) = 0 on the eigenvalues λn of the box poten-
tial,

cos(χnL) − iλn
sin(χnL)

χn
= 0, (B12)

where χn = √
1 + λ2

n, see Eqs. (B2) and (B3), to the form

sin(χnL) = �nχn, �n = ±1. (B13)

In this relation, each eigenvalue λn is characterized by the
specific sign �n which depends on index n.

Then, calculating the derivative a′
u straightforwardly and

using Eq. (B12) once again to relate the sine and cosine in the
process, we arrive to

a′
u(iηn) = −i�n

1 + ηnL

1 − η2
n

. (B14)

This allows us to get the integral Ia, and via it, the full integral
IN,n,

IN,n = 2πL − 2π

ηn

{
ln

[
2ηn(1 + ηnL)

1 − η2
n

]

+ ln

[
�n

N∏
j 	=n

ηn + η j

ηn − η j

]}
. (B15)

To find the sign �n, we note that the argument of the second
logarithm in Eq. (B15) must be positive, since the argument
of the first logarithm is positive and the whole integral (B1) is
positively defined (in particular, it is always real). The product

N∏
j 	=n

ηn + η j

ηn − η j

changes its sign with each change of the index n by unity, and
is positive for n = 1, since in this case the largest root is η1.
Then,

�n = (−1)n−1,

that leads us to the final result (41).

APPENDIX C: SOLITONIC MODEL FOR THE
HYPERBOLIC SECANT POTENTIAL

Similarly to the main part of the paper, in this Appendix we
construct a solitonic model for the hyperbolic secant potential,

ψ (x) = sech (x/L), (C1)

where parameter L represents its characteristic width.
The scattering problem for this potential was solved in

Ref. [66] to the scattering coefficients

a(ξ ) =
�2

−iξL+ 1
2

�−iξL+ 1
2 +L�−iξL+ 1

2 −L

, (C2)

b(ξ ) = − sin(πL)

cosh(πL ξ )
, (C3)

where � is the Eulergamma function. The soliton eigenvalues,
defined from the condition a(λ) = 0, lie on the imaginary
axis,

λn = iηn = i

[
1 − n − 1

2

L

]
, n = 1, ..., N, (C4)

where N = Integer[L + 1
2 ]. The latter means that, similarly to

Eq. (30), the width L can be parameterized as

L = LN + �L, LN = N − 1
2 , �L ∈ [0, 1), (C5)

meaning that, for increasing L, the number of solitons N
remains constant until the next jump by one soliton at L =
LN + 1. The (noncorrected) IST norming constants can be
found via the definition (9),

ρn = − i �1+2L−n

L(n − 1)! �2
1+L−n

, (C6)

though the calculation is not trivial—see Ref. [67] for details.
Note that, for integer L, the potential (C1) is reflectionless,

r = b/a = 0, see Eq. (C3), i.e., it contains only solitons. In
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FIG. 7. (a) Wave field of N-SS (solid red line) constructed from
the scattering data (C4), (C9), for N = 32 and �L = 0 in Eq. (C5).
The original sech-potential (C1) is shown with the dashed black
line. The inset shows zoom near the symmetry point x = 0. (b) Dif-
ference δ(x) = sech (x/L) − ψ(N )(x) between the sech potential and
its solitonic model, for N = 32 (red, reaches the largest maximum
amplitude in the figure), 64 (green, the intermediate maximum
amplitude), and 128 (blue, the smallest maximum amplitude); the pa-
rameter �L = 0 corresponds to the maximum oscillations. (c) Zoom
of the above panel demonstrating varying oscillation period.

this case, that corresponds to the parameter �L = 1/2 in
Eq. (C5), the nonlinear radiation and (therefore) the residual
oscillations are both absent. To construct the solitonic model
for the general case of noninteger L, one needs to find the
corrected norming constants via Eqs. (39) and (40). These
equations are applicable, because the solitonic content of the
sech potential has zero velocities, see Eq. (C4), and the ab-
solute value of the reflection coefficient |r| = |b/a| is even
function since b(ξ ) and |a(ξ )| are both even, see Eqs. (C2)
and (C3) (here we use the well-known property of the gamma
function �(z∗) = �(z)∗, i.e., |�(z∗)| = |�(z)|).

