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Identification of the invariant manifolds of the LiCN molecule using Lagrangian descriptors
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In this paper, we apply Lagrangian descriptors to study the invariant manifolds that emerge from the top of
two barriers existing in the LIiCN = LiNC isomerization reaction. We demonstrate that the integration times
must be large enough compared with the characteristic stability exponents of the periodic orbit under study.
The invariant manifolds manifest as singularities in the Lagrangian descriptors. Furthermore, we develop an
equivalent potential energy surface with 2 degrees of freedom, which reproduces with a great accuracy previous
results [F. Revuelta, R. M. Benito, and F. Borondo, Phys. Rev. E 99, 032221 (2019)]. This surface allows the use
of an adiabatic approximation to develop a more simplified potential energy with solely 1 degree of freedom.
The reduced dimensional model is still able to qualitatively describe the results observed with the original 2-
degrees-of-freedom potential energy landscape. Likewise, it is also used to study in a more simple manner the
influence on the Lagrangian descriptors of a bifurcation, where some of the previous invariant manifolds emerge,

even before it takes place.
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I. INTRODUCTION

Molecular systems usually exhibit a very rich and intricate
dynamics, even in small molecules formed solely by a few
atoms [1], due to nonlinear interactions [2]. The existence
of conical intersections [3,4] between Born-Oppenheimer po-
tential energy surfaces (PES) adds additional complexity to
the classical characterization of these systems, as molecules
may undergo electronic transitions in their neighborhoods [5].
Likewise, the combination of these effects easily opens effec-
tive routes to chaos, making the analysis of the corresponding
dynamics more complex, in particular when bifurcations take
place and substantially modify the structure of the phase
space.

Suitable tools to cope with the previous problems can be
borrowed from dynamical systems theory [6], which sets up
the molecular phase space as the proper arena for a dynamical
analysis. Accordingly, for low excitation energies the motion
of the nuclei takes place in the vicinity of the lowest equilib-
rium point of the PES, where the harmonic approximation is
valid and the motions are well characterized by the normal
modes [1]. The structure of the corresponding phase space is
mostly regular, with all motions organized in invariant tori. As
the excitation energy increases, the anharmonicities and the
coupling among the different modes open the door to irregular
motion and effective intramolecular vibrational relaxation [7].
From a nonlinear dynamics perspective, these phenomena can
be partially explained through the Kolmogorov-Arnold-Moser
theorem [8], which dictates that the perturbation associated
with the energy growth destroys some of the previous tori. In
addition, the Poincaré-Birkhoff theorem [9] locally controls
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the vicinity of the regions where resonances among modes
are important [5]. Eventually, the vibrational energy can be-
come large enough to classically overcome energetic barriers
(typically saddles) in the PES; this gives rise to chemical
reactivity [10].

The study of chemical reactions from a dynamical per-
spective dates back to Marcelin’s [11] and Wigner’s [12]
pioneering works on transition state theory [13], which are
also applicable to other physical processes in which the sys-
tem can be partitioned into different regions [14—17]. The key
point is the study of the dynamics at the top of the barrier sep-
arating two such parts (usually referred to as the reactants and
the products), where some relevant geometrical structures can
be identified, i.e., a normally hyperbolic invariant manifold
[16] and its invariant manifolds [18], which locally determine
the classical reactive dynamics. Moreover, at the quantum
level, tunneling and interference might be important [19-22].
Early examples of classical structures in two-dimensional
problems were envisioned, for example, in Ref. [23]. These
concepts have also been generalized to the case of noisy driven
systems [24-29], using a chaotic trajectory that jiggles around
the barrier top stochastically. Based on these theories, many
studies to understand chemical reactivity have been conducted
considering only the barrier top on the PES, since this is the
most important dynamical bottleneck. However, other phase-
space dynamical barriers [30-33] may exist, interfering with
the motion in this region and modulating, for example, the
corresponding timescales [34]. The correct identification of
the geometrical structures, i.e., the invariant manifolds, in this
other situation is similarly of great importance.
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The aim of this paper is the identification of the invariant
manifolds that emerge from the top of two barriers existing
in the LiCN = LiNC isomerization reaction, paying special
attention to those of dynamical origin. These manifolds act as
true geometrical separatrices for the system. For this purpose,
we use the Lagrangian descriptors (LDs) [35,36], a recently
developed tool that allows the study of the classical flow of
dynamical systems in a very simple and effective way.

First, we introduce an alternative PES with 2 degrees of
freedom (dof) that is formed by Morse potentials. We demon-
strate that the results obtained using this PES are in excellent
agreement with those yielded by the original ab initio one,
even when a constant moment of inertia is considered (see
discussion in Sec. IV B).

Second, in order to avoid the complicated picture derived
from excessive homoclinic and heteroclinic intersections, in
the previous PESs, which have 2 dof, we make use of the
adiabatic approximation in order to obtain an equivalent 1-dof
model, something that is feasible due to the great performance
of PES formed by Morse oscillators. The reduced dimensional
model is nevertheless able to capture the phenomenology that
takes place in the vicinity of the barriers existing in the system
and, as a consequence, provides an adequate characterization
of its dynamics (see Sec. IV C).

This paper is organized as follows. After the Introduction,
we present in Sec. II the system under study, highlighting the
main dynamical peculiarities and four periodic orbits (POs)
that are relevant for our work. Section III briefly describes
the method used to unveil the structures existing in the vibra-
tional phase space of our system. Next, we present in Sec. [V
the main results of our work, paying special attention to the
geometry surrounding the dynamical barrier, along with the
corresponding discussion. Finally, we conclude the paper in
Sec. V with the Summary and Outlook.

