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Undular bores generated by fracture

C. G. Hooper,1,2 P. D. Ruiz ,1 J. M. Huntley ,1 and K. R. Khusnutdinova 2,*

1Wolfson School of Mechanical, Electrical and Manufacturing Engineering (WSMEME), Loughborough University,
Loughborough LE11 3TU, United Kingdom

2Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom

(Received 14 March 2020; accepted 1 October 2021; published 18 October 2021)

Undular bores, or dispersive shock waves, are nonstationary waves propagating as oscillatory transitions
between two basic states, in which the oscillatory structure gradually expands and grows in amplitude with
distance traveled. In this work we report an important mechanism of generation of nonlinear dispersive shock
waves in solids. We demonstrate, using high-speed pointwise photoelasticity, the generation of undular bores
in solid (polymethylmethacrylate) prestrained bars by natural and induced tensile fracture. For the distances
relevant to our experiments, the viscoelastic extended Korteweg–de Vries equation is shown to provide very
good agreement with the key observed experimental features for suitable choice of material parameters, while
some local features at the front of the bore are also captured reasonably well by the linearization near the nonzero
prestrain level. The experimental and theoretical approaches presented open avenues and analytical tools for the
study and applications of dispersive shock waves in solids.
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I. INTRODUCTION

Dispersive shock waves (DSWs) have been observed and
extensively studied in classical and quantum fluids, optics,
and several other areas (e.g., [1–8] and references therein).
Here we report an observation and modeling of an undular
bore generated by fracture in a prestrained waveguide, which
opens opportunities for the studies and applications of DSWs
in solids, including possible adaptation to the processes at
micro- and nanoscales. Such waves could be present in the
signals generated by earthquakes, fracking, and other similar
events.

There exists experimental evidence that polymethyl-
methacrylate (PMMA) demonstrates weakly nonlinear be-
havior for sufficiently strong deformations [9–13]. We use
PMMA because of its convenient optical properties, but the
results are relevant to many elastic materials. Moreover,
PMMA is the material of choice for windshields of most
modern aircraft, which must withstand the effect of the waves
that occur as a result of possible fracture (for example, in a
collision with a bird, which occurs with closing velocities of
several hundred miles per hour [14]). Here we are concerned
only with the propagation of the waves, treating the measure-
ment close to the fracture site as a given initial condition for
the model equations.

Strain waves have been reported in PMMA and other ma-
terials, most commonly from Split Hopkinson Pressure Bar
(SHPB) and other impact tests [12,15–18]. The strain waves
produced in [15] show that an oscillatory transition region
develops between the state of rest and the state of compres-
sive strain due to geometrical dispersion in the waveguide.

*Corresponding author: K.Khusnutdinova@lboro.ac.uk

The qualitative features of an undular bore (expansion and
growing amplitude of the oscillatory structure close to the
transition) are clear in experiments in long metal waveguides
[19,20]. Similar waves in PMMA have been registered and
studied in [12,21,22]. The dominant engineering approaches
have so far been based on Fourier analysis and numerical
techniques, and this wave structure has not previously been
identified as an undular bore. Recognition that such waves
are undular bores brings a significant benefit: the Korteweg–
de Vries (KdV)-type models (see [23–28] and references
therein) give access to additional analytical approaches. While
our modeling results will be useful in the context of these
classical experiments, the main focus is on bores generated
by fracture. To the best of our knowledge, such bores have
not been experimentally observed or mathematically modeled
despite the wide applicability of the problem formulation in
natural and industrial settings, as well as the relative ease of
its laboratory implementation. The experiments extend the re-
search in [29–32] by investigating the evolution of the release
waves.

Before we proceed and discuss our experimental results,
we need to make some clarifying comments about the ter-
minology used in the paper. We will do that in the context
of the classical setting for the KdV equation considered in
[1]. KdV-type models have been used in many different phys-
ical contexts. In particular, they were successfully used to
describe gentle undular bores observed in water tank experi-
ments (see [33,34] and references therein), where the waves
were long and of small to moderate amplitude. It must be
noted, however, that more complicated settings are necessary
in order to accurately describe the large amplitude turbulent
and breaking undular bores observed in both water tank exper-
iments and natural shallow waters (see [35–38] and references
therein).
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FIG. 1. The solution of the KdV equation (1) at t = 0.05 (blue,
solid) with initial condition (2) (red, dot)

The classical setting considered in [1] is concerned with the
evolution of a steplike initial condition of the KdV equation

ut + uux + uxxx = 0, (1)

written here in nondimensional and scaled variables, in the
moving reference frame (moving with the linear long wave
speed), and in one of its canonical forms with positive non-
linearity and dispersion coefficients. Here t is the time, x
is the distance, and u is the field variable of interest to us
(for example, this would be the free surface elevation in the
context of water waves). In this form, the observer moves
to the right with the constant linear long wave speed, and
the field variable u is registered as a function of distance x
(measured in a moving reference frame), at fixed values of the
time t . A decreasing steplike initial condition of the form (low
for x > 0 rising to high at x = 0)

u(x, 0) =
{

1, x < 0
0, x > 0 (2)

evolves into an undular bore with the growing and expanding
oscillations on the upper level of the bore as shown in Fig. 1.

In our experiments, the field quantity, e (the longitudinal
strain), is high for x > 0 dropping to low at x = 0 rather than
the other way around. Also, our measurements consist of a
time signal at fixed points in space, instead of measurements
of e along the entire bar at fixed instants in time. Despite these
differences the signal we record will have a similar (though
not identical) structure: we will see oscillations developing
on the lower level of the step, but they will be also growing
in both amplitude and period with distance traveled from the
initiation point. The presence of such characteristics in the
signal will therefore demonstrate the presence of an undular
bore propagating down the bar. From the viewpoint of the
mathematical models, there exists a mapping (a change of
variables) which maps one wave structure to another, and the
details of that are discussed in the Appendix.

II. EXPERIMENTS

A. Experiment 1: Natural tensile fracture

PMMA bars (3 × 10 × 750 mm3) each cut from the same
sheet of material were loaded at a constant strain rate of
3 × 10−3 s−1 until fracture, using a tensile testing machine
(TTM, Instron 3345). The bars were prenotched with a knife
blade run across both sides of the 10 mm wide sides of the
sample (so that the crack has to, ideally, propagate 3 mm to

FIG. 2. Experimental setup (a) before fracture and (b) after frac-
ture, showing laser source (L), polarization maintaining fiber (PMF),
polarizer (P), PMMA waveguide (WG) width h = 3 mm, analyser
(A), photodetector (PD). The triggering circuit recording Vtrig con-
sists of a resistor (R), a 5 V power supply and brittle conductive ink
across the notch (thick). In (a) the WG is under tensile load (F) with
a notch (N) at x = 0. The release wave that is generated by fracture
propagates outwards from the fracture site (FS) and is first recorded
at x0 = 5 cm and later at some distance xn cm from the FS as shown
in (b). A schematic of the registered signals are shown by the inserts
in (b), and should be compared to the bores in Fig. 12(b).

cause fracture), 100 mm away from one of the ends. The du-
ration of the initial unloading is determined by the distance the
crack tip propagates to cause fracture, and the speed at which
it propagates. Crack propagation in viscoelastic materials has
been extensively studied (e.g., [39–41]). Cracks in PMMA,
once initiated, accelerate very rapidly to propagation speeds
between 150 m s−1 and 300 m s−1 [42–45]. The duration of
the initial unloading due to the crack can therefore be esti-
mated as being between t = 10 μs and t = 20 μs, but we note
that it could take longer should the crack not initiate uniformly
across the full width of the notch tip.

