
PHYSICAL REVIEW E 104, 044208 (2021)

Higher-order dispersion and nonlinear effects of optical fibers under septic
self-steepening and self-frequency shift
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We investigate the modulational instability (MI) of a continuous wave (cw) under the combined effects of
higher-order dispersions, self steepening and self-frequency shift, cubic, quintic, and septic nonlinearities. Using
Maxwell’s theory, an extended nonlinear Schrödinger equation is derived. The linear stability analysis of the cw
solution is employed to extract an expression for the MI gain, and we point out its sensitivity to both higher-order
dispersions and nonlinear terms. In particular, we insist on the balance between the sixth-order dispersion and
nonlinearity, septic self-steepening, and the septic self-frequency shift terms. Additionally, the linear stability
analysis of cw is confronted with the stability conditions for solitons. Different combinations of the dispersion
parameters are proposed that support the stability of solitons and the occurrence of MI. This is confronted
with full numerical simulations where the input cw gives rise to a broad range of behaviors, mainly related to
nonlinear patterns formation. Interestingly, under the activation of MI, a suitable balance between the sixth-order
dispersion and the septic self-frequency shift term is found to highly influence the propagation direction of the
optical wave patterns.
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I. INTRODUCTION

The study of exact traveling wave solutions plays a vi-
tal role to understand the nonlinear physical phenomena of
nonlinear evolution equations, which exist in many areas of
science, such as plasma physics, fluid dynamics, nonlinear
optics, elastic media, optical fibers, hydrodynamics, biology,
and many more [1–5]. Optical solitons have been an active
topic of research during the past decades because of their
potential applications in long-distance communication [6,7].
The pioneering works of Hasegawa and Tappert [8,9], who
predicted solitons theoretically, and Mollenauer et al. [10,11],
who observed them experimentally, made solitons a practical
tool for data transmission. There has been much interest in
recent years in the supercontinuum generation in optical fibers
because of their high potential for applications in the fields of
optical communications [12], generation of ultrashort pulses
[13] in highly nonlinear dispersion-shifted fibers [14] using
picosecond or femtosecond laser pulses with high peak power.
It is well known that the standard nonlinear Schrödinger
(NLS) equation can be used to describe the propagation of a
picosecond optical pulse. However, higher-order effects, such
as the third-order dispersion (TOD), fourth-order dispersion
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(FOD), fifth-order dispersion (FFOD), sixth-order dispersion
(SOD), which should be considered when the pulse width is
below 10 fs [15–17], higher-order nonlinearities (should not
be neglected when the optical field frequency approaches a
resonant frequency of the optical fiber materials [17,18]), self-
steepening (SS), and self-frequency shift (SFS) induced by
Raman stimulated scattering are indispensable for describing
the propagation of ultrashort pulses [19–22]. In the picosec-
ond systems, the NLS equation is the central governing pulse
envelope equation in which the self-phase modulation and the
group-velocity dispersion (GVD) effects are just taken into
description [23]. It is well known that as the intensity of the in-
cident light field becomes stronger, non-Kerr nonlinear effects
become important [18,24], and the NLS family of equations
should describe the dynamics of the pulses with higher-order
nonlinear terms [25–31] from which can emerge a new class
of soliton solutions. One of the key issues of soliton theory
is the universal modulational instability (MI) phenomenon,
which leads to the emergence of localized coherent nonlinear
structures and the formation of trains of soliton pulses.

MI is a fundamental and ubiquitous nonlinear phenomenon
that pertains to a large variety of subfields of physics, such
as fluid dynamics [2], plasma physics [32], atomic physics
(atomic Bose-Einstein condensates), and nonlinear optics
[33]. MI implies that as a result of the combined action
of the group velocity dispersion (GVD) or the second-order
chromatic dispersion and self-phase modulation (SPM) or the
self-focusing Kerr nonlinearity of the medium, amplitude, or
phase perturbations added to a continuous or quasicontinuous
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wave (cw) exhibit exponential growth. This is accompanied
by sideband evolution with a frequency separation from the
carrier, proportional to its power. In the anomalous dispersion
regime, that is, when we use optical fiber with negative GVD,
the dominant unstable MI frequencies can be shown to be
proportional to the cw amplitude and inversely proportional
to the square root of the dispersion [15,17]. Thus, the mod-
ulation that grows on the cw field increases frequency as
the dispersion goes to zero. Even in the normal dispersion
regime, MI can occur due to third- and fourth-order dispersion
corrections [34]. In addition, various higher-order linear and
nonlinear effects, such as higher dispersions, self-steepening,
and time-delayed Raman effects have also been considered,
and these effects are found to influence MI in optical fibers
strongly [35,36]. In optics, MI has constituted a wide field
of intense theoretical and experimental research including
ultrafast pulse generation [37], supercontinuum generation
[38,39], four-wave mixing (FWM) [40,41], Bragg gratings
[42], parametric oscillators [43,44], and optical fiber systems
[45–48]. In the meantime, many research activities have been
carried to understand and characterize optical soliton under:
(i) strong nonlinearity versus weak dispersion [49], (ii) strong
dispersion versus weak nonlinearity [34,50], and (iii) a subtle
balance between dispersion and nonlinearity with the main
objective being the generation of solitary waves. Our pa-
per relies on the third stream. We hope that a sixth-order
linear dispersion and sixth-order nonlinear dispersions can
suitably balance septic nonlinearity and lead to the formation
of nonlinear structures. In our contribution, we start with
Maxwell’s equations describing the response of the nonlin-
ear medium to electromagnetic waves. Then we report on
the derivation of the one plus one dimensional [(1 + 1)D]
cubic-quintic-septic NLS equation with third-, fourth-, fifth-,
and sixth-order dispersions. Furthermore, we examine theo-
retically and numerically MI of few-cycle pulses using linear
stability analysis of linearized equations for small perturba-
tions and using direct numerical simulation to support our
analytical predictions.