II. SYSTEM AND CLASSICAL TRAJECTORIES

In this section we report the main properties of the isomer-
izing reaction under study. To begin, we present in Sec. Il A
the Hamiltonian function that models the system. Next, in
Sec. II B, we describe an alternative PES formed by a col-
lection of Morse oscillators, obtained by making use of an
adiabatic approximation. Finally, Sec. IIC is devoted to a
brief description of the vibrational dynamics of the studied
molecule.

A. Hamiltonian model with 2 degrees of freedom

The system under study is the rotationless (J = 0) tri-
atomic LiCN molecule. Here, the motion associated with the
triple bond in the C = N fragment has a very high frequency
and consequently decouples from the rest of the molecular
modes. Accordingly, the CN stretch dof can be assumed to
remain constant at its equilibrium value, req = 2.186 a.u. The
vibrations of the LiCN can then be very well described with
the following 2-dof Hamiltonian:
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FIG. 1. Ab initio potential energy surface for LiCN molecule
with 2 degrees of freedom. It has two minima (green squares) corre-
sponding to the (stable) linear configurations Li-C = N (¢ = 0 rad)
and C = N-Li (9 = & rad), which are connected by the minimum
energy path (dashed green line) for the isomerization reaction, which
passes through a rank-1 saddle (green cross contained in the brown
diamond). Four periodic orbits relevant to our work are also shown.
The remaining symbols highlight the intersection of the previous
trajectories with the minimum energy path; this defines the Poincaré
surface of section, where initial conditions are taken (see text for
details).

where the distance R and the angle ¢ determine the position
of the Li atom with respect to the center of mass of C-N, u; =
my;(mc 4+ my)/(myi + mc +my) and @y = (memy)/(mc +
my) are reduced masses, and V,; (R, 1) is the ab initio PES
[37], which is shown in Fig. 1 in the form of a contours
plot. As can be seen, this PES has two stable minima (green
squares), which correspond to the two stable isomers at the
collinear configurations Li-CN (¢ = 0 rad, with an energy
of 2281 cm™!) and CN-Li (¢ = 7 rad, with an energy of
0 cm™"). These two minima are separated by a modest ener-
getic barrier for the isomerization along the minimum energy
path (MEP) given by Rygp(?¢') (dashed green line), whose
top has an energy of Esp = 3455 cm™! and a saddle x center
structure in the phase space (index- 1 saddle, shown as a cross).

In the next section, we report a simplified PES, which is
still able to reproduce the main characteristics of the ab initio
PES introduced in Fig. 1.

B. Equivalent potential energy surface
with 2 degrees of freedom

As can be seen, for constant ¥, the ab initio PES shown in
Fig. 1 increases abruptly for small R while it is a very slow
varying function for large R. This behavior is well described
by

Vequiv (R, 0) = VMEP(ﬂ) + VMorse(Ra l?)a (2)
where Vyvigp(¥) = V,i.[Rmep (D), U] is the potential along the
MEP, and

Viorse(R, #) = D(9)[1 — ¢~ & Fni)}2 3)

is the Morse potential, which depends on the distance R and
also on the angular coordinate, ¥, through the well depth
D(¥) and the width «(¢). This width is usually expressed as a
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TABLE 1. Fitted coefficients d, (3 x 1077 a.u.) and w, (£ 5 x
107% a.u.) of Egs. (4) and (5), respectively.

n d, (107* a.u) w, (107 a.u.)
0 2362.990 303.267
1 —67.946 —21.217
2 17.920 36.838
3 17.416 11.288
4 14.756 —2.689
5 —1.468 —7.388
6 4.181 4.693
7 0.845 2215
8 1.290 —0.616
9 0.054 —1.144

function of the frequency 2(¥) as o () = /()1 /12D ()]
Consequently, a different Morse potential is used for each .

In order to be able to use the potential (3) efficiently, we
have performed an additional fitting of the functions D(¢}) and
Q(9) as

9
D(®) = Zdn cos(nd), “)
n:O
QW) = Z w, cos(nd). 5)
n=0

The fitted coefficients d,, and w,, are listed in Table I. We
have verified that the error in Egs. (4) and (5) with respect to
their original expressions is in all cases less than 0.3%, which
provides an estimation of the difference between the potential
(2) and the original ab initio potential. Figure 2 shows the
values of D(¥%) and €2(¢) obtained for the system under study.
As can be seen, both functions have two maxima at ¢ =0
and 7 rad, respectively, and a minimum in between (found at
¥ ~ 0.307r and 0.447 rad).

In the next section we briefly summarize the vibrational
dynamics for Hamiltonian (1). Let us remark that the results
reported there, which are associated with the ab initio PES, are
also quantitatively valid for the adiabatically obtained PES (2)
due to their high similarity.

C. Trajectories and vibrational dynamics

The dynamics of this system is followed by computa-
tion of classical trajectories (R, ¢, Pg, Py) which evolve in
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FIG. 2. Parameters of the Morse potential: trap depth (4) (con-
tinuous red line) and frequency (5) (dashed blue line).

the four-dimensional phase space as Hamiltonian (1) has 2
dof. In practice, all initial conditions are taken on an ade-
quate Poincaré surface of section (PSOS) [6]. In this case,
such a suitable PSOS is choosen along the MEP, which
renders the most relevant dynamical information, i.e., that
concerning the angular motion. As the MEP is not an actual
trajectory of LiCN, and in order to make the PSOS an area
preserving map, a transformation to new coordinates must be
performed [31,38,39]:

dRyep
=1, P, =Py — Pg,
v v ’ ( av Jy_y :