Once loaded into the TTM, the length of the sample be-
tween the grips was 700 mm, and the notch was set 75 mm
above the lower grip.

A schematic can be seen in Fig. 2(a), in a horizontal con-
figuration.

As PMMA exhibits transient birefringence [46], a bright-
field circular polariscope (CP) was used to measure the
longitudinal strain in the bar. The CP consists of a He-Ne
laser source (632.8 nm, 30 mW) coupled to a polarization
maintaining single mode optical fiber (PMF, with FC-APC
coupling), a short focal length lens that collimates the beam
to a diameter of 1 mm, a circular polarizer (P), a circular
analyzer (A), and a photodetector (PD, Thorlabs PDA36A2,
350–1100 nm, 12 MHz bandwidth). The optical setup is
mounted on a platform [indicated in shaded gray in Fig. 2(a)]
that can slide along the PMMA bar. The use of a PMF ensures
that environmental vibrations do not introduce strain-induced
birefringence in the fiber, and intensity changes measured
by the photodetector are caused only by changes of strain
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in the bar. A simple triggering circuit was made by using
brittle conductive ink across the notch and connecting it to
a 1 k� resistor and a 5 V DC power supply. The circuit would
open as soon as the crack reached one of the four corners
of the two notches and the bar becomes discontinuous there
[see Fig. 2(b)]. The photodetector signal and the voltage Vtrig

are measured with a digital oscilloscope (not shown). Data
acquisition is triggered by a rising edge in Vtrig at fracture,
which is taken as time t = 0.

B. Experiment 2: Induced tensile fracture

PMMA bars (3 × 10 × 770 mm3) cut from the same sheet
as bars used in experiment 1 were placed into the TTM and
loaded at a constant strain rate of 1 × 10−3 s−1 until a uniaxial
load of 1500 N was applied. The length of the sample between
the grips was 720 mm. Fracture was then induced 1 s later
by pressing a blade against the sample, 50 mm above the
lower grip, and running it across the 10 mm width. The same
arrangement as used in Experiment 1 was used to record the
intensity [see Fig. 2(a)]. This method of fracture allowed us to
achieve greater prestrains and strain rates at fracture.

C. Strain evaluation

The light intensity at the photodetector is given in our
setting by

I = I0 cos2

(
πh(σx − σy)

fσ

)
, (3)

where I0 is the intensity of the laser beam entering the sample,
h is the sample thickness, σx,y are the respective values of
stress, and fσ = (2.02–2.30) × 105 Pa×m/fringe is the fringe
constant of the material [47]. Under uniaxial stress loading,
σy = 0, and the longitudinal strain ex and stress σx are related
by Hooke’s law σx = Eex, consistent with the assumptions
that waves are long compared to h and weakly nonlinear,
made below. Here E is Young’s modulus. When Eq. (3) is
rearranged to obtain ex, Nπ should be added to the recovered
phase, where N is the (integer) fringe order.

III. RESULTS

A. Natural tensile fracture

Over a series of 12 experiments, the CP was positioned
between 0.05 m and 0.50 m from the notch with 0.05 m incre-
ments. Details of the measurements for each test are given in
Table I.

The strain profiles are shown in Fig. 3 after they have been
convolved with a 4 μs time window (also performed with all
subsequent experimental profiles presented) and normalized
against their prestrain κ at which fracture occurred. The pro-
files at 0.05 m and 0.10 m (used later for parameter fitting) are
each averages of two tests performed at the same distance.

A period of nearly constant strain κ follows fracture while
the release wave travels from the fracture site to the laser
beam. No relaxation is observed during this period. The
strain then decreases from the peak strain ∼0.01 at a rate of
∼800 s−1 over a time of ∼13 μs, which constitutes a weakly
nonlinear regime [11,12,48].

TABLE I. The prestrain, poststrain (temporary residual strain
due to viscous relaxation), and load at fracture of the bars in the nat-
ural tensile fracture experiment at each recorded distance. The mean
and standard deviation of the prestrain are κ = 0.0109 ± 0.0012.

Distance (m) Prestrain Poststrain Load (kN)

0.05 0.0121 0.0013 0.99
0.05 0.0125 0.0013 0.99
0.10 0.0099 0.0013 0.88
0.10 0.0111 0.0015 0.91
0.15 0.0108 0.0014 0.92
0.20 0.0123 0.0015 1.00
0.25 0.0096 0.0013 0.86
0.30 0.0126 0.0014 1.02
0.35 0.0100 0.0013 0.84
0.40 0.0090 0.0010 0.79
0.45 0.0111 0.0012 0.91
0.50 0.0103 0.0015 0.82

The strain relaxes to a small positive value κt , as seen in the
0.05 m profile in Fig. 3. We refer to this temporary strain κt as
the poststrain. For the times relevant to our experiments, the
poststrain is constant at each distance. It is calculated as the
average strain from a 1 × 10−4 s window sufficiently far away
from any oscillations. Total relaxation is eventually observed
(in the order of seconds), thus there are no signs of plastic-
ity. Fluctuations in the strain behind the release wave with
speeds of around 2200 m s−1 and 1345 m s−1 are observed as
indicated in Fig. 3. The slower wave has been confirmed as a
shear wave by using high-speed digital image correlation and
the grid method [49]. The peak strain rate during the high to
low transition in the oscillatory part of the bore is ∼200 s−1.

At each distance oscillations can be seen to emerge at
the bottom of the release wave. The shaded region in Fig. 3

FIG. 3. Experimental strain profiles at each recorded distance
of the natural tensile fracture experiments. Profiles are normalized
against their prestrain. Vertical spacing of 0.4 is used to separate each
profile.
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FIG. 4. Experimental strain profiles at each recorded distance
of the induced tensile fracture experiments. Profiles are normalized
against their prestrain. Vertical spacing of 0.4 is used to represent an
increase of 0.10 m.

contains both the longitudinal and slower moving shear
waves, also emitted during the fracture.

B. Induced tensile fracture

Over a series of 12 experiments, the CP was positioned
between 0.05 m and 0.30 m from the fracture site. When a load
of 1500 N was applied to the bars, the corresponding strain
was ∼0.022, which constitutes a more nonlinear regime than
encountered in the natural tensile fracture experiment (e.g.,
[11,12,48]). The strain rate of the release wave varied between
tests due to the different loads being applied at the fracture
site, and a sample of six experiments with similar conditions at
fracture was analyzed. The highest rates at each distance were
∼2000 s−1. The results are shown in Fig. 4. The profiles at
0.05 m and 0.10 m used for parameter fitting are each averages
of two tests performed at the same distance. Both prestrain
and strain rate here are around double those observed in the
natural tensile fracture experiment. Other details are shown in
Table II.

Once again, longitudinal oscillations develop at the bottom
of the release wave at each distance, and are clearly seen as
the wave emerges out of the shaded region containing both
the longitudinal and shear waves. The oscillations grow in
amplitude and duration with propagation distance. It appears

TABLE II. The prestrain, poststrain (temporary residual strain
due to viscous relaxation), and load at fracture of the bars in the
induced tensile fracture experiment at each recorded distance. The
mean and standard deviation of the prestrain is κ = 0.022 ± 0.0008.