Calculation of the integral IN,n defining the corrections to
the soliton norming constants goes through the same steps
as for the box potential case. In particular, we represent the
square modulus in the integral (B1) as product |a(ξ )|2 =
au(ξ ) · al (ξ ), ξ ∈ R, of the two functions au(ξ ) = a(ξ ) and

FIG. 8. (a) Ratio I (nr)
1 /I1 between wave actions of the nonlinear

radiation I (nr)
1 (A2) and the sech-potential I1 as a function of L

in semilogarithmic scales. The inset shows zoom near N = 64; the
dashed red lines indicate �L = 0. (b) Wave field of N-SS (solid red
line) constructed from the eigenvalues (C4) and the noncorrected IST
norming constants (C6) using transition to the DM formalism via
Eq. (21), for N = 32 and �L = 0 in Eq. (C5). The original sech-
potential (C1) is shown with the dashed black line. The inset shows
the nonsymmetry of the difference δ(x) = sech (x/L) − ψ(N )(x) with
respect to the mirror transformation x → −x.

al (ξ ) = a(ξ )∗ = a(−ξ ), and then calculate the integral Ia,
see Eq. (B5), by continuing the function au(ξ ) to the upper
half-plane with replacement ξ → λ and using the Blaschke
factors (B6). As a result, we arrive to Eq. (B9), in which
the integral over the infinite semicircle vanishes, since for
|λ| → +∞ we have au(λ) → 1, see, e.g., Ref. [10], and there-
fore ãu(λ) → 1. To calculate the residue (B11), we use the
well-known property of the gamma function,

Res
z=−n

�z = (−1)n

n!
,

that ultimately leads us to

IN,n

= − 2π

ηn

{
ln

[
(−1)n−1(n − 1)! (2L − 2n + 1) �2

1+L−n

�1+2L−n

]

+ ln

[ N∏
j 	=n

ηn + η j

ηn − η j

]}
. (C7)

Using the latter result and Eq. (C6), we find the corrected
IST norming constants,

ρ̃n = ρne− ηn
2π

IN,n = 2iηn(−1)n
N∏

j 	=n

ηn + η j

ηn − η j
, (C8)
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and, via Eq. (21), the corrected DM norming constants,

C̃n = (−1)n, (C9)

which coincide with those for the box potential case.
The multisoliton solution constructed from the scattering

data (C4), (C9) has all the same properties as discussed in the
beginning of Sec. V, namely, it is real valued and symmetric
with respect to mirror transformation x → −x; all of its soli-
tons have DM space positions at the symmetry point x = 0
and DM phases of zero and π , see Eq. (44), while the wave
field at x = 0 can be calculated via Eq. (49).

Computing this N-SS numerically for different values of
parameter L, we observe that it is very similar to the origi-
nal sech potential, having small residual oscillations on the
hyperbolic secant background for noninteger L, see Fig. 7(a).
In contrast to the box potential case, these oscillations have
constant amplitude in space, but their period increases when
moving from the center to the edges, as demonstrated in
Figs. 7(b) and 7(c). The oscillation amplitude decreases with

increasing number of solitons as ∝ N−1, and, for the sym-
metry point x = 0, this relation is proved analytically by
substituting (C4) into (49), that yields

ψ(N )(0) = 1 ∓ �L − 1
2

N + �L − 1
2

, (C10)

where the sign minus corresponds to even N , and the sing plus,
to odd N .

The oscillation amplitude is maximal at �L = 0, i.e., at the
point when a new soliton appears, and minimal at �L = 1/2,
when the sech potential represents an exact multisoliton solu-
tion. The ratio I (nr)

1 /I1 between wave actions of the nonlinear
radiation I (nr)

1 (A2) and the sech-potential I1 takes local max-
imums at �L = 0 and local minimums (coinciding with zero)
at �L = 1/2, see Fig. 8(a). The N-SS constructed without
correction of the norming constants, i.e., from the noncor-
rected IST norming constants (C6) via transition (21) to the
DM formalism, turns out to be nonsymmetric, see Fig. 8(b),
with all the solitons having negative DM space positions,
x(DM)

n < 0, as has been discussed in Sec. VI.
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