P, = Pg. (6)

p = R — Ryep(?),

In Fig. 1, we also plot superimposed four POs which are
relevant for this work. In particular, the purple one (second
one starting from the right) is marginally stable, running
almost vertically. This orbit emerges “out of the blue” in
a tangent or saddle-node bifurcation [31,32] (SNB) SN; at
Esn, = 3440.6 cm™! (just below the energy Esp, which must
be exceeded in order to permit the isomerization). Subse-
quently, as energy increases this PO bifurcates in a pair, the
one that moves leftwards being stable and the one moving
rightwards being unstable. The result is shown in Fig. 1
for E = 4000cm™! in blue and red colors, respectively. The
corresponding manifolds and their foldings and intersections
[40] are very intricate, as shown in Fig. 3. Hereafter, we
refer to the unstable PO as SN,-PO. Other bifurcations in
this molecule [41,42] and other systems [43,44] have been
similarly reported.

Let us conclude this section by remarking that SNBs are
also important quantum mechanically, since they can give rise
to the so-called superscars, with the result that some wave
functions are strongly localized along the bifurcated POs. This
phenomenon, first studied in a quantum map [45], has also
been described in the molecule under study [32,46]. The im-
print of SNBs on spectral properties has also been considered
by other authors [47,48].

Finally, we also show in Fig. 1 the leftmost (brown) PO,
which is a non-recrossing dividing surface [23]. We refer to
this PO as TS-PO as it lies close to the position where the
transition state or activated complex is formed [23,49,50]. It
first appears at the saddle-point energy Egp.

III. LAGRANGIAN DESCRIPTORS

In order to unveil the phase-space structures existing in our
system in connection with the POs described in Sec. II, we use
the LD computed as [36,40,51]

4

M.t = [ S lawrar ™

T =1

where zg = [, Ry = Rvep(¥0), Py.0, Pp,0 = 0] is a vector
of initial conditions taken in the PSOS defined in Eq. (6),
p a parameter defining the chosen norm, and t a parameter
defining the time interval in which the LD is calculated. No-
tice that the propagation of the trajectory is done forward and
backward in order to capture the effects in the phase space
of the unstable and stable manifolds at the same time. Some
results for Hamiltonian (1) are shown in Fig. 3, both below and
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Py (a.u.)

Py (a.u.)

0.6 0.7
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FIG. 3. Lagrangian descriptors as defined in Eq. (7) with p = 0.4
and T = 2 x 10* a.u. computed from trajectories of LiCN for (a) E =
Egn, = 3440.6 cm™! and for (b) E = 4000 cm™!. The purple circle,
blue triangle, and red square indicate the position of the parabolic,
elliptic, and hyperbolic points associated with the three rightmost
periodic orbits shown in Fig. 1, which emerge due to a saddle-node
bifurcation at E = Egy;, .

above the SNB energy, for p = 0.4 and 7 = 2 x 10* a.u. [40],
this last integration time being 1 order of magnitude larger
than the periods of the POs of interest shown in Fig. 1. We
have also highlighted with different symbols the fixed points
associated with those POs. As can be seen, the phase space
is formed by a very complex structure due to the homoclinic
intersections of the invariant manifolds, which become visible
where the value of the LDs changes abruptly from a large
value (shown in dark blue) to a small one (in yellow). These
manifolds are identified as singularities in the LD plots, as
is discussed later in more detail in Sec. IV. Notice also the
existence of a region where the LDs are smooth functions,
where they remain almost constant; this region is associated
with the stability island that surrounds the stable PO, marked
as a blue triangle. Note in this respect that LDs can also be
used to characterize invariant tori [52] and the repeller in open
systems [53]. The structure of the LDs in the whole phase
space at these energies is shown in Fig. 14 in Appendix A.
Due to the complexity of the geometrical objects in Fig. 3,
we consider in the next section the results yielded by two sim-
plified, yet equivalent, models. Both models are constructed
using Morse potentials. The first one is that previously
reported in Sec. II B; it has 2 dof and reproduces the character-
istics of Eq. (1) in the vicinity of the SNB with great precision.
The second one has only 1 dof and was originally introduced
in Ref. [31]. This reduced dimensional model is still able to

qualitatively reproduce the phase-space structures associated
with Eq. (1) but not the heteroclinic intersections that occur
when the invariant manifolds associated with different POs
intersect.

IV. RESULTS AND DISCUSSION

In this section we present our results and the corresponding
discussion. This section is divided in three parts. First, we
discuss in Sec. IV A the influence of the integration time on
the LDs, showing that the invariant manifolds associated with
a particular PO require a computation time large enough com-
pared to the inverse of its characteristic exponents. Second,
as an intermediate step towards the 1-dof equivalent model,
we demonstrate the excellent performance of the equivalent
adiabatic PES given by Eq. (2). Third, we conclude this sec-
tion by studying the reduced dimensional model based on the
adiabatic approximation, which is, nevertheless, capable of
reproducing the main structures that determine the dynamics
of the molecule.

A. Influence of the integration time

Lagrangian descriptors are able to unravel invariant mani-
folds in phase space only if the integration time 7 appearing
in Eq. (7) is sufficiently large to account for their particular
hyperbolic behavior.

The exponential sensitivity of an initial condition found
in the neighborhood of a given unstable PO becomes mani-
fest on a characteristic timescale given by the inverse of the
stability exponents of its corresponding invariant manifolds.
For systems with 2 dof, there are two of such exponents, A,
each one associated with the stable and the unstable manifold,
respectively; the associated eigenvalues of the monodromy
matrix are given by y;, = e*+7, where T is the period and, as
Ay = —As 2 0, y5¥, = 1. In general, a neighboring trajectory
will move apart from the reference PO at a rate given by ~e*
in the direction of the unstable manifold. Conversely, it will
approximate the PO in the direction of the stable manifold
at a rate given by ~e™' (or separate from it at the same
rate when evolving backwards in time). Consequently, the
particular character of the manifolds is expected to show up
only for |7| > |A;; .