Distance (m) Prestrain Poststrain Load (kN)

0.05 0.0217 0.0048 1.47
0.05 0.0233 0.0048 1.49
0.10 0.0225 0.0049 1.49
0.10 0.0225 0.0049 1.48
0.20 0.0208 0.0052 1.47
0.30 0.0217 0.0050 1.47

that in this regime of larger prestrain and larger strain rate, the
longitudinal oscillations emerge closer to the fracture site and
with greater amplitude than with the lower rates produced by
natural tensile fracture. The longitudinal oscillations behind
the release wave can clearly be seen in the 0.20 m and 0.30 m
profiles in Fig. 4 when there is sufficient distance between the
release wave and the leading shear wave.

On comparison of tests with similar prestrains and strain
rates, it was observed that at distances relevant to both ex-
periments the poststrain level typically gently increased with
propagation distance.

The nonstationary structure developing in the faster mov-
ing longitudinal wave, as seen clearly in Fig. 4 (and also in
Fig. 3) demonstrates qualitative behavior of an undular bore:
it propagates as an oscillatory transition between the levels
of the pre- and poststrain, and the oscillatory structure gently
expands and grows in amplitude with propagation distance.

The features are similar to those in SHPB tests [15,19]
discussed in the Introduction, but the bore develops here as
a result of fracture. The quantitative characterization will be
given and compared with the results of linear and nonlinear
modeling in the following sections.

IV. MODELING

A. Basic elastic modeling

The waveguide is an isotropic elastic bar of rectan-
gular cross section S = {−b1 � y � b1; −b2 � z � b2}. We
assume that the bar is in the initial equilibrium state and in-
troduce the Lagrangian Cartesian coordinates (x, y, z), where
Ox is directed along the bar through the center of each cross
section area S.We consider the action functional

� =
∫ t1

t0

∫
V

L dV dt,

where L = L(U, Ut , Ux, . . . , x, t ) is the Lagrangian density
per unit volume, t is time, V is a space domain occupied by
the waveguide, U = {u, v,w} is the displacement vector in the
coordinates (x, y, z).

The Lagrangian density L is given by the difference of
kinetic T and potential � energy densities,

L = T − � = ρ(∂U/∂t )2/2 − ρ�(Ik ),

where ρ is the material density, and Ik = Ik (C) are the invari-
ants of Cauchy-Green’s deformation tensor

C = [∇U + (∇U)T + (∇U)T ∇U]/2, where

I1 = tr C,

I2 = (1/2)[(tr C)2 − (tr C2)],

I3 = det C.

The quadratic and cubic nonlinearity were shown to be-
come noticeable in PMMA at strains around ∼0.01 in [11,12].
Therefore, the derivation of a Boussinesq-type equation for
the long weakly nonlinear longitudinal waves developed in
[50] was extended to take into account the cubic nonlinearity.

The nine-constant Murnaghan model [51] is used to de-
scribe the potential energy of compressible isotropic elastic
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materials,

� = (λ + 2μ)I2
1 /2 − 2μI2 + (l + 2m)I3

1 /3 − 2mI1I2

+ nI3 + ν1I4
1 + ν2I2

1 I2 + ν3I1I3 + ν4I2
2 ,

where λ and μ are Lame’s coefficients, and l, m, n, νi, where
i = 1, 4 are Murnaghan’s moduli.

The model equation for the long weakly nonlinear longi-
tudinal waves is obtained in the approximation of the planar
cross section hypothesis and approximate relations for the
transverse displacements [52]:

u = u(x, t ), v = −yνux, w = −zνux,

where ν is Poisson’s ratio. We assume the same scaling as in
the asymptotic theory developed for waveguides with cylin-
drical geometry in [27,28]. Then, up to appropriate quartic
terms,

L = ρ

2
u2

t − 1

2
Eu2

x + ρ

2
(y2 + z2)ν2u2

xt

− 1

2

[
β

3
u3

x + μν2(y2 + z2)u2
xx

]

− 1

2

[γ

6
u4

x + (
y2 + z2

)
γ1uxu2

xx

]
,

where the coefficients β, γ , and γ1 are given by

β = 3E + 2l + 4m − 12lν

+ 6(n − 2m + 4l )ν2 + O(Dν3),

γ = E

8
+ l

2
+ m + ν1 − 2(l + 4ν1 + ν2)ν

+
(E

4
+ 3l − m + n

2
+ 24ν1 + 9ν2 + ν3 + 4ν4

)
ν2

+ O(Dν3),

γ1 =
(E + m

2

)
ν2 + O(Dν3),

where D = max{E , l, m, . . . , ν4}. Thus, on taking terms up
to O(Dν), we have that γ1 = O(Dν2), treating ν as a small
parameter.

The Euler-Lagrange equation

δL
δu

= 0,

where L = ∫
S L dS (Lagrangian density per unit length) is

regularized to remove the short-wave instability. In this

process, the uxxxx term is replaced with
1

c0
uttxx [53]. The

regularized equation is then differentiated with respect to x,
yielding an extended Boussinesq-type equation for the leading
order longitudinal strain e = ux:

ett − c2
0exx = β

2ρ
(e2)xx + γ

3ρ
(e3)xx + δ2ettxx, (4)

where c0 =
√

E
ρ

and c1 = c0√
2(1+ν)

are the linear longitudinal

and shear wave velocities, and

δ2 = (b2
1 + b2

2)ν2

3

(
1 − c2

1

c2
0

)
= (b2

1 + b2
2)ν2(1 + 2ν)

6(1 + ν)
.

In nondimensional variables

ẽ = e/e0, t̃ = t/T0, x̃ = x/L0, (5)

where e0 and L0 are the characteristic amplitude and wave
length, and T0 = L0/c0, Eq. (4) takes the form (omitting the
tildes)

ett − exx = ε
[

1
2 β̄(e2)xx + γ̄ (e3)xx + δ̄2ettxx

]
,

where

ε = e0|β|
E

, β̄ = sgn β, γ̄ = γ e0

3|β| , δ̄2 = δ2E

L2
0e0|β| .

We take e0 to be the prestrain level κ , and L0 to be the
characteristic length of the release wave.

We look for a solution to this equation in the form of an
asymptotic multiple-scale expansion

e(x, t ) = f (ξ, X ) + ε f (1)(ξ, X ) + O(ε2),

where ξ = x − t and X = εx. Thus, the waves propagate with
the speed close to the linear longitudinal wave velocity c0 =√

E
ρ

.

The equation is satisfied at leading order, while at O(ε) we
have

fX + β̄

2
f fξ + 3γ̄

2
f 2 fξ + δ̄2

2
fξξξ = 0.

Returning to dimensional variables we obtain the Gardner
equation

ex + 1

c0
et − β

2ρc3
0

eet − γ

2ρc3
0

e2et − δ2

2c3
0

ettt = 0, (6)

where β

2ρc3
0

and γ

2ρc3
0

are the quadratic and cubic nonlinearity

coefficients, and δ2

2c3
0

is the dispersion coefficient. This equa-
tion is presented in the fixed reference frame, as are all future
model equations given. This gives the representation that the
observer is stationary at distance x from the fracture site and
watches the wave pass by.

It is worth noting that the strains encountered in our experi-
ments are two orders of magnitude higher than the amplitudes
of solitary waves in [9,10,13,54]. It is well known that small
amplitude solitary waves of the Gardner equation are very
close to the solitary waves of the KdV equation, while ex-
tended models are better at describing waves of moderate
amplitude (see [28] and references therein).