The rest of the paper is organized as follows. In Sec. II,
we derive a (1 + 1)D cubic-quintic-septic NLS equation
describing the dynamics of ultrashort pulses in nonlinear op-
tical fibers under the combined effects of dispersion, loss,
gain, cubic, and cubic-quintic-septic nonlinearities, and cubic-
quintic-septic self-steepening and self-frequency shift terms,
respectively. In Sec. III, the linear stability analysis of the
MI is addressed, and instability zones, as well as the ana-
lytic expressions of the gain of MI, are obtained. Based on
analytical findings, numerical simulations are carried out on
the (1 + 1)D cubic-quintic-septic NLS equation using the
split-step Fourier method. Particular attention is paid to the
combined effects of the sixth-order dispersion cubic, quintic,
septic self-steepening, and self-frequency shift parameters.
Some concluding remarks are given in Sec. V.

II. DERIVATION OF THE HIGHER-ORDER NONLINEAR
SCHRÖDINGER EQUATION

We consider the cubic-quintic-septic nonlinearities of
nonlinear medium, which arise from the expansion of the
refractive index in the power series of intensity I of the light

pulse,

n f (ω) = n0 + n2I + n4I2 + n6I3. (1)

Here, n0 is the linear refractive index coefficient, and n2, n4,
and n6 are the nonlinear refractive index coefficients, which
originate from third-, fifth-, and seventh-order susceptibility,
respectively, I = |E |2, E being the electric field vector. The
complex dielectric constant, related to optical signal propaga-
tion through an optical fiber is as follows:

ε(ω) = n2
f (ω) = n2

0 + 2n(ω)�n, (2)

with �n being given by

�n = n2|E |2 +
[

n2
0

2
+ n4

]
|E |4 +

[
n6 + n2n4

n0

]
|E |6. (3)

Following Agrawal [17], the propagation equation for
ψ̃ (z, ω − ω0), which is the Fourier transform of ψ (z, t ), is
written in the form

∂ψ̃

∂z
= i[β(ω) + �β − β0]ψ̃, (4)

where β(ω) is Taylor’s expansion in series, up to sixth-order,
about the carrier frequency and the quantity �β is defined as

�β = k0

∫ −∞

∞

∫ −∞

∞
�n| f (x, y)|2dx dy∫ −∞

∞

∫ −∞

∞
| f (x, y)|2dx dy

, (5)

with k0 as the wave number and f (x, y) being the modal
distribution of the fundamental mode of the optical fiber. We
should note that nonlinearities relative to the self-steepening
and self-frequency shift are modeled through the propagation
constant. Taking the inverse Fourier transform of Eq. (4), we
obtain the following envelope equation for ultrashort pulses in
optical fiber:

iψz +
6∑

m=2

(i)m∂m
t ψ +

(
3∑

m=1

γm|ψ |2m

)
ψ

+ i
∑

m=1,3,5

αm(|ψ |m+1ψ )t

+
∑

m=2,4,6

αm(|ψ |m)tψ = 0, (6)

where ∂m
t = ∂m

∂tm . More precisely, ψ (z, t ) is the envelope am-
plitude of the electric field, t is the retarded time frame, and
z is the propagation distance originating from the transfor-
mation, T = t − z/vg = t − β1. All the coefficients are real
constants. The above equation is a higher-order NLS equation
with higher-order dispersion and cubic, quintic, and septic
non-Kerr nonlinearities. γ1, γ2, and γ3 are the cubic, quintic,
and septic nonlinearities, respectively, whereas α1, α3, and α5

are the cubic, quintic, and septic self-steepening terms, respec-
tively. The terms α2, α4, and α6 are the cubic, quintic, and
septic self-frequency shift induced by stimulated Raman scat-
tering, respectively. β2 is the GVD term, β3 is the TOD term,
β4 is the FOD, β5 is the FFOD term, and β6 is the SOD term.
The expressions of parameters in Eq. (6) are given in the Ap-
pendix. Recent advances in the fabrication of photonic-crystal
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fibers (PCFs) [51–54] have made possible the production of
small-core PCFs where strong nonlinear interactions occur
at relatively low peak powers and over short propagation
distances. The FWM theory has been developed, which goes
beyond the slowly varying envelope approximation of the
NLS equation and is based on the full wave equation, allow-
ing the rigorous study of the left-most instability band (the
first FWM peak) and the far-detuned instability peak (the
secondary FWM). In this approach, the perturbation wave
numbers are the roots of the fourth-order algebraic equation
[55] where the two extra roots can describe excitation of both
forward and backward waves. At the same time, all previous
results on FWM in fibers with nontrivial dispersion charac-
teristics resulted in a quadratic equation for the perturbation
wave numbers [17,56–59]. These two extra roots have nega-
tive imaginary parts, generating instabilities [55]. In general,
the first FWM peak, which has a direct analog in the idealized
NLS equation in the anomalous dispersion regime, corre-
sponds to a wave with a Stokes component slightly stronger
than the anti-Stokes one, and the second peak, which appears
in the model due to modified fiber dispersion, and which
does not exist in the idealized NLS, generates a stronger anti-
Stokes wave. In the meantime, a generalized NLS equation
has been derived, including self-steepening effects, whereas
the summation characterizing higher-order dispersion is taken
up to order N = 20, high enough to ensure that the dispersion
profile is adequately approximated in the frequency domain
under consideration [55]. It has been, however, pointed out
that the generalized NLS equation is often insufficient for
quantitative comparisons between experimental and theoret-
ical results since the dependence of the nonlinearity on the
detuning parameter is taken into only approximately [55].
Indeed, the existence of the second FWM peak is ensured
by positive higher-order dispersion terms greater or equal to
6, namely, the positive dispersions of orders two, four, and
six, respectively, and requires sufficiently large values of the
detuning parameter because higher-order dispersions terms
are very small. However, due to extra degrees of freedom,
PCFs allow mode propagation to be easily manipulated. They
are made of an array of microscopic air holes distributed
throughout their entire length that surrounds a pure silica
core. Therefore, nonlinear effects are enhanced due to light
concentration into a very small area between silica and air,
and their balance with higher-order dispersions can be used
to explain optical pulse communication in highly nonlinear
photonic crystal fiber, which imposes to extend the order of
nonlinear terms in the standard NLS equation beyond Kerr
nonlinearity.