In this work, we are mostly interested in the invariant man-
ifolds associated with the unstable (left brown) TS-PO and
(right red) SN,-PO presented in Fig. 1, which are responsible
for the formation of barriers that obstruct isomerization. These
two POs have different stability exponents, as can be seen
in Fig. 4, where the inverse of their unstable exponent is
shown. Notice that in both cases, A, I reduces with the energy,
though in the case of the SN,-PO this happens in a much more
dramatic way, especially at small energies. Actually, )‘S_I\II.,—Po,u
diverges at E = Egn, = 3440.6 cm™!, since at the bifurcation
this unstable PO collapses with the (blue) stable PO, rendering
the (purple) marginally stable PO, whose monodromy matrix
has two eigenvalues equal to 1, so its characteristic exponents
must cancel (and then A, | — 00).

Figures 5 and 6 show the value of the LDs as defined
in Eq. (7) for different characteristic times 7 = CA;I as a
function of the stability exponent of the TS-PO and the
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FIG. 4. Inverse of the unstable stability exponent as a function
of the energy. The top red (bottom brown) curve corresponds to the
unstable periodic orbit (transition state trajectory) shown with the
same coloring in Fig. 1.

SN,-PO, respectively. As in Fig. 3, dark blue (yellow) col-
oring indicates a large (small) value in the LDs. Note that
for the used energy of E = 4000 cm ™' the stability exponent
for the TS-PO is almost two times larger than that of the
SN,-PO. Consequently, the integration times chosen in Fig. 5
are approximately half of those used in Fig. 6. This is the
reason why Fig. 6 has a more detailed structure than Fig. 5.

When the integration time is small [by taking, for example,
T = A;l, as done in Figs. 5(a) and 6(a)], the LD plots show up
as a blurry picture. Nonetheless, the results for Fig. 6(a) start
to unveil the structure around the TS-PO, contrary to what
happens in Fig. 5(a), where the integration time is still too
small. Then, larger integration times are required to allow the
identification of these invariant manifolds. Notice in partic-
ular the situation shown in Fig. 5(b), where 7 =5 k;SI—PO,u‘
There, the manifolds emanating from the TS-PO are clearly
visible, but not those associated with the SN,-PO, because
the characteristic exponent for this PO is smaller than for the
previous one, and then longer times are required to study its
behavior. The stability island that lies close to this trajectory
in nevertheless visible. The manifolds for the SN,;-PO can be
seen for a larger integration time such as T =5 )‘S_I\II.,—PO,u as
inferred by inspection of Fig. 6(b).

To conclude, we show in Figs. 5(c) and 6(c) the results for
an integration time that is T = 10 4, !. In both cases, but espe-
cially in the second one, a very detailed picture of the chaotic
region of phase space is obtained, where the complex structure
of the heteroclinic tangle becomes visible. Thus, in the rest
of the article integration times equal to T = 2 x 10* a.u. are
used, a value that is slightly smaller than that considered in
Fig. 6(c). Similar results are obtained for other comparable
integration times as long as they are large enough compared
to A, !. Let us conclude by pointing out that this criterion is not
applicable to marginally stable POs (as it happens for the SN;-
PO at E = Egy,), since then A, ; = 0, and, as a consequence,
Ays = Fo0.

B. Equivalent model with 2 degrees of freedom

In this section we discuss the excellent performance of the
alternative PES given by Eq. (2). Like the original ab initio

Py (a.u.)

0.2 0.4 0.6 0.8
w (m rad)

FIG. 5. Lagrangian descriptors as defined in Eq. (7) computed
from trajectories of LiCN for E = 4000 cm™!, p = 0.4, and 7 =
cAl, }‘”;SI-PO,u =~ 1163 a.u. being the inverse of the stability exponent
of the TS trajectory shown in brown in Fig. 1, and C =1 (a), 5 (b),
and 10 (c), respectively.

PES, the new one has 2 dof so the system dynamics takes
place in a four-dimensional phase space. This study is con-
ducted as a necessary intermediate step in order to to develop
the reduced dimensional model reported in Sec. IV C.

Figure 7 shows the value of the LDs in the vicinity of
the SN bifurcation for the same set of parameters as those
previously used in Fig. 3 but modeling the PES with Eq. (2).
As can be seen, the structure that is observed using any
of the two PESs is similar, both below [(a) panels] and
above [(b) panels] the bifurcation energy Esy,. Notice that
the results shown in Figs. 3 and 7 have been obtained with
Hamiltonian (1), which has a moment of inertia associated
with the angular coordinate, Zy = [1/(1;R?) + 1/(,u2r§q)]‘1,
which is R dependent. As a further simplification, one can
take this moment of inertia as constant by setting it, e.g.,
equal to its value at the top of the largest energetic barrier,
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Py (a.u.)

0.2 04 06 0.8
w (mrad)

FIG. 6. Same as Fig. 5 for the SN, trajectory shown in red in
Fig. 1, whose stability exponent has an inverse equal to )”S_I\IIH—PO,u ~
2170 a.u. at the energy of E = 4000 cm ™.

Tsp = {1/ Ryppsp)] + 1/ (uar2)} ™ 2 4 x 10* amu. As
shown in Fig. 8(a), the structure of the phase space is almost
equal to the structures already presented in Figs. 3(a) and 7(a),
while above the bifurcation energy only minor differences
are visible, as inferred by comparison of Figs. 3(b), 7(b),
and 8(b).