The linear approximation is obtained by linearizing the
Gardner equation near the nonzero prestrain level e = e0 =
const, which can be formally viewed as changing the value
of E and letting β = γ = 0. We note that the acoustoelastic
effects (changes to the properties of the linear waves in pre-
deformed media) have been extensively studied (e.g., [55–58]
and references therein). The KdV model is obtained by con-
sidering the approximation up to and including the quadratic
terms. We also note that the physically linear and geometri-
cally nonlinear Saint Venant–Kirchhoff (SVK) approximation
is obtained by letting the Murnaghan moduli equal to zero,
i.e., l = m = n = 0, which implies a particular case of the
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Gardner equation with

β = 3E , γ = E

8
(1 + 2ν2). (7)

The general Gardner equation (6) with independent parame-
ters β and γ accounts for both the geometrical and physical
sources of nonlinear corrections (up to cubic corrections). We
also note that the dispersion coefficient does not depend on
any nonlinear moduli.

B. Viscoelastic corrections

Describing viscoelastic properties of polymers is a chal-
lenging task, and there are many different approaches. Among
the frequently used approaches we note the introduction
of complex moduli and advanced computational algorithms
accounting for attenuation and dispersion (e.g., [59–61]),
and models generalizing Maxwell-Voigt-type elements (e.g.,
[62–65]). Other approaches to the modeling of viscoelasticity
have been recently discussed, in another context, in [66] (see
also the references therein). The possibility to adequately
describe the dynamic behavior of PMMA with the help of
effective elastic moduli in intermediate regimes of impact
tests was reported in [21]. Waves very similar to undular
bores generated by fracture in our study have been reported in
impact tests with PMMA (although not recognized as undular
bores), and the important role of the geometrical dispersion
in situations when the wavelength is only moderately longer
than the cross-sectional dimensions, as is the case in our study,
has been established [21,22] (see also the references therein).
The strain rates encountered in our experiments, and the ini-
tial wave profiles generated by tensile fracture [29–32], are
similar to those found in impact tests with PMMA. Therefore,
it is natural that we also see the developing undular bores in
our experiments (at room temperature, and as an intermediate
regime).

To include viscous effects in the model equation, here we
use a spring and dashpot model consisting of a nonlinear
spring of modulus E0 and two Maxwell elements all in par-
allel with each other which was shown to be a good model
for PMMA over a wide range of frequencies (see [62–64]
and references therein). In terms of our model, the effective
constitutive equation is then

σ = E0e + β

2
e2 + γ

3
e3 + ρδ2ett

+ E1

∫ t

0
ė(τ )exp

( t − τ

θ1

)
dτ

+ E2

∫ t

0
ė(τ )exp

( t − τ

θ2

)
dτ, (8)

where we have included the dispersive term due to the ge-
ometrical dispersion. The first integral term describes the
viscoelastic response of the material at low strain rates and
has modulus and relaxation time E1 and θ1 respectively. The
second integral term describes the viscoelastic response of the
material at high strain rates and has modulus and relaxation
time E2 and θ2, respectively.

The slow relaxation time θ1 is of the order of seconds in
accordance with the observed experimental time taken for

total relaxation to occur. Thus θ1 is much larger than the times
relevant to our experiments, and the first integral term reduces
to a linear spring with modulus E1. Then (8) becomes

σ = Eae + β

2
e2 + γ

3
e3 + ρδ2ett

+ E2

∫ t

0
ė(τ )exp

( t − τ

θ2

)
dτ, (9)

where Ea = E0 + E1. On substituting (9) into the equation of
motion

ρett = ∂2σ

∂x2
,

we have

ρettt + ρ

θ2
ett = EAexxt +

(
β

2
e2 + γ

3
e3 + ρδ2ett

)
xxt

+ 1

θ2

(
Eae + β

2
e2 + γ

3
e3 + ρδ2ett

)
xx

,

(10)

where EA = E0 + E1 + E2. We now nondimensionalize (10)
in the same spirit as with (4) by using the nondimensional
variables (5) with T0 = L0/c where c2 = EA/ρ. This gives, on
omitting tildes,

(ett − exx )t = ε̂
(−e2 + γ̂ 2e3 + δ̂2ett

)
xxt

− ε̃

(
ett − c2

a

c2
exx

)

+ ε̂ε̃
(−e2 + γ̂ 2e3 + δ̂2ett

)
xx, (11)

where c2
a = Ea/ρ. We have introduced two small parameters

ε̂ = e0|β|
2ρc2

, ε̃ = T0

θ2
,

and constants

γ̂ 2 = 2γ e0

3|β| , δ̂2 = 2δ2EA

e0|β|L2
0

.

We note that on using the values of EG, βG and γG determined
in the next section, and the value of θ2 ∼ 1 × 10−4 s from [62]
we have

ε̂ ∼ 0.07, ε̃ ∼ 0.1, γ̂ 2 ∼ 0.6, δ̂2 ∼ 0.01.

Keeping the small dispersive correction is important in order
to describe the dispersive resolution of the gradient catastro-
phe (e.g., [1,2,4,7] and references therein).

Looking for a solution to (11) in the form

e(x, t ) = f (ξ, X ) + ε̂ f (1)(ξ, X ) + O(ε̂2),

where ξ = x − t and X = ε̂x, at order ε̂ we have

fX − f fξ + 3γ̂ 2

2
f 2 fξ + δ̂2

2
fξξξ + 1

2

ε̃

ε̂

(
1 − c2

a

c2

)
f

+ A(X )ξ + B(X )

= 0.

We have neglected terms O(ε̃) but not O(ε̃/ε̂) ∼ O(1). The
functions A(X ) and B(X ) result from integration with re-
spect to ξ twice. From our experimental observations, and
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at relevant distances, the poststrain is a function of distance
x only, therefore A(X ) = 0 to remove the dependence on
time through the variable ξ . At all distances relevant to our
experiments we observe no relaxation of the prestrain at times
before the release wave passes through.

Hence in the prestrain region ( f = 1) we require that

B(X ) = − 1
2

ε̃
ε̂
(1 − c2

a
c2 ) so that the prestrain level at all dis-

tances from fracture remains constant until the release wave
arrives. Hence we have

fX − f fξ + 3γ̂ 2

2
f 2 fξ + δ̂2

2
fξξξ + 1

2

ε̃

ε̂

(
1 − c2

a

c2

)
( f − 1)

= 0. (12)

Returning to the original dimensional variables, (12) becomes

ex + 1

c
et − β

2ρc3
eet − γ

2ρc3
e2et

− δ2EA

2ρc5
ettt + μ

2c
(e − e0)

= 0, (13)

where

μ =
(

1 − c2
a

c2

)
/θ2.

Thus, we conclude that the leading-order viscoelastic correc-
tion, within the scope of the present model, is similar to the
Rayleigh dissipation term of the models describing undular
bores in fluids (e.g., [67]). Note that on setting E1 = E2 = 0,
Eq. (13) reduces to the Gardner equation (6).

C. Higher-order dispersive and nonlinear corrections

Finally, following from the recent systematic asymptotic
derivation of the equation of motion for a longitudinal strain
wave in a nonlinear elastic rod (circular cross section) [28],
we introduce the next dispersive correction and two nonlinear
terms present at the same order as the cubic nonlinear term
with coefficient γ [see (4)], thus the full equation is given
by the following viscoelastic extended Korteweg–de Vries
(veKdV) equation:

ex + 1

c0
et − β

2ρc3
0

eet − γ

2ρc3
0

e2et

− δ2

2c3
0

ettt + μ

2c0
(e − e0)

+ a1ettttt + a2et ett + a3eettt

= 0, (14)

for some parameters a1, a2, and a3, which have been calcu-
lated for the rod in [28] but are currently unknown for a bar of
rectangular cross section. We have also identified the effective
modulus of the system with the dynamic Young’s modulus
EA = E .