In order to simplify the problem at hand, it would be
advisable to reduce the number of parameters. Therefore,
Eq. (6) can be normalized by making use of the transforma-
tions Z = z/LD for space, τ = t/T0 for time and u = ψ√

P0
N

for amplitude, which leads to the following normalized HNLS
equation:

iuZ +
6∑

m=2

(i)mkm∂m
τ u + nNL|u|2u + nNL4|u|4u

+ nNL6|u|6u + inSS(|u|2u)τ + inSS4(|u|4u)τ

+ inSS6(|u|6u)τ + nSFS(|u|2)τ u

+ nSFS4(|u|4)τ u + nSFS6(|u|6)τ u = 0, (7)

where

k2 = sgn(β2), km =
6∑

m=3

LD

LDm
, nNL = LD

LNLN2
,

nNL4 = LD

LNL4N4
, nNL6 = LD

LNL6N6
, nSS = LD

LSSN2
,

(8)

nSS4 = LD

LSS4N4
, nSS6 = LD

LSS6N6
, nSFS = LD

LSFSN2
,

nSFS4 = LD

LSFS4N4
, nSFS6 = LD

LSFS6N6
,

with LD = T 2
0

β2
, LDm = ∑6

m=3
T m

0
βm

, N2 = LD
LNL

, LNL = 1
γ1P0

,

LNL4 = 1
γ2P2

0
, LNL6 = 1

γ3P3
0
, LSS = T0

α1P0
, LSS4 = T0

α3P2
0
, LSS6 =

T0

α5P3
0
, LSFS = T0

α2P0
, LSFS4 = T0

α4P2
0
, LSFS6 = T0

α6P3
0

. The above
quantities are dimensionless parameters depending on the
typical values [60–62]: P0 = 10 W, β6 = 0.5 ps6 m−1, β5 =
0.001 23 ps5 m−1, β4 = 10 ps4 m−1, β3 = 0.009 ps3 m−1,

β2 = 50 ps2 m−1, γ1 = 1 kW−1 m−1, γ2 = 1 kW−2 m−1,

γ3 = 0.031 kW−1 m−3, α1 = −0.0247 kW−1/[(2π )mTHz],
α2 = 0.037 05 kW−1psm−1, α3 = −0.0247 kW−2/[(2π )
mTHz], α4 = −0.030 875 kW−2psm−1, α5 = 0.004 kW−3/

[(2π ) mTHz] and α6 = 0.02 kW−3 psm−1.
The advantage of deriving the above higher-order nonlinear

Schrödinger equation (HNLS) equation is that we see the
mathematical input of the aforementioned respective nonlin-
earities that most researchers do not show. The model we
have presented has a set of new parameters compared to the
previous papers [31,63–65]. Before ending, let us mention
that the self-steepening and self-frequency shift terms have
been taken into account in optical fibers whose pulse dy-
namics are well described by the complex Ginzburg-Landau
equation [46,66,67]. Our HNLS equation governs the dy-
namics of ultrashort pulses where septic self-steepening and
self-frequency shift terms come into action. The existence of
solitons in an optical fiber system described by the HNLS
equation further requires the balance among self-steepening
and self-frequency shift effects also called the derivative Kerr
nonlinear terms. The balance among the derivative quintic
non-Kerr nonlinear terms and the balance between the deriva-
tive septic non-Kerr nonlinear terms are all accounted for
in Eq. (7). It is remarked that such balance aspects are also
required for the formation of ultrashort soliton pulses [68].

III. MODULATIONAL INSTABILITY

A. Linear stability analysis and gain spectrum

The MI is studied on model Eq. (7) via the linear stability
analysis of a CW solution, which propagates inside the optical
fiber with the initial input power P0, i.e.,

u(Z, τ ) = √
P0eiφNL , (9)

where φNL = nNLP0 + nNL4P2
0 + nNL6P3

0 is the nonlinear
phase shift due to the self-phase modulation and higher-order
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nonlinear terms. The stability of solution (9) requires the
introduction of slight perturbation so that

u(Z, τ ) = [
√

P0 + a(Z, τ )]eiφNL , (10)

where a(Z, τ ) is the small perturbation with |a(Z, τ )| � √
P

being the complex field. This perturbed solution means that if
the perturbed field grows exponentially, the steady state will
become unstable. Substituting Eq. (10) in Eq. (7), and lineariz-
ing around the unperturbed solution, leads to the following
equation for the perturbed field:

iaZ − k2aττ − ik3aτττ + k4aττττ

+ ik5aτττττ − k6aττττττ + nNL[P0(a + a∗)]

+ nNL4[2P2
0 (a + a∗)] + nNL6[3P3

0 (a + a∗)]

+ inSS[2P0aτ + P0a∗
t ] + inSS4P2

0 [3aτ + 2a∗
τ ]

+ inSS6P3
0 [4aτ + 3a∗

τ ] + nSFSP0[aτ + a∗
τ ]

+ 2nSFS4P2
0 [aτ + a∗

τ ] + 3nSFS6P3
0 [aτ + a∗

τ ] = 0, (11)

where a∗ is the complex conjugate of the perturbed field.
Furthermore, solution for Eq. (11) can be adopted in the form

a(Z, τ ) = u(Z )e−iτ + v(Z )eiτ , (12)

where u(Z ) and v(Z ) are the complex perturbation fields and
 is the complex modulation frequency. Making use of the
ansatz of the perturbed field of Eq. (12) in the linearized
Eq. (11) leads to a 2 × 2 matrix of the following form for the
perturbed fields:

i
∂

∂s

(
u(Z )
v∗(Z )

)
=

(
T11 T12

T21 T22

)(
u(Z )
v∗(Z )

)
, (13)

where v∗(Z ) is the complex conjugate of the field v(Z ) with
the matrix elements being given by

T11 = −[
k2

2 + k3
3 + ka4

4 + k5
5 + k6

6 + m

+P0
(
2nSS + 3nSS4P0 + 4nSS6P2

0

− inSFS − 2inSFS4P0 − 3inSFS6P2
0

)
],

T12 = −[
m + P0

(
nSS + 2nSS4P0 + 3nSS6P2

0

− insFS − 2inSFS4P0 − 3inSFS6P2
0

)]
,

T21 = [
m − P0

(
nSS + 2nSS4P0 + 3nSS6P2

0 + insFS

+ 2inSFS4P0 + 3inSFS6P2
0

)]
,

T22 = [
k2

2 − k3
3 + ka4

4 − k5
5 + k6

6 + m

−P0
(
2nSS + 3nSS4P0 + 4nSS6P2

0

+ inSFS + 2inSFS4P0 + 3inSFS6P2
0

)]
. (14)