The agreement between the results for the ab initio PES
and those associated with the Morse-based PES allows us to
make a further simplification in order to define a model with
only 1 dof, as discussed in the next section.

C. Equivalent model with 1 degree of freedom

All POs shown in Fig. 1 correspond to almost pure vibra-
tional stretching states, where the distance between the Li
atom and the CN fragment changes periodically, while the
angle ¥ remains almost constant. In this situation an adia-
batic separation between the two modes can be carried out
with good approximation, and then we neglect the stretching

Py (a.u.)

0.6 0.7
w (rrrad)

FIG. 7. Same as Fig. 3 for the equivalent two-dimensional poten-
tial energy surface constructed using the adiabatic Morse potential.
In both cases, the exact moment of inertia Ty = [1/(u,R?) +
1/(uarg)1™" is used.

Py (a.u.)

0.6 0.7
w (r rad)

FIG. 8. Same as Fig. 7 for a constant moment of inertia, Zgp =
{(1/[p1 Ry (Dsp)] + 1/(parZ )} = 3.94 x 10* amu.
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FIG. 9. Effective potential with 1 dof along the angular co-
ordinate for the LiCN molecule. The bottom dashed green line
corresponds to the energy profile along the minimum energy path,
Vmep (¥ ), of the potential energy surface shown in Fig. 1. The re-
maining curves are the adiabatic potentials given by Eq. (9) for the
ng values shown on the right. The positions of the potential wells’
minima, local minima, and local maxima have been highlighted with
squares, circles, and crosses, respectively.

motion. Accordingly, Hamiltonian (1) can be substituted by
the following 1-dof expression

7

Hi = 7, + Verr(¥), ®)
where (Py, {) are now the (two-dimensional) phase-space
coordinates; Z, is the moment of inertia associated with the
coordinate v, which will be taken equal to its value at the
saddle point located at the energy barrier top, i.e., Iy, = Isp;
and Ve is an effective potential for . The accuracy of this
model has been also assessed in previous works [49,50,54]. In
this section, we demonstrate in detail its ability to adequately
reproduce the invariant manifolds associated with the TS-PO
and the SN,,-PO. The section is divided in three parts. First, we
introduce the potential energy considered in this case, which
depends solely on the angle 1. Second, Sec. IV C 2 is devoted
to the analysis of the existing manifolds below the bifurcation
energy Esn,, where the SN,-PO appears. Third, we conclude
in Sec. IV C 3 by discussing the situation where the energy is
larger than Egy;, .

1. Potential energy

The simplest approximation for Vg in Eq. (8) is simply
given by the potential energy along the MEP, Vyigp(Y/ ), shown
as a dashed green line in Fig. 1. This function is shown in
the bottom dashed green line of Fig. 9. As can be seen, it
reproduces qualitatively the same characteristics of the 2-dof
PES V,i. (R, ¥), namely, two minima at ¥ =0 and 7 rad
separated by a single maximum located at the barrier top
Y = 0.297 rad.

The model described by Eq. (8) is not able to account for
the emergence of the stable region shown in Fig. 3(b) for
Vert(¥) = Vmep(¥) (see discussion in Sec. IV C2). As dis-
cussed in Ref. [31], this stabilization can be explained using
an effective potential that is valid when the motion in the R
radius is much faster than that in the 9, i.e., v, angle, just like
in the stretching POs visible in the rightmost part of Fig. 1.

7 150 4 : X
: v .
50004 < sof v
T . X
g 3 é‘l 5 6
. i
> o)
4000
A3
E T T T T T T T
0.8 4
_ v
| B o084
5 |% ’
e 0-77 0.04{4A
E B
3> ] ¥ X
X X
X
0.6
Q
1 b) O o
T T T T T T Q
3 4 5 6
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FIG. 10. Characteristic parameters of the effective potential (9)
shown in Fig. 9. (a) The top crosses and empty circles show, respec-
tively, the potential energy at the local maximum (saddle point in
phase space) and at the local minimum (center) of the dynamical
barrier in the LICN molecule as a function of the vibrational number
ng. The inset shows the height of the energetic barrier that is formed
as the difference of the results of the main panel. (b) Position of the
local maximum (crosses) and of the local minimum (empty circles)
for the dynamical barrier. The inset shows the distance between the
previous points.

Then, one can quantize the potential Vequiv(R, ¥) (2) for each
value of the angle to define a new 1-dof potential energy as

1
Vett (W) = Vmep(¥) + ﬁQ(l/f)(nR + 5)

QW) 1\*
oy (" 3) ®

where ng is the corresponding vibrational excitation num-
ber, and D = D(y) and Q2 = Q(¢) are the Morse parameters
given by Eqs. (4) and (5), which depend on the angle .

The effective potential (9) is shown in Fig. 9 for ng = 0-6.
The potentials for ng = 0, 1, and 2 (dashed gray lines) are
very similar to that for the MEP. Consequently, the phase
space presents qualitatively the same structure, as can be
seen in Figs. 15-17 in Appendix B. Notice, however, that
the potential is flatter for ng = 2 than for ng = 0 around
¥ ~ 0.6 rad. Furthermore, for ng > 2 the potential starts to
show a minimum around that point, which is precisely respon-
sible of the stabilization process previously described in the
discussion of Fig. 1.