We will refer to Eq. (14) with μ = 0 as the extended
Korteweg–de Vries (eKdV) equation. The eKdV equation has
previously emerged and was extensively studied in the context
of fluids (e.g., [68–71] and references therein).

V. PARAMETER FITTING

We use results from both experiments to obtain suitable
parameters suitable for each regime. Parameters that are the
same in both regimes are the geometric parameters mea-
sured as b1 = 0.005 m and b2 = 0.0015 m, the density of
the samples measured as ρ = 1060 kg m−3 and ν = 0.34, in
agreement with the observed shear and longitudinal wave
speeds.

The third-order Murnaghan’s moduli of similar polymers
have been measured at low strain rates in [55,72]. Experiments
with strain solitons in [9,10] and ultrasonic waves in [73]
have given evidence that β < 0 for PMMA. Young’s modulus
of PMMA increases with increasing strain rates [48,74]. In
what follows we are not concerned with the expressions for
the nonlinearity coefficients in terms of Murnaghan’s moduli
(since the latter are unknown for the conditions of our ex-
periment), but instead use β and γ which matter the most
at distances close to the fracture site, as the main effective
fitting parameters, alongside E (known from [74], and used as
a control parameter). We then fine-tune the solution by fitting
the remaining parameters in the areas of their importance.

We first consider the results of the tensile fracture experi-
ment (see Fig. 3) to provide parameters suitable for prestrains
and strain rates of ∼1% and ∼800 s−1 respectively.

The initial profile for all models is approximated by a
smooth decreasing step between the levels of κ and κt ,

e(x0, t ) = κt + κ − κt

2

[
1 − erf

( t − η1

2L̃

)]
, (15)

where x0 = 0.05 m. We take κ as the average of prestrain from
the entire set of experiments which is κ = 0.0109. The value
of κt is taken as the average of the poststrain in the 0.05 m
curves only, as we observe that the level of poststrain changes
with distance, thus κt = 0.0013.

The “slope” L̃ (transition time) and shift η1 were found by
numerically fitting (15) to the experimental strain at 0.05 m
in the region e ∈ [0.30, 0.45] using the lsqnonlin function in
MATLAB [75]. This region was chosen as the bore develops
from it, and gave η1 = 2.3 × 10−5 s and L̃ = 2.63 × 10−6 s.

A least squares fitting that used all experimental data was
attempted, but proved unsuccessful as the results produced
parameters giving no oscillations at relevant times. Therefore,
the parameters E , β, and γ were determined by the following
theoretical method.

We assume that for the initial profile (15) the initial evolu-
tion is governed by the hyperbolic equation

ex + 1

c0
et − β

2ρc3
0

eet − γ

2ρc3
0

e2et = 0. (16)

All other terms are assumed to be small close to the fracture
site. Equation (16) can be solved by the method of character-
istics. In particular we find that the wave speed at e = const is
given by

dx

dt
= 2ρc3

0

2ρc2
0 − βe − γ e2

.

By choosing three distinct points on the initial profile that
match the experimental curve, we find the unknown param-
eters by requiring that those points are mapped correctly onto
the experimental strain profile at the next recorded distance
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TABLE III. The averaged values of E , β, and γ found from
fitting with different numbers of points Np using averaged 0.05 m
and 0.10 m profiles from natural tensile fracture.

Np E (GPa) β (GPa) γ (GPa)

3 5.25 −98.8 7720
4 5.21 −88.8 7370
5 5.17 −74.4 5940
6 5.20 −98.0 8830
7 5.21 −113 10 900
8 5.23 −121 11 800
9 5.33 −196 21 100
10 5.31 −196 20 200
11 5.30 −171 15 700

(0.10 m). We chose the initially fitted region e ∈ [0.30, 0.45]
and divided this region into Np − 1 equal intervals. The end
points of all intervals form a set of Np points. For each Np =
3, 11, we found parameters for the C

Np

k = Np!
k!(Np−k)! possible

triples of points (k = 3) and took the average. The results are
shown in Table III and in Fig. 5.

All parameters have a minimum at Np = 5 shown by the
dashed box in Fig. 5, indicating that the fitting errors are close
to zero (i.e., in the vicinity of these values dE ≈ 0, dβ ≈
0, dγ ≈ 0). The values of the parameters at Np = 5 are EG =
5.17 GPa, βG = −74.4 GPa, and γG = 5940 GPa.

We must emphasize that these effective parameters are de-
termined only by the first two strain profiles at x = 0.05 m and
0.10 m, and there is no more fitting at subsequent distances
up to x = 0.50 m. Note that β is negative and all values of
the control parameter E found (to 1 decimal place) fall within
the range of values 5.0–5.3 GPa measured experimentally at
similar strain rates to what we encounter in [74].

This was repeated with γ = 0 to give the similar fitting
method for the KdV model. Parameters were found for the
C

Np

k = Np!
k!(Np−k)! possible pairs of points (k = 2) and then av-

eraged to give the values shown in Table IV. A minimum
is observed for both parameters around the points Np = 7, 8,
thus EKdV = 5.12 GPa and βKdV = −33.4 GPa. On compar-
ison of the KdV model solution to experimental results with
these parameters we found the slope of the release wave to be
too steep, and the cubic nonlinearity to be important. This is
understandable since the strains are much greater than those
described by the KdV approximation. We also note that our
values are not too far from the values of E and β found from

FIG. 5. The values of E (right axis), β and γ (left axis) on split-
ting the region [0.30, 0.45] by Np points from natural tensile fracture.
Values are normalized against EG = 5.17 GPa, βG = −74.4 GPa,
and γG = 5940 GPa.

TABLE IV. The averaged values of E and β (with γ = 0) found
from fitting with different numbers of points Np using averaged
0.05 m and 0.10 m profiles from natural tensile fracture.

Np E (GPa) β (GPa)

3 5.13 −36.2
4 5.13 −35.1
5 5.13 −34.2
6 5.13 −34.2
7 5.12 −33.4
8 5.12 −33.4
9 5.12 −34.2
10 5.13 −34.9
11 5.14 −37.3

completely different compression strain wave experiments on
PMMA: EKdV = 5.27 GPa and βKdV = −15.9 GPa (e.g., [9]).

For the linear and SVK models obtained from (6), the only
unknown parameter is E . We fitted this numerically such that
the solution at 0.10 m best matched the experimental data
in the initially fitted region which gave Elin = 5.05 GPa and
ESV K = 4.96 GPa. The resulting solution for these two models
was similar.

We note here that the reduced value of Elin compared to
EG is consistent with the linearization of the Gardner equation
around the average value of the prestrain of the profiles at the
distance 0.10 m used to fit parameters of both models. Indeed,
the average prestrain of the 0.10 m profiles is κ̄ = 0.0105.
Then, substituting e = κ̄ + ē(x, t ) into (6) and linearizing
with respect to ē gives

ēx +
(

1

c0
− βκ̄2

2ρc3
0

− γ κ̄2

2ρc3
0

)
ēt − δ2

2c3
0

ēttt = 0. (17)

The wave speed of this linearized Gardner equation is given
by the reciprocal of the ēt coefficient as

clin = 2ρc3
0

2ρc2
0 − βκ̄ − γ κ̄2

.