In order to find the MI gain, we should keep in mind that
the wave number K of the perturbation can be found as the
eigenvalue of the matrix (T11 T12

T21 T22
), through the characteristic

equation Det|T − KI| = 0 with I being a 2 × 2 identity ma-
trix. This leads to the dispersion relation

K = 1
2 [T11 + T22 +

√
(T11 − T22)2 + 4T12T21]. (15)

For MI to take place, the wave number K should get a nonzero
imaginary part that will be responsible for an exponential

growth of the perturbed amplitude. In general, the occurrence
of MI is predicted through the power gain, defined as G() =
2 Im(K ), which is obtained in this particular case in the form

G() =
√√√√c2

2 − c3
3 + c4

4 − c5
5 + c6

6

− c7
7 + c8

8 + c10
10 + c12

12
, (16)

where

c2 = (
8nNLP0 + 16nNL4P2

0 + 24nNL6P3
0

)
k2

+ 4n2
SSP2

0 + 16nSS4nSSP3
0 + 24nSSnSS6P4

+ 16n2
SS4P4

0 + 48nSS4nSS6P5
0 + 36n2

SS6P6
0

+ (8inSFSP0 + 16inSFS4P2
0 + 24inSFS6P3

0 + 4)

× (
nSSP0 + 2nSS4P2

0 + 3nSS6P3
)
,

c3 = 8ik2
(
nSFSP0 + 2nSFS4P2

0 + 3nSFS6P3
0

)
,

c4 = k4
(
8nNLP0 + 16nNL4P2

0 + 24nNL6P3
0

) + 4k2
2 ,

c5 = 8ik4
(
nSFSP0 + 2nSFS4P2

0 + 3nSFS6P3
0

)
,

c6 = k6
(
8nNLP0 + 16nNL4P2

0 + 24nNL6P3
0

) + 8k2k4,

c7 = 8ik6
(
nSFSP0 + 2nSFS4P2

0 + 3nSFS6P3
0

)
,

c8 = 4k2
4 + 8k2k6, c10 = 8k4k6, c12 = 4k2

6 . (17)

As it can be noted, the expression of the MI gain de-
pends on many physical parameters. Considering all such
parameters will make our contribution interesting but too
heavy. Therefore, a suitable choice of parameters can be made
based on previous works relative to the higher-order effect
on soliton stability and the MI process. Originally, the termi-
nology soliton was reserved for a particular set of integrable
solutions existing due to the suitable balance between dis-
persion (or diffraction) and nonlinearity. Optical solitons are
used for long- and short-distance information transmission.
Unlike pulses in a linear dispersive fiber, solitons are self-
confined, propagating long distances without changing shape.
A well-known example of an equation that admits pulselike
soliton solutions is the NLS equation. It is now well known
that the power is directly proportional to the dispersion in
the experimental investigation of optical solitons. Because
of the large dispersion of the conventional single-mode fiber at
the wavelength of minimal losses (λ = 1.5 μm), a clear idea
for power reduction was a shift of the operational wavelength
towards the zero-dispersion wavelength [69–71] which is λ =
1.31 μm. In doing so, an additional term in expanding the
wave number of the fiber mode around the central frequency
ω0, namely, the TOD term, needs to be taken into account
when extending the applicability of the NLS equation. Hence,
there was a certain interest in understanding the effect of TOD
on the existence and stability of the soliton [72–77] based
on the Sasa-Satsuma [78] and Hirota [79] equations, which
are the NLS equation with some TOD terms that cause great
variation in MI properties which would induce some new
nonlinear excitations. The linearized stability analysis for the
Sasa-Satsuma equation [80] suggested that there are both MI
and stability regimes for low perturbation frequencies on the
continuous wave background. Indeed, it is well known that
odd-order dispersion coefficients, such as TOD, do not affect
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FIG. 1. The panels show plot of the variation of maximum MI gain as a function of perturbation frequency  and the SOD term k6 for
(a) the normal (k2 = 1) and (b) the anomalous regimes (k2 = −1) with the other parameters being: P0 = 8, k5 = 0.00123, k3 = 0.009, nNL =
1, nNL4 = 1, nNL6 = 0.03, nSS = −0.0247, nSS4 = 0.037 05, nSS6 = −0.0247, nSFS = −0.030 875, nSFS4 = 0.0004 and nSFS6 = 0.021.

the MI condition [56]. The MI process has been revisited the-
oretically using a global stability analysis reformulated as an
initial value problem. It has been demonstrated that MI gain of
time-localized signals (i.e., pulsed signals) depends strongly
on the TOD, leading to a dramatic reduction of the MI gain,
contrary to the well-known case of time-extended signals (cw
signals) [81]. The MI has been investigated in the region
of minimum group-velocity dispersion through an extended
NLS equation, taking into account FOD effects, and this term
dominates the critical modulation-instability frequency when
second-order dispersion approaches its minimum value at the
so-called zero-dispersion wavelength [82]. The effect of TOD
and FOD terms on MI has been investigated. It has been
shown that the modulationally unstable waves evolve to the
soliton-type characterized by the periodic generation of mov-
ing or stationary solitons and to a turbulent state, depending
on the strength of the third- and fourth-order dispersion terms,
which are related to the stability conditions for solitons [83].
It has been demonstrated numerically that in the presence of
the quintic nonlinear term, which balances with the higher-
order dispersion terms, the turbulent states can be controlled,
leading to the periodic occurrence of the stable solitonlike
pulses produced by MI of an extended NLS equation with
the third- and fourth-order dispersion and the cubic-quintic
nonlinear terms. It appears that even though the TOD term

does not directly contribute to the MI gain spectrum, it in-
fluences the evolution of MI and the dynamics of the soliton
[66]. Also, for a fiber with the zero group-velocity disper-
sion wavelength in the visible region of the spectrum and a
pump wavelength close to the zero group-velocity dispersion
wavelength, the importance of the FOD term in the expan-
sion of the propagation constant is considerable, leading to a
strong parametric gain of the sidebands even when technically
the fiber is being pumped in the normal dispersion regime
[34]. The FOD-induced MI, which can be used for broadband
wavelength conversion, has been investigated experimentally
in single-mode optical fiber, and evidence of a new MI spec-
tral window due to the FOD effect in the normal-dispersion
regime has been demonstrated [84]. MI of the HNLS equation
with non-Kerr nonlinearities in an optical context has been
studied, and an analytical expression for MI gain presented to
show the effects of non-Kerr nonlinearities and higher-order
dispersions on MI gain spectra [65]. The HNLS equation con-
tains real parameters related to GVD, TOD, and FOD, SPM
due to the cubic nonlinearity (Kerr effect), self-steepening,
and self-frequency shift due to stimulated Raman scattering,
and quintic non-Kerr nonlinearity, respectively. In particular,
MI gain spectra for the cubic-quintic NLS equation with FOD
and stimulated Raman scattering terms have been plotted. In-
deed, the expression of the MI gain has revealed that the TOD