Figure 10 shows some characteristic parameters of the
effective potential (9). First, Fig. 10(a) shows the value of
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the potential at the local maximum (saddle point) and at the
local minimum (center) for the dynamical barrier. As can be
seen, the potential energy increases with ng for all the previous
points. However, the value of the potential at the saddle point
increases faster than at the center, and, as a consequence, the
energetic barrier height increases, as shown in the inset. For
example, the energetic barrier is only 14 cm~! in height for
ng = 3, while it equals 187 cm~! for ng = 6. Second, we
show in Fig. 10(b) the positions of the critical points of the
previous barrier. As can be seen in the corresponding inset, the
distance between the saddle points and the centers increases
with ng and then so does the width of the stability regions that
show up.

To conclude, let us indicate that an alternative adiabatic
approximation was obtained by Light and Baci¢ in Ref. [55],
but was meant for a different purpose. There, the authors
were interested in the development of an optimal basis set
for the computation of the system eigenfunctions. No differ-
ences should be expected at the quantum level (eigenenergies,
eigenfunctions, Husimi distributions, ...) when comparing
their results with those derived from our adiabatic PES with 2
dof. Nevetherless, their reduced dimensional potential energy
functions with 1 dof do not present any relative minimum (see
Fig. 3 of Ref. [55]) able to reproduce the SN bifurcation that
is observed for the system with 2 dof, which has a strong clas-
sical imprint and a quantum imprint on the system [31-33].

2. Phase-space geometry below the bifurcation energy Egy,

Figure 11(a) shows the LDs obtained with Eq. (8) on the
phase space for the model. As can be seen, the LDs define a
smooth function in most of the phase space. However, there is
an “x” structure at the maximum of the Vg potential function
(¥ = 0.297 rad). This structure is formed by the invariant
manifolds or separatrices emanating from the saddle fixed
point found at the top of the barrier, and it becomes visible
because of the singularities that the LDs present along the
manifolds, which are responsible for abrupt changes in the LD
plots. This fact is more clearly illustrated in Fig. 11(b), where
the LDs along the three horizontal lines, i.e., constant Py,
indicated in Fig. 11(a) are plotted. There, conspicuous singu-
larities are clearly observed when the separatrices emanating
from the saddle point are crossed. Indeed, for P, = 30 a.u.
(horizontal line in blue) there is only one such singularity,
while the brown and green horizontal lines, corresponding to
Py, =5 and 10 a.u., respectively, show two of these singu-
larities. This result is very interesting since it allows one to
numerically reconstruct using LDs the separatrices and locate
the position of the parent fixed point (at their crossing), as
it has been done in Fig. 11(c). Similarly to what happens
in the standard pendulum [6], these invariant curves separate
the regions of librations and rotations, which in our model
correspond to vibrations of the Li-CN isomer (left yellow
region), vibrations of the Li-NC isomer (right green region),
isomerizing Li-CN — Li-NC trajectories (top purple region),
and isomerizing Li-NC <« Li-CN trajectories (bottom cyan
region). Some examples of trajectories associated with the
previous motions have been also included in black dashed
lines in Fig. 11(c). Let us finally remark on the interesting
results shown in the range v € [0.67, 0.7 ] rad in Fig. 11(b),

40

204

Py (a.u.)
W

=204

—40 1
4000

Py (a.u.)

FIG. 11. Phase space for the 1-dof model of LiCN (8) with
Verr(¥) = Vmep(9). (a) Lagrangian descriptor as defined in Eq. (7).
(b) The sections of constant P, = 5, 10, and 30 a.u. of the Lagrangian
descriptors shown in panel (a) showing singularities at the positions
of invariant manifolds. (c) The stable (blue) and unstable (red) invari-
ant manifolds associated with the saddle fixed point of the potential
[(¥, Py) = (0.297 rad, O a.u.)]. They partition the phase space in
four characteristic regions (yellow, green, purple, and cyan), where
the orbits (in dashed black lines) have librational (embedded in the
yellow and green regions) or rotational (contained in the purple and
cyan areas) motion.

where the green and red LD curves show the least abrupt
minima. This region corresponds to that where the dynamical
barrier is formed due to the approximate inflection point in the
MEP, as discussed at the end of Sec. IV C3.

3. Phase-space geometry above the bifurcation energy Egn,

Figure 12(a) shows the value of the LDs for the effective
potential (9) with ng = 3, which is the first value of ng where
a minimum is observed. As can be seen, the LDs are in this
case also able to identify the invariant manifolds associated
with the saddle point, which do not change significantly with
respect to those shown in Fig. 11(a), which are associated
with an effective potential equal to that along the MEP, as
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FIG. 12. Same as Fig. 11 for the adiabatic potential (9) with ng =
3. Here, the existence of additional manifolds, associated with the
saddle point of the secondary barrier that appears out of the blue in
a saddle-node bifurcation, further partitions the phase space in two
additional regions.

can be inferred by visual inspection of the red (unstable in-
variant manifold) and blue (stable invariant manifold) lines in
Fig. 12(c) [cf. Fig. 11(c)]. Also, here these separatrices show
up in the LD plot as singularities, as it becomes clearly visible
in Fig. 12(b), where the values of the LDs along the three
sectioning horizontal lines marked in Fig. 12(a) are presented.
Notice however, that in this case there are additional singu-
larities, which show the existence of new invariant manifolds.
These manifolds, also shown in Fig. 12(c), are associated with
the saddle point that appears in the secondary barrier localized
at ¢ ~ 0.61w rad. Notice that these manifolds, contrary to
those associated with the saddle point discussed in the previ-
ous section, have a different structure: the left branch of the
unstable manifold coincides with the left branch of the stable
one: they represent a homoclinic orbit. This orbit encloses a
stability region, which the trajectories inside it cannot escape,
rendering a vibrational motion around the local minimum
(¥ >~ 0.57x rad). In this case, however, the stability region
is so tiny that the Li atom would describe such a small motion

40

Py (a.u.)