On substitution of E = EG, β = βG and γ = γG, we ob-

tain clin =
√

E
ρ

= 2.18 × 103 m s−1, which gives E = Elin =
5.05 GPa, which is the same as was found above in the inde-
pendent fitting.

We note the value of ESV K to be smaller than other values
reported for PMMA in this regime and β to be positive from
(7), whereas in our fitting β was always negative. Thus, we
rule out the KdV and SVK model from the forthcoming dis-
cussion, and concentrate on the extended KdV model as the
one giving the best fit, and the linearized model (linearized
near the nonzero prestrain level) as a simple model which,
at the distances relevant to our experiment, partially captures
some features of the full model at the front of the bore. The
initial profile and the solutions of the Gardner model (6) and
linearized near prestrain Gardner model (17) at 0.10 m are
shown in Fig. 6.

On comparing the solution of the models obtained from
the Gardner equation (6) with parameters EG, βG, and γG to
corresponding results from our experiments (discussed later),
we observed at all distances that the duration of the lead-
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FIG. 6. The initial profile (0.05 m) and the Gardner (6) and lin-
earized Gardner (17) solutions at 0.10 m with corresponding natural
tensile fracture experimental profiles used to fit the initial condition
and parameters of the models in the regime of 1% strain and 800 s−1

strain rate.

ing oscillation in the models, defined as the time between
the first and second minima, was a bit smaller than that in
experiments. Therefore we introduced the fifth derivative dis-
persive correction and fitted a1 such that the duration of the
model matched the experiment at the last recorded distance
(0.50 m) which gave a1 = 1 × 10−28 s5 m−1. Finally a2 was
fitted such that the amplitude of the leading oscillation, de-
fined as the vertical distance from the first minimum to the first
maximum, matched the experimental amplitude, giving a2 =
5.7 × 10−14 s3 m−1. The parameter a3 was found to offer no
significant improvement to the solution in comparison to the
experiments, so is omitted from the modeling, for simplicity.
While there are no analytical expressions for these coefficients
for the bar, the order of magnitude of the fitted coefficients is
close to that for the known coefficients computed for a rod
with the radius equal to the half the width of our bar.

In nondimensional variables (5), the fifth dispersion and
et ett coefficients are

ā1 = − a1c5
0E

L4
0e0|β| , ā2 = −a2c3

0E

L2
0 |β| ,

respectively. Our assumptions can now be validated as we
find that ε = 0.157, β̄ = −1, γ̄ = 0.290, δ̄2 = 0.005, ā1 =
−0.0001 and ā2 = −0.047 with EG, βG and γG (e0 ∼ 0.0109,
L0 ∼ 0.03 m). We do not fit μ here as the spread of the
experimental data was too large.

We now turn attention to the induced fracture experiment.
The smaller range of prestrain and strain rate (i.e., better
control of the conditions at fracture) allow us to fit the vis-
coelastic parameter μ by looking in the region of poststrain.
Here, sufficiently far away from the release wave, oscillations
and shear waves, all time derivatives are close to zero. Hence
Eq. (14) reduces to

ex + μ

2c
(e − e0) = 0. (18)

Solving (18) gives the strain in the poststrain region as

e = e0 − A exp
(
− μ

2c
x
)
,

where A is a constant. On substituting the values of κt from
the experimental data at x = 0.05 m and x = 0.30 m, we find
that μ = 215 s−1.

TABLE V. The averaged values of E , β, and γ found from fitting
with different numbers of points Np using averaged 0.05 m and
0.10 m profiles from induced tensile fracture.

Np E (GPa) β (GPa) γ (GPa)

3 5.66 −49.4 1860
4 5.59 −34.4 1110
5 5.61 −36.6 1100
6 5.61 −41.0 1470
7 5.62 −41.2 1480
8 5.58 −39.5 1580
9 5.70 −75.0 3310
10 5.70 −75.8 3340
11 5.71 −95.0 4730

The same method as previous was used to fit E , β, γ ,
and then the parameters a1 and a2. The values used to con-
struct the initial profile (15) appropriate to this experiment
were κ = 0.022, κt = 0.0048, η1 = 2.387 × 10−5 s−1, and
L̃ = 2.1 × 10−6 s−1. The results for E , β, γ are shown in
Table V and Fig. 7. The parameters reach a flat minimum
around the points Np = 4, 5, 6, 7, 8 as indicated by the dashed
box in Fig. 7, before increasing to relatively larger values.
We take the average of those results as our parameters for
this regime, giving EG2 = 5.6 GPa, βG2 = −38.5 GPa, and
γG2 = 1350 GPa. Then we determine a1 = 2 × 10−28 s5 m−1

and a2 = 4.9 × 10−15 s3 m−1.
We note that the inclusion of viscoelastic effects introduces

attenuation and changes the dispersion of the system. There-
fore the correction provided by the fifth derivative term should
be viewed as accounting, at least partially, for both sources
of dispersive corrections: geometric and viscoelastic, while
attenuation is accounted for directly by the inclusion of the
leading-order viscoelastic term into the model.

Again, our assumptions can now be validated as we
find that ε = 0.151, β̄ = −1, γ̄ = 0.257, δ̄2 = 0.005, ā1 =
−0.0001, and ā2 = −0.01 (e0 ∼ 0.022, L0 ∼ 0.03 m). The
coefficient of the viscoelastic term in nondimensional vari-
ables (5) is

μ̄ = μL0E

2c0e0|β| ,

which takes the value μ̄ = 0.009 with the parameters above.
The fitted value of E obtained from the linear Gardner

model was found to be Elin2 = 5.46 GPa. This value is again
close to 5.42 GPa, which is the value of Young’s modulus

FIG. 7. The values of E (right axis), β and γ (left axis) on
splitting the region [0.30, 0.45] by Np points from induced ten-
sile fracture. Values are normalized against EG = 5.6 GPa, βG =
−38.5 GPa, and γG = 1350 GPa.
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TABLE VI. A summary of the parameter values obtained from
the natural and induced tensile fracture experiments (strain rates
∼800 s−1 and ∼2000 s−1, respectively) using the theory-based fitting
discussed in this section.

Parameter Natural Induced

Elin (GPa) 5.05 5.46
E (GPa) 5.17 5.6
β (GPa) −74.4 −38.5
γ (GPa) 5940 1350
μ (s−1) — 215
a1 (s5 m−1) 1 × 10−28 2 × 10−28

a2 (s3 m−1) 5.7 × 10−14 4.9 × 10−15

a3 (s3 m−1) — —

obtained by linearizing the Gardner equation (6) about the
average prestrain at 0.10 m from the induced tensile frac-
ture experiment. The prestrain and strain rate encountered in
induced fracture experiments are greater than that in tensile
fracture experiments and result in a more nonlinear regime.

A summary of all parameters obtained is shown in Ta-
ble VI. The parameters obtained from our two types of
experiments are similar but not identical. Indeed, the strain
rate encountered in the two experiments are different, there-
fore the parameter values obtained from them can also be
expected to be different as the properties of PMMA are well
known to be strain rate dependent. This is because, while the
leading order viscoelastic term, with a single time constant,
can account for the experimentally observed rising level of
poststrain and damping of the oscillations, full treatment of
the viscoelastic behavior of PMMA would require a model
that includes a broad spectrum of time constants. In the ap-
proach to the description of viscoelasticity adopted in this
paper, the elastic parameters are strain rate dependent.

On comparison of EG and EG2 obtained from experiments
with strain rates of ∼800 s−1 and ∼2000 s−1 respectively, we
note that EG2 is larger than EG, which agrees with other exper-
iments where Young’s modulus of PMMA has been found to
increase with strain rate [48,76].