FIG. 2. The variation of maximum MI gain as a function of perturbation frequency  and the septic non-Kerr nonlinearity parameter nNL6.
Panel (a) shows results for k6 = 0.02, and panel (b) is plotted for k6 = −0.02 with the other parameters being: P0 = 10, k5 = 0.001 23, k3 =
0.009, nNL = 1, nNL4 = 1, nSS = −0.0247, nSS4 = 0.037 05, nSS6 = −0.0247, nSFS = −0.030 875, nSFS4 = 0.0004, and nSFS6 = 0.021.
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term has no effect on the MI condition, but GVD and FOD
terms influence the MI condition. The study also shows that
the non-Kerr quintic nonlinear effect reduces the maximum
value of the gain and bandwidth [65]. The MI process in
glass fibers with a local saturable nonlinear refractive index,
in operating conditions of anomalous dispersion but with a
positive sign of the FOD, has been analyzed. It has been found
that two types of MI processes become highly sensitive to
the magnitude of the FOD. The first type of MI generates a
single pair of sidebands, whereas the second type generates
two pairs of sidebands [85]. However, among all the studies
of the MI process in nonlinear optics, the question of MI anal-
ysis under the combined effects of higher-order dispersions,
self-steepening, and self-frequency shift, cubic, quintic, and
septic nonlinearities is investigated, here. That is why, in this
paper, in particular, we insist on the balance between the sixth-
order dispersion and nonlinearity terms on one hand, and
between septic self-steepening and the septic self-frequency
shift terms, on the other hand. To start, the gain spectrum is
displayed in Fig. 1 versus the perturbation frequency  and
the SOD parameter k6 both for the normal [see Fig. 1(a)]
and anomalous [see Fig. 1(b)] GVD regimes. For k2 > 0, one
notes two gain peaks that divert from the center  = 0 when
k6 approaches zero. However, two regimes are detected, i.e.,
when k6 > 0 lobes of the frequency domain are large and
reduced for k6 < 0, expanding the stability zone. The reverse
scenario is obtained for k2 < 0 where the large frequency
bandwidth is observed for k6 > 0 and small bandwidth is
observed for k6 < 0. In the rest of the stability analysis, the
effects of higher-order nonlinear terms will be confronted to
the two SOD regimes, i.e., k6 > 0 and k6 < 0 under normal
GVD. The first example to be addressed in this regard is the
impact of the nonlinear septic term on MI, which is depicted in
Fig. 2 where panel (a) is plotted for k6 > 0 and panel (b) for
k6 < 0. For the case k6 > 0, high-intensity sidelobes appear
for nNL6 < 0, but the maximum gain increases, along with the
frequency bandwidth, in the interval −2 � nNL6 < 0. In this
particular case, the bandwidth for nNL6 < 0 is large and com-
pletely disappears for nNL6 � 0, leaving two symmetric lobes
of minor intensity but still enough for the cw to disintegrate
into nonlinear structures. On the other side, when k6 < 0, the
instability is expected to be more pronounced for nNL6 > 0
since the gain sidelobes are of high intensity and tend to
disappear when nNL6 < 0, although there is a low-intensity
tongue of instability surrounded by a large region of stability
[see Fig. 2(b)].

Figure 3 portrays the MI gain as a function of the quintic
SS parameters and the frequency  for k4 > 0 [panels (a) and
(b)] and k4 < 0 [panels (c) and (d)]. Each of the cases presents
lobes of instability for normal and anomalous dispersion. In
Fig. 3(a), for example, for which k2 > 0, there appear two
peaks of instability in the gain spectrum, which show insta-
bility to be possible for all values of nss4. The lobes being
symmetric, the gap between them increases for k2 < 0, and
the instability bandwidth shrinks [see Fig. 3(b)]. The same
spectrum of behaviors appears in Figs. 3(c) and 3(d) for which
k4 < 0. For k2 > 0, the two symmetric lobes appear and get
shrinked when k2 < 0 for which there appears two breasts
of instability. Also, the band gap between gain peaks has
reduced. We should stress that the case k4 < 0 and k2 being

FIG. 3. Variation of maximum MI gain versus the perturbation
frequency  and the quintic self-steepening term nSS4. The FOD
is considered positive in panels (a) and (b), respectively, obtained
for k2 > 0 and k2 < 0. Panels (c) and (d) are plotted for a negative
FOD coefficient k4 with k2 > 0 and k2 < 0, respectively. The
other parameters being: P0 = 10, k6 = 0.02, k5 = 0.001 23, k3 =
0.009, nNL = 1, nNL4 = 1, nNL6 = 0.03, nSS = −0.0247, nSS4 =
0.037 05, nSFS = −0.030 875, nSFS4 = 0.0004, and nSFS6 = 0.021.
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FIG. 4. Panels show the variation of maximum MI gain versus the perturbation frequency  and the septic self-steepening term nSS6

and for (a) k6 = 0.02, (b) k6 = −0.02 with the other parameters being: P0 = 10, k5 = 0.001 23, k3 = 0.009, nNL = 1, nNL4 = 1, nNL6 =
0.03, nSS = −0.0247, nSS4 = 0.037 05, nSFS = −0.030 875, nSFS4 = 0.0004, and nSFS6 = 0.021.

either negative or positive were recently explored by Tiam
et al. [86], who further found the existence of single-hump
solitons numerically for positive values of k2 > 0.