—40 4

6000

M (a.u.)

4000

w (rrad)

FIG. 13. Same as Fig. 12 but for ng = 6.

that it can be regarded as if it were fixed. The right branches
of the stable and the unstable manifolds emanating from this
second saddle point also partition the phase space, but in this
case only the region that is associated with librations around
the CN-Li isomer. We have also shown in Fig. 12(c) five
characteristic trajectories. Similar comments about Fig. 11(c)
apply here.

The width of the new stability region shown in Fig. 12
increases with the integer ng. This fact can be seen in Fig. 13,
where a similar plot for ng = 6 is shown. The phase-space
structure is essentially the same, but with a larger stable re-
gion. Apart from the POs similar to those already presented
in Figs. 11(c) and 12(c), we also show in Fig. 13(c) a PO in
the stable region, which has the topological shape of a circle.
It represents a very particular situation where the Li atom
describes a rotation around the C-N fragment at the local min-
imum (0.537 rad) that appears through a dynamical process.
The evolution of the phase space for ng =4, 5, 7, 8, and 9
can be found in Figs. 18-22 of Appendix B, respectively. As
already mentioned, the area of the stable region increases with
the integer ng. This fact agrees with the previous discussion
on Fig. 10, where it was shown that the height of the local
barrier and the distance between the local minimum and the
maximum that determines the basin size increase with ng.
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V. SUMMARY AND OUTLOOK

In this paper, we have applied the Lagrangian descriptors
to identify the invariant manifolds that act as separatrices for
the Li-CN = Li-NC isomerizing reaction, which is a realistic
molecular system. We have shown how this tool adequately
identifies the previous manifolds as singularities when com-
puted for sufficiently long integration times. Likewise, we
have demonstrated that, in general, the adequate computation
time must be large enough compared to the inverse of the char-
acteristic stability exponent of the PO of interest. Nonetheless,
the previous criterion fails for the case of bifurcating POs,
where the characteristic exponents cancel, and then their in-
verses diverge. Moreover, two simplified models have been
discussed for a simplified description of the results obtained
with the original ab initio PES.

First, we have analyzed the performance of an alternative
PES formed by Morse oscillators and also having 2 dof. This
equivalent model is also able to reproduce the same structures
that appear in one of the saddle-node bifurcations of the sys-
tem, even when a constant moment of inertia for the angular
coordinate is considered.

As an additional simplification, we considered a 1-dof
model. To start with, we consider the potential energy in this
reduced dimensional model equal to that along the minimum
energy path. Such a model is able to reproduce the mani-
folds that emerge from the top of the energetic barrier of the
system, but not those that show up in another saddle-node
bifurcation.

As the POs of interest are those with a much faster radial
motion than angular motion, an adiabatic approach can be
applied to the 2-dof Morse potential, rendering a new energy
surface for each quantized level. This 1-dof model is still
able to successfully reproduce the main characteristics of the
invariant manifolds that emerge from the top of the energetic
barrier, as well as those responsible for the appearance of
the dynamical barrier for energies E > Egn, = 3440.6 cm™.
The shape of these last manifolds is strongly influenced by
the number of excitations in the stretching motion associated
with the radial coordinate ng. Still, the Lagrangian descriptors
are also equally able to reproduce them. In this case, the
identification of the singularities in the plots of the Lagrangian
descriptors has enabled us to unveil the homoclinic intersec-
tion that is responsible for the stable island that is observed
in the system with 2 dof. Furthermore, we have observed an
imprint of the invariant manifolds at smaller energies E <
Egn,, which are responsible for the appearance of a local
minimum in the Lagrangian descriptors plots. Similar results
have been also previously reported in Ref. [56], where the
effect of the barrier height of a (unbounded) cubic potential
is studied. Note, nonetheless, that in our molecular system the
height of the energetic barrier cannot be arbitrarily tuned as
its value strongly depends on the vibrational energy and, as a
consequence, is set by the adiabatic separation of the different
degrees of freedom.

To conclude, let us remark that the reduced dimensional
models with 1 dof are not able to reproduce all the homoclinic
and heteroclinic connections that the system has in its full
dimensionality. This limitation is precisely responsible for the
easy identification of the manifolds of interest.
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APPENDIX A: PHASE SPACE FOR THE
TWO-DIMENSIONAL SYSTEM

In this Appendix, we discuss the Lagrangian descriptors
(LDs) that are shown in Fig. 3 in an extended region of the
characteristic Poincaré surface of section for the Li-CN =
CN-Li isomerizing reaction. For this purpose, we show in

Py (a.u.)

-15

-30

T

0.2 0.4 0.6 0.8
w (r rad)

FIG. 14. Lagrangian descriptors given by Eq. (7) with p =
0.4 and T =2 x 10* a.u. for (a) E = Eps = 3440.6 cm™! and for
(b) E = 4000 cm™!. The purple circle, blue triangle, and red square
show the position of the parabolic, elliptic, and hyperbolic points
associated with the three periodic orbits related to the saddle-node
bifurcation under study. The brown diamond shows the position of
the unstable periodic orbit that is localized at the energetic barrier
top and defines a recrossing-free dividing surface [23,57].
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Py (a.u.)
Py (a.u.)

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
w (m rad) w (mrad)
FIG. 15. Phase space for the LiICN molecular system described FIG. 17. Same as Fig. 15 but for ng = 2.

by the 1-dof model given by Eq. (3) for an effective adiabatic poten-
tial with ng = 0. (a) Lagrangian descriptors computed for p = 0.4
and 7 = 2 x 10* a.u. (b) The stable (unstable) invariant manifolds
that emanate from the saddle point (Y ~ 0.297 rad), which are
shown in blue (red), partition the phase space in the four colored
regions.