VI. DISCUSSION

Results of the Gardner model (6) and eKdV equation
((14) with μ = 0) are shown individually in detail in Fig. 8
alongside corresponding experimental profiles from natural
tensile fracture. The model equations were solved numerically
with a pseudospectral method using 4000 points. The fourth-
order Runge-Kutta method was used with the spatial step of
1 × 10−4 m and a rising slope was added sufficiently far away
to the left by the introduction of another error function for
periodicity.

Both models capture, with differing accuracy, the main
features of the developing bore under the conditions of our
experiment with the parameters obtained from the fitting. In
particular from Fig. 8(a) the leading oscillation is reasonably
well described by the Gardner model. However, it is clear that
the fifth-order dispersive term is required to capture further
oscillations in the tail of the bore [Fig. 8(b)].

In both cases, the nonlinear Gardner models provide a
better comparison to experiments than the linear equations
obtained on linearization near the prestrain, especially at the
later distances (0.40–0.50 m) where the slope of the linear
solutions become too steep. The oscillatory part of the bore is
similar between the linear and nonlinear Gardner models. In
particular, the leading oscillation is reasonably well described
by the linearized Gardner model, which we discuss later. Ac-
cording to [63], the conditions of the natural tensile fracture
experiment in which the strains did not exceed much the value
of 0.01 and strain rate ∼800 s−1, constitutes a weakly nonlin-
ear regime. We also note that the stress at fracture was equal
to ∼33 MPa, which at our loading strain rate of 3 × 10−3 s−1

is also a borderline regime between linear and nonlinear (see
Fig. 3 in [48]).

In all models, the time at which the strain starts to de-
crease corresponds remarkably well to experimental results
at each distance which indicates that the speed of the front
of the release wave is captured well. However, the nonlinear
model continues to closely follow the slope of the release
wave. The linear models separate towards the bottom.

We now turn attention to the induced tensile fracture exper-
iment. The initial profile given in the form of (15) disregards

FIG. 8. (a) The (a) Gardner (6) (blue, dash-dot), (b) eKdV [(14) with μ = 0] (blue, dash-dot) solutions with the error function initial profile
given by (15), along with the experimental profiles (pink) between 0.20 and 0.50 m from the fracture site for natural tensile fracture. Profiles
are normalized against the prestrain and a vertical offset of 0.4 is used to separate each successive profile.

044207-10



UNDULAR BORES GENERATED BY FRACTURE PHYSICAL REVIEW E 104, 044207 (2021)

FIG. 9. The veKdV model (14) (a) with the error function initial profile at 0.05 m (blue, dash-dot) and (b) with the spline initial profile at
0.10 m with experimental profiles (pink, solid) between 0.05 and 0.30 m from the induced tensile fracture site. Profiles are normalized against
the prestrain and a vertical offset of 0.4 is used to represent an increase of 0.10 m.

any oscillations that are present at 0.05 m from the fracture
site since they are masked by the shear waves. However, by
0.10 m there is sufficient separation between the longitudinal
wave and the leading shear wave for the first oscillation to be
identified. So to improve the initial profile, we used a spline
approximation of the period from the top of the release wave
to the end of the first oscillation of the 0.10 m induced tensile
fracture experimental profile and used it as the initial profile.
The profile was then scaled so that the prestrain was equal
to the average prestrain of the experiments, 0.022, to best
represent the entire set of results. An error function was again
fitted sufficiently far away from the spline for periodicity, and
the problem was solved numerically with a pseudospectral
method as before.

A comparison of the two initial profiles is given in Fig. 9
which shows the solutions of the veKdV model (14) with
parameters corresponding to the induced tensile fracture ex-
periment (see Table VI) with error function initial profile
[Fig. 9(a)] and a spline initial profile [Fig. 9(b)], both along
with corresponding experimental profiles.

Whilst the solution of the veKdV model with the value of
EG2 fitted using our approximations did capture the bore quite
well, a slight increase of EG2 from 5.6 GPa to 5.75 GPa gave
a better overall agreement to the experimental data. We note
that each measurement corresponds to an individual test with
unique initial profiles, and we find suitable parameters that
best represent the entire set of results.

The slope of the release wave is captured well with both
initial profiles. Oscillations develop from the initial profiles
that gently increase in duration and amplitude with prop-
agation distance which closely agrees with the oscillations
observed in experiments at times before the arrival of the
leading shear wave. The spline does give a better comparison
at the later distance, and oscillations are very well described
at all distances.

The duration of the leading oscillation that emerges from
the error function initial profile is the same as that in the solu-
tion from the spline at 0.30 m. The duration of the oscillations
in the tail of the bore are slightly better captured with the
spline initial profile (see inserts in Fig. 9).

In Fig. 10(a) we show the solution of the veKdV model
(14) with the spline initial profile with the parameter a2 =
9 × 10−15 s3 m−1 which was fitted so that the amplitude of the
spline solution matched the experimental amplitude at 0.30 m.
Improvements can be seen as the level of the first minimum
is closer to the experimental first minimum with the spline.
Also, the level of the first minimum in relation to the second
minimum is better captured now.

A comparison of the linearized Gardner, linearized eKdV
and veKdV models with the spline initial profile are shown in
Fig. 10(b) along with the experimental profile at 0.30 m from
the fracture site.

The effect of the fifth-order dispersion term is clear on
comparison of the linearized Gardner solution to the lin-
earized eKdV solution. The tail of the bore is significantly
extended with amplitude and duration of oscillations compa-
rable to what is observed in the experiment.

The improvement due to the viscoelastic term can be seen
in this comparison as the level on which the oscillations
develop is in agreement with the experiment. The spline pro-
vides the best solution as it gives the closest match to the
experiments.

Although the amplitude of the leading oscillation of the
linearized Gardner solution is too small compared with ex-
periment, the duration of the leading oscillation is captured
rather well and is in good agreement with both experiments.
Therefore, the linear bore solution discussed in the next sec-
tion is relevant to our experiments, as well as being directly
applicable to the modeling of undular bores in nearly linearly
elastic materials such as steel.

A. Linear bore

With the error function initial profile (15), the linearized
Gardner problem has the form

⎧⎪⎪⎨
⎪⎪⎩

ex + 1

c0
et − δ2

2c3
0

ettt = 0,

e(x0, t ) = κt + κ − κt

2

[
1 − erf

( t − η1

2L̃

)]
.

(19)

044207-11



HOOPER, RUIZ, HUNTLEY, AND KHUSNUTDINOVA PHYSICAL REVIEW E 104, 044207 (2021)

FIG. 10. The (a) veKdV model (14) with spline initial profile at 0.10 m with a2 fitted such that the amplitude of the first oscillation of the
spline solution matches experiments at the 0.30 distance (blue, dash-dot). (b) A comparison of the linearized Gardner (green, dot), linearized
eKdV (red, dash), and veKdV (blue, dash-dot) models at 0.30 m from the induced tensile fracture site, all with the spline initial profile (0.10 m).
Experimental profiles (pink, solid) between 0.10 and 0.30 m from the induced fracture site are also shown. Profiles are normalized against the
prestrain and a vertical offset of 0.4 is used to represent an increase of 0.10 m.