The competition between the septic SS and the SOD pa-
rameters is summarized in Fig. 4 where panels (a) and (b)
correspond, respectively, to k6 > 0 and k6 < 0. In Fig. 4(a),
when k6 > 0, the MI gain is limited as nSS6 tends to zero and
disappears at nSS6 = 1, leaving small intensity lobes separated
by a large band gap frequency compared to the large fre-
quency bandwidth observed for −1 � nSS6 � 0. For the case
k6 < 0 [see Fig. 4(b)], no instability should be expected for
nSS6 > 0. However, two symmetric lobes show the presence
of instability under a suitable balance between nonlinear and
dispersive effects. The MI gain as a function of the perturba-
tion frequency  and the SFS parameter is plotted in Fig. 5
with panels (a) and (b), respectively, corresponding to k6 > 0
and k6 < 0. In general, two distinct and symmetric sidebands
appear in the gain spectrum and remain the same even with
increasing nSFS6. However, the bandwidth is larger for k6 < 0
than when k6 is positive. From the expression of the gain (16),
the reader may note that the odd terms of coefficients k3 and
k5 do not contribute to the dynamics of the MI growth rate.
This is a confirmation of predictions from Shagalov [83] who
proposed a separated technique to study the impact of such
terms in the numerical occurrence of MI. In so doing, the rela-
tionship between soliton emergence and MI has been debated

in several contributions. Especially, attention has been paid
to the stability of solitons as they share the same parameter
conditions with the occurrence of MI. Before proceeding to
the numerical analysis of our above predictions, it would be
of interest to investigate the impact of each of the parameters
and their various combinations for the emergence and stability
of solitons.

B. Stability of solitons and MI occurrence

When k2 �= 0, nNL �= 0 with the rest of the coefficients
being equal to zero, we are in the presence of the cubic quin-
tic NLS equation that admits stable soliton solutions. Such
solutions imply the appearance of MI and the subsequent
appearance of wave trains under the condition that disper-
sion and nonlinearity be well balanced. However, when the
high-dispersion terms are different from zero, the stability of
soliton solution gets alternated with a substantial impact on
the appearance of MI, primarily when the long-time evolution
of solitary waves is investigated. Therefore, before proceeding
to the numerical analysis of MI, it is necessary to examine
the impact of each dispersion term and their combinations on
the emergence of stable solitons in the model under study. To
investigate the effects of such parameters on soliton stability,
we adopt the method developed in Ref. [76] and recently used
by Shagalov [83].

FIG. 5. Variation of maximum MI gain versus the perturbation frequency  and the septic self-frequency shift term nSFS6 and
for (a) k6 = 0.02, (b) k6 = −0.02 with the other parameters being: P0 = 10, k5 = 0.001 23, k3 = 0.009, nNL = 1, nNL4 = 1, nNL6 =
0.03, nSS = −0.0247, nSS4 = 0.037 05, nvSS6 = −0.0247, nSFS = −0.030 875, and nSFS4 = 0.0004.
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A small-amplitude wave u(Z, τ ) = u0e−ikZ+iωτ is adopted
as a trial solution to Eq. (7), which leads to the dispersion
relation,

k(ω) = −k2ω
2 + k3ω

3 − k4ω
4 + k5ω5 − k6ω

6. (18)

To proceed, we focus on the zero-dispersion regime, which
implies the relation k(ω)

ω
= 0 whose real solutions imply a

resonance interaction between the soliton and the small-
amplitude wave leading to a stable soliton solution. This
depends on a number of combinations between the dispersion
coefficients k2, k3, k4, k5, and k6. With no pretension of be-
ing exhaustive, we focus mainly on the following cases:

(i) For k4 = k5 = k6 = 0, k2 �= 0, and k3 �= 0, Eq. (18)
admits the solution ωr = k2/k3. The soliton may be unstable
and its decay will take place with emission of waves with
frequency ωr under the condition k2 < 0 and k3 > 0 or k2 > 0
and k3 < 0. This particular case in commonly known and
several numerical simulations have confirmed the results.

(ii) For k3 = k5 = k6 = 0, k2 �= 0, and k4 �= 0, the disper-
sion relation will admit the solutions ωr = ±√−k2/k4, which
implies that the soliton will be stable if k2/k4 > and unstable
if k2/k4 < 0.

(iii) For k3 �= 0, k5 = k6 = 0, k2 �= 0, and k4 �= 0,
two roots are obtained for the dispersion relation:

ω = −k3∓
√

k2
3−4k2k4

2k4
. Solutions will be two real roots for

k2
3 − 4k2k4 > 0, which leads to the condition k2k4 > k2

3/4 for
the soliton to be stable.

(iv) For k2 �= 0, k3 �= 0, k4 �= 0, k5 �= 0, and k6 = 0, the
dispersion relation reduces to a third-order polynomials and
the stability of the soliton can be studied through the Routh-
Hurwitz (RH) criterion. In doing so, the soliton will be stable
so that MI takes place if the conditions k4/k5 � 0, k2/k5 � 0,
and k4k3 � k2k5 are simultaneously satisfied.

(v) For k2 �= 0, k3 �= 0, k4 �= 0, k5 �= 0, and k6 �= 0,
the RH stability criterion, from the obtained fourth-
order polynomials, imposes k6 < 0, k5 > 0, k4 < 0, k3 >

0, k2 < 0, k4k5 > k3k6, and k3k4k5 > k2
3k6 + k2k2

5 for the
soliton to be stable.

(vi) For k2 �= 0, k3 �= 0, k4 �= 0, k5 = 0, and k6 �= 0,
from the RH stability criterion, we get k6 < 0, k4 < 0, k3 >

0, k2 < 0, and k3k6 > 0 for the soliton to be stable and MI to
take place.

(vii) For k2 �= 0, k3 = 0, k4 = 0, k5 = 0, and k6 = 0, the
dispersion relation (18) has the soliton ωr = 3

√
k2/k5 so that

for k2/k5 > 0, the soliton will be stable and unstable other-
wise. In this particular case, it also obvious that the fifth-order
nonlinearity stabilizes the soliton and gives more chances to
the MI to take place.