Py (a.u.)

Py (a.u.)

0.2 0.4 0.6 0.8
w (r rad)
0.2 0.4 0.6 0.8
w (r rad) FIG. 18. Same as Fig. 15 but for nz = 4. Due to the saddle-node
bifurcation, additional manifolds emerge from the saddle point found
FIG. 16. Same as Fig. 15 but for ng = 1. at ¢ >~ 0.637 rad, which further partition the phase space.

044210-11



F. REVUELTA, R. M. BENITO, AND F. BORONDO

PHYSICAL REVIEW E 104, 044210 (2021)

0.2 0.4
w (r rad)

FIG. 19. Same as Fig. 18 but for ng = 5.

Fig. 14 the LDs in the whole Poincaré surface of section
accessible at the corresponding energy. As can be seen, the
phase space shown in Fig. 14(a), which is associated with
the bifurcating energy Epir = 3440.6 cm™!, is divided into
two disconnected regions. Consequently, no isomerization can
take place, as the Li atom does not have enough energy to
overcome the energetic barrier. Notice also the different shape
of the LDs in the neighborhood of the parabolic point (purple
circle), where the saddle-node bifurcation (SNB) discussed in
detail in the main text takes place. When the SNB happens, a
stability island appears which opposes isomerization.

Contrarily, when the energy is larger than that of the main
energetic barrier, the phase space is formed by a single region,
which paves the way for isomerization; this is the case for £ =
4000 cm~!, as shown in Fig. 14(b). Notice that the structures
that were shown in Fig. 3 of the main text, which emerge due
to the SNB, cover quite densely the phase space of the system,
creating dozens of homoclinic and heteroclinic connections
while folding.

Let us remark on the presence of two important sets that
are visible in Fig. 14(b). On the one hand, the structures
emanating from the SNB can be clearly identified, namely,
the stable island (where the elliptic point shown as a blue tri-
angle is embedded) and the invariant manifolds that surround
it (which emerge from the hyperbolic point shown as a red
square) can be clearly identified. Consequently, the influence
of this structure on the system dynamics cannot be neglected.
On the other hand, The invariant manifolds associated with the
saddle point that lies at the top of the potential energy barrier
(brown diamond), whose evolution is described in more detail
in the main text, can be also clearly identified. Therefore, the

model proposed with only 1 dof is still capable of reproducing
the geometry that surrounds the two barriers that oppose the
system reactivity: the barrier top and the SNB.

APPENDIX B: PHASE SPACE FOR THE
ONE-DIMENSIONAL SYSTEM DESCRIBED
WITH THE EFFECTIVE POTENTIAL

In this Appendix, we report on the phase-space geometry
associated with the 1-dof model for the LiCN molecule with
the adiabatic potential given by Eq. (2) for those vibrational
numbers ng that have been omitted in the main text, namely,
ng=0,1,2,4,5,7, 8, and 9. First, we present in Sec. B 1
the phase-space structure for the single-barrier system, which
shows up when ng =0, 1, and 2. Second, Sec. B2 is
devoted to multiwell situations, a situation that takes place
when ng > 3.

1. Adiabatic potential with a single barrier

Figures 15(a)-17(a) show the value of the LDs for ng = 0,
1, and 2. As can be seen, the structure is very similar to that
already discussed in the Fig. 11. As in that case, the invariant
manifolds show up as singularities in the system. These struc-
tures have been shown in red (unstable manifold) and blue
(stable manifold) continuous lines separately in Figs. 15(b)—
17(b), along with some characteristic periodic orbits (dashed
black lines).

T
0.6 0.8

0.2 0.4
w (rrad)

FIG. 20. Same as Fig. 18 but for ng = 7. The invariant manifolds
associated with the spurious saddle point that is found at ¢ = 7 rad,
and were absent for ng < 6, have been colored as dashed blue and
red lines.
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FIG. 21. Same as Fig. 20 but for ng = 8.

2. Adiabatic potential with more than one energetic barrier

Figures 18(a) and 19(a) show the LDs for ng = 4 and 5,
respectively. Contrary to the previous plots (cf. Figs. 15-17),
now two families of invariant manifolds are observed. As
already discussed in the main text, the family of invariant
manifolds embedded in the green region is associated with the
saddle point that emerges due to the SNB, which introduces a
secondary energetic barrier. Notice that the area surrounded
by the homoclinic connection increases with ng, as can be
inferred by comparison with Figs. 12 and 13, where the results
for ng = 3 and 6 are respectively shown.

Figure 20(a) shows the LDs for ng = 7. As expected, the
stability island has a larger area than in the previous cases
discussed. However, in this case an additional structure shows

(a)

Py (a.u.)

FIG. 22. Same as Fig. 20 but for ng = 9.

up close to the well ¥ = 7 rad: the well minimum moves
from ¥ = 7 rad to ¥ >~ 0.907 rad, with an additional tiny
barrier appearing at 9 = 7 rad, where a third saddle point can
be found. As a consequence, an additional barrier emerges,
whose height increases with ng. The area occupied by the new
stability region also increases with ng, as can be inferred from
comparison with Figs. 21 and 22, where the results for ng = 8
and 9 are shown. Notice in Fig. 20(b), where the invariant
manifolds of Fig. 20(a) are shown, that the second stability
region is also surrounded by a homoclinic orbit. Contrary to
the stability region discussed in connection to the 2-dof sys-
tem, the one that appears for ng > 7 does not have an imprint
on that system. As a consequence, it is produced solely by the
adiabatic approximation, thus demonstrating the limitations of
this approach.
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