The stability of solitons reveals more interesting and un-
derlying phenomena that are mostly related to the appearance
of wave trains via the activation of MI. This is true as it
has long been proven that solitons and MI share the same
parameter region. This gets more complicated when several
parameters are involved and require more argument input to
justify parameter values’ choice and their contribution to the
studied MI process. For instance, from the above analysis, we
have realized that higher-order dispersion terms contribute to
stabilizing the soliton and, therefore, play a vital role in the
process of MI. However, the above stability analysis being

FIG. 6. The panels show the evolution of the cw under
condition (vii) of the soliton stability analysis which predict MI
to be violated if k2/k5 < 0 with k2 = −1 and k5 = 0.001 23.
The rest of the parameters are: k6 = 0, P0 = 10, k3 = 0, k4 =
0, nNL = 1, nNL4 = 1, nNL6 = 0.03, nSS = −0.0247, nSS4 =
0.037 05, nSS6 = −0.0247, nSFS = −0.030 875, nSFS4 = 0.0004,
and nSFS6 = 0.021.

local, addressing a more complete version of the study via
a long-time numerical simulation of the predicted entities
is necessary. This is for the simple reason that the model
contains nonlinear and dispersive nonlinear terms beyond the
dispersion terms, which may violate some of the above sta-
bility criteria and lead to new phenomena and behaviors in the
long-time evolution of modulationally unstable wave patterns.
This will somehow justify our choice of parameter values in
the study of the MI gain and give more credit to the proposed
model.

IV. NUMERICAL ANALYSIS OF UNSTABLE
WAVE MODULATION

To check the accuracy of our linear stability analysis, direct
numerical simulations have been performed on the model
Eq. (7). Of course, a particular scenario of the MI devel-
opment strongly depends on the type of initial conditions
considered, namely, noisy perturbations of the plane wave,
localized perturbations of the plane wave, and harmonic per-
turbations of the plane wave, respectively. In particular, a
general solution of the equation governing the evolution of the
spatiotemporal of MI perturbation in terms of a combination
of cosine and sine hyperbolic functions has been obtained.
In this paper, with the ambition to generate bright solitons
via MI, the right perturbation to be adopted is a weak sine
perturbation so that the initial condition be of the form [17]

u(0, t ) = √
P0[1 + am sin(mt )]eiφNL , (19)

where am = 0.01 is the modulational amplitude and m = 0.5
is the frequency of a weak sinusoidal modulation frequency
imposed on the cw wave. The value of m is within the
bandwidth that is supposed to give rise to unstable waves.
Numerical results are obtained from Eq. (7) through the
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FIG. 7. The panels show the evolution of the cw under the effect of the septic nonlinearity term for (aj) j=1–3 k6 = 0.0008, (bj) j=1–3 k6 =
−0.0008, and P0 = 10, k5 = 0.001 23, k3 = 0.009, nNL = 1, nNL4 = 1, nNL6 = 0.03, nSS = −0.0247, nSS4 = 0.03705, nSS6 =
−0.0247, nSFS = −0.030875, nSFS4 = 0.0004, and nSFS6 = 0.021.

FIG. 8. The panels show the evolution of the cw under the effect of the septic self-steepening term for: (aj) j=1–3 k6 =
0.0003, (bj) j=1–3 k6 = −0.0003, and P0 = 10, k5 = 0.001 23, k3 = 0.009, nNL = 1, nNL4 = 1, nNL6 = 0.03, nvSS = −0.0247, nSS4 =
0.037 05, nSFS = −0.030 875, nSFS4 = 0.0004, and nSFS6 = 0.021.
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FIG. 9. The panels show the evolution of the cw under the effect of the septic self-frequency shift term for: (aj) j=1–3 k6 =
0.0008, (bj) j=1–3 k6 = −0.0008, and P0 = 10, k5 = 0.001 23, k3 = 0.009, nNL = 1, nNL4 = 1, nNL6 = 0.03, nSS = −0.0247, nSS4 =
0.037 05, nSS6 = −0.0247, nSFS = −0.030 875, and nSFS4 = 0.0004.

split-step Fourier method with a particular interest in the
emergence of MI as a result of the balanced competition
among SOD and septic nonlinearity, self-steepening, and self-
frequency shift effects. To start, it is of importance to confirm
the stability of soliton performed in the previous section
through one of the cases, (vii), for example. It is predicted that
for k2/k5 > 0, the soliton solution will be stable, and MI will
be likely to occur. Otherwise, the soliton solution will be un-
stable, taking away all chances for MI to emerge in the system.
We deliberately violate the stability condition by imposing
k2/k5 < 0, which leads to the patterns obtained in Fig. 6
where the cw breaks into wave patterns that have the shape of
solitonic objects. This shows such conditions might be true,
but they are balanced by the other parameters that may violate
the soliton solution’s stability condition. Otherwise, such con-
ditions are not enough to predict instability, which justifies the
results from different gain spectra where instability is possi-
ble negative and positive values of parameters. This explains
why we insist on the competitive effect between higher-order
nonlinearity and dispersion in the rest of the paper.

In Fig. 7, under normal GVD, results are presented for
k6 > 0 [see Fig. 7(aj) j=1–3] and k6 < 0 [see Fig. 7(bj) j=1–3]
with nNL6 changing in each of the cases. When k6 > 0, the
chosen values of parameters in gain spectra give rise to non-
linear patterns as predicted. Particularly, for nNL6 = −0.8,
the instability takes place early, but increasing the nonlin-
ear septic parameter reduces the recurrence of the patterns

which develop after a long distance. The same phenomenon
is obvious when k6 < 0, except that patterns appear to be
exotic pulses whose frequency and recurrence change with the
propagation distance. Remarkably, for higher values of nNL6

both for k6 positive and negative, the perturbed cw breaks
up into amplified pulses: The amplitude increases gradually
during propagation. It is then ostensible that whereas con-
trolling the occurrence of MI in the fiber through the septic
nonlinearity, different scenarios, such as wave trains, erratic
patterns of high or low amplitude can appear, depending on
the competition among the various intrinsic nonlinearities and
dispersions. Indeed, this could not be predicted via the lin-
ear stability analysis. Still, the obtained results reinforce the
efficiency of the MI mechanism through which optical wave
patterns of various forms and characteristics can be generated.
This is more reinforced by the instability features obtained
in Fig. 8, which picture the effect of the SS term on the
long time evolution of the perturbed cw both for k6 > 0 [see
Fig. 8(aj) j=1–3] and k6 < 0 [see Fig. 8(bj) j=1–3]. We should,
however, stress here that given the spectrum of behaviors
obtained from the gain of Fig. 4, the maximum gain is located
in the region nSS6 < 0 so that one expects the cw to disin-
tegrate likely for such value. However, considering the case
k6 > 0, the panels (aj) j=1–3 of Fig. 8 show that with increasing
nSS6, the MI patterns change from progressively amplified
pulses to many erratic patterns with a tendency to shift on the
right. On the other side, when we consider k6 < 0, given that
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FIG. 10. Effect of the septic self-frequency shift term on the propagation direction of the disintegrated cw for (a) nSFS6 = 0.02, k6 =
0.0008, (b) nSFS6 = −0.001, k6 = 0.0008, (c) nSFS6 = −0.02, k6 = −0.0008, and P0 = 10, k5 = 0.001 23, k3 = 0.009, nNL = 1, nNL4 =
1, nNL6 = 0.03, nSS = −0.0247, nSS4 = 0.037 05, nSS6 = −0.0247, nSFS = −0.030 875, and nSFS4 = 0.0004.

the MI bandwidth is exclusively situated in the area where
nSS6 < 0 is negative, decreasing its value produces the same
effect except that for nSS6 = −0.01 and nSS6 = −0.08, the MI
takes place in the form of alternating multihumped pulses.
One fact that is, however, common in the theory of solitons is
also obvious here, the space and time expansions of solitonic
objects influences their characteristics, mainly the intensity
for nSS6 = −0.003, the light patterns are smaller with high
intensity compared to the rest of the cases.

Figure 9 shows the behaviors of the unstable cw when the
SFS changes both for k6 positive and negative. Under the
condition k6 > 0, one sees from Fig. 9(a1) that for nSFS6 =
0.0008, the long time evolution of MI is characterized by
right-shifted patterns. With increasing the effect of the SFS,
the shifted coherent optical patterns travel over a short dis-
tance and turn into erratic structures shifted toward the left
[see Fig. 9(a2)]. This later feature gets pronounced when
nSFS6 = 0.02 where there is a mix up of coherent optical
patterns along with left-shifted erratic modulated structures
as shown in Fig. 9(a3). Under the same conditions as in
Fig. 9(aj) j=1–3 but with k6 < 0, the optical patterns generated
by MI are of low intensity [see Fig. 9(b1)], shifted to the
right. However, the action of the increasing SFS effect reduces
the number of wave trains, leaving patterns that are extended
over the distance [see Fig. 9(b2)], which, for nSFS6 = 0.02
turn out to be trains of alternating and oscillating pulses [see
Fig. 9(b3)]. Indubitably, the direction of the propagating soli-
tons is importantly affected by the septic SFS term, and such
a direction can change when parameters are well balanced
with appropriate signs. In the numerical experiment shown
in Fig. 10, one clearly confirms that when nSFS6 and k6 are
positive, the solitonic patterns are shifted to the right [see
Fig. 10(a)], which is corrected for nSFS6 = −0.001 as seen
in Fig. 10(b). Nevertheless, it is found that the direction can
shift to the left for nSFS6 = −0.02 and k6 < 0. As said earlier,
model Eq. (7) contains many parameters that render it diffi-
cult to control the dynamics of any emerging pattern. In the
meantime, we should stress that studies have been carried out
on earlier models in the absence of the higher-order disper-
sive and nonlinear effects, such as the septic nonlinearity, the
septic self-steepening, and the self-phase shift terms.

V. CONCLUSION

In this paper, we have successfully derived a generalized
higher-order NLS equation with cubic, quintic, and sep-
tic nonlinearity with self-steepening and self-frequency shift
terms of the septic order. Under the linear stability analysis
of a cw solution, an analytical expression for the MI gain
has been derived, and its sensitivity to the competitive effects
among the SOD, the septic nonlinearity, the self-steepening,
and self-frequency shift terms have been addressed. Different
combinations of the dispersion coefficients have been ex-
plored that give rise to soliton stability and the emergence
of MI. It was revealed that the instability condition for the
soliton could be violated due to the presence of higher-order
nonlinear terms. This has been confirmed via direct numeri-
cal simulations where under various dispersive and nonlinear
effects, the cw has been found to disintegrate into trains of
structures with solitonic features. Interestingly, during numer-
ical experiments, we have discovered that the propagation
direction of the trains of waves can be controlled by a suitable
balance between the SOD and the septic self-frequency shift
strength. This may be a valuable tool with undeniable and
straightforward applications in nonlinear optic communica-
tions.
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APPENDIX: PARAMETERS FOR EQ. (6)

Parameters for Eq. (6) are defined as follows:

βm = 1

m!

(
∂mβ

∂ωm

)
0

, (m = 2–6), γ1 =
(

∂β

∂|ψ |2
)

0

+ k0n2

4Aeff
,

γ2 = 1

2

(
∂β

∂|ψ |4
)

0

+ k0

16Aeff 1

(
n2

2

2
+ n4

)
,
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γ3 = 1

6

(
∂β

∂|ψ |6
)

0

+ k0

64Aeff 2

(
n6 + n4n2

n(ω)

)
,

(A1)

α1 =
(

∂2β

∂ω ∂ (|ψ |2)

)
0

, α3 = 1

2

(
∂2β

∂ω ∂ (|ψ |4)

)
0

,

α5 = 1

6

(
∂2β

∂ω ∂ (|ψ |6)

)
0

, α2 =
(

∂β

∂ (|ψ |2)t

)
0

,

α4 = 1

2

(
∂β

∂ (|ψ |4)t

)
0

, α6 = 1

6

(
∂β

∂ (|ψ |6)t

)
0

,

where Aeff =
∫ ∞
−∞

∫ ∞
−∞ |F (x,y)|2dx dy∫ ∞

−∞
∫ ∞
−∞ |F (x,y)|4dx dy

, Aeff 1 =
∫ ∞
−∞

∫ ∞
−∞ |F (x,y)|2dx dy∫ ∞

−∞
∫ ∞
−∞ |F (x,y)|6dx dy

,

Aeff 2 =
∫ ∞
−∞

∫ ∞
−∞ |F (x,y)|2dx dy∫ ∞

−∞
∫ ∞
−∞ |F (x,y)|8dx dy

with Aeff as the refractive core area

of the fiber. Aeff 1 = (3/4)Aeff and Aeff 1 = (1/2)Aeff .
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