The transformation

X̃ = 6δ2

2c3
0

x, T̃ = t − x

c0
, ē = κ − e

κ − κt
(20)

maps the problem (19) to that given in [77] (up to the change
in notations). We used the analytical solution given in [77] to
obtain the solution to (19) as

e(x, t ) = κt + (κ − κt )
[
1 − exp

(
2L6

1

27x2

)

×
∫ ∞

b(x,t )
exp

(
sL2

1

(3x)2/3

)
Ai

(
s + L4

1

(3x)4/3

)
ds

]
,

(21)

where b = ( 2
3δ2x )1/3[x − c0(t − η1)], L1 = L̃( 2c3

0
δ2 )1/3, and Ai is

the Airy function.
We note that the function ẽ(x, t ) = e(x, t ) − κ with κt = 0

is an analytical description of a compressive bore in impact
experiments, within the scope of linear elasticity.

In the limit x → ∞, the solution (21) tends to the integral
Airy solution (solution obtained when the initial condition is
a step function [78])

e(x, t ) = κt + (κ − κt )
[
1 −

∫ ∞

b(x,t )
Ai(s)ds

]
, (22)

regardless of the gradient of the initial condition, i.e., the
linear solution forgets its initial slope as it propagates [77].
The solution (22) is also obtained from (21) by taking the
limit L̃ → 0, whereby the initial condition tends towards a
step between the levels of κt and κ .

The amplitude of the oscillatory part of the solution (21),
characterized by the vertical distance between the first mini-
mum and first maximum, will grow and approach the limiting
value as x → ∞. Using the result for this limiting value in
[77], we find that a approaches the limiting value of

a ≈ 0.466(κ − κt ).

Here κ − κt defines the difference between the values of the
pre- and poststrain.

As this value is achieved only in the limit x → ∞, it is
not possible to give a distance from x0 at which this value
is reached; however, the distance from x0 at which the value
of a reaches a particular percentage of the maximum can be
calculated. We remove dependence on the slope parameter
L̃, and the factor of 1/6 in front of the dispersive term by a
further scaling T̂ = T̃

L̃
, X̂ = X̃

6L̃3 . The solution to this reduced
problem is given by

ē(X̂ , T̂ ) = 1 − exp

(
2

27X̂ 2

)

×
∫ ∞

b(X̂ ,T̂ )
exp[s(3X̂ )−2/3]Ai[s + (3X̂ )−4/3]ds,

where b(X̂ , T̂ ) = −T̂ (3X̂ )−1/3. In the spirit of [67], by nu-
merically finding the distance at which the value of a reaches
50% and 90% of its limiting value, we find that the distance at
which (21) reaches these thresholds as

x50 ≈ 3.5
2c3

0L̃3

δ2

and

x90 ≈ 56
2c3

0L̃3

δ2
,

respectively. Note that here smaller values of L̃ give steeper
slopes, thus for steeper slopes, the amplitude thresholds are
reached sooner. With an increasing leading amplitude natu-
rally comes more developed oscillations trailing behind. This
helps to explain the reduced amplitude of oscillations in the
0.45 m profile of Fig. 3 when compared to the 0.40 m pro-
file, for example, as the strain rates here were ∼700 s−1 and
∼800 s−1, respectively.

The duration of the first oscillation of the bore in seconds,
defined as the time between the first two minima of the solu-
tion (21), can be given by finding its stationary points. Indeed,
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FIG. 11. Two experimental strain profiles with different values of
prestrain recorded 0.30 m from the natural tensile fracture site. In the
insert, the black (thin) curve has been translated in order to provide
an easier comparison of oscillations.

differentiating (21) with respect to t gives

et (x, t ) = c0(κ − κt ) exp

(
2L6

1

27x2

)
exp

(
bL2

1

(3x)2/3

)

× Ai

(
b + L4

1

(3x)4/3

)(
2

3δ2x

)1/3

. (23)

On solving et (x, t ) = 0, it is clear that this is satisfied only at
the zeros of the Airy function. In particular, we are interested
in the first and third zeros, which correspond to the first and
second minima, to calculate the duration. These are found
when the argument of the Airy function is equal to −2.33811
and −5.52056, respectively [79]. From this we find the dura-
tion as the difference between the values of the first and third
stationary points to be gently increasing as

t̂ (x) ≈ 3.643

c0

(
δ2x

)1/3
.

This is an extension of the result given in [77] for the integral
Airy solution. Importantly, this result is not dependent on the
height or gradient of the initial slope as there is no depen-
dence on κ , κt , or L̃. Thus the expansion of the duration is
the same for the integral Airy solution (22) and the solution
(21). The independence of duration on strain rate, prestrain,
and poststrain can be seen from the natural tensile fracture
profiles presented in Fig. 11. Indeed, the prestrain, poststrain,
and strain rate are different between the two measurements,
as well as the difference between prestrain and poststrain, but
the duration of the first oscillation is the same in both. As a
final comment regarding Fig. 11, one should note the clear
structure of an undular bore in both experimental profiles.

While the gradient of the solution is given in full by (23), it
is instructive to find the gradient at a point on the front slope
of the bore by evaluating it at t = η1 + x/c0, where x is the
distance from x0. On substitution, we have

gs(x) = c0(κ − κt ) exp

(
2L6

1

27x2

)

× Ai

(
L4

1

(3x)4/3

)(
2

3δ2x

)1/3

.

This function gradually decreases with propagation distance,
thus the front slope of the bore gets less steep. This formula

is an extension of the counterpart of the result for the integral
Airy solution in [77], which can be recovered by taking the
limit L̃ → 0 as

gs(x) ≈ 0.3101c0(κ − κt )

(
1

δ2x

)1/3

.

VII. CONCLUSION

Features of an undular bore with a gently expanding in
amplitude and duration oscillatory structure connecting two
levels of strain have been observed in two sets of laboratory
experiments with a PMMA waveguide undergoing relaxation
after both natural and induced tensile fracture.

A viscoelastic extended KdV equation was derived which
is able to capture the main features of the observed structure
at times up to the arrival of the leading shear wave.

Simple formulas to describe features such as the amplitude
and duration of the leading oscillation have been derived
from the analytical solution to the linearized near prestrain
Gardner model which provide a qualitative agreement to what
is observed in experiments. This observation invites theo-
retical studies within the scope of the extended viscoelastic
models in order to investigate the full range of validity of
this approximation under the conditions of our experiments.
Useful reviews of the dissipative extensions of the KdV and
Gardner-type models of undular bores can be found in [80,81].

The fifth-order dispersive term captures additional oscil-
lations in the tail of the bore up to times of the arrival of
shear waves which are not modelled. Coupled models for
longitudinal and shear waves should be used in this area.

Some features, such as the rising level of poststrain with
distance from fracture, are not described by the elastic models
but have been captured by the introduction of the leading-
order viscoelastic term.

To fit the parameters more accurately, experimental mea-
surements of the same wave at different distances is required.
We reiterate that all measurements presented in this paper are
from individual tests which will all, inevitably, have slightly
different initial conditions. The parameters that we have ob-
tained have proven to give good agreements between the
models and experiments and are in line with other experiments
that have been performed on PMMA at strain rates similar to
what we have presented.

Experiments with longer waveguides to enable measure-
ments further away from fracture are necessary to determine
the long-time development of undular bores in PMMA, and
the limitations of the models. The research opens avenues
for the study of undular bores in solids, including their in-
teraction, reflection and scattering by defects, with possible
applications in nondestructive testing.

From the studies of nonlinear dispersive shock waves
described by the KdV-Gardner-type equations, and their ex-
tensions [1,80–85], the behavior of the bore strongly depends
on the initial strain and slope of the wave and may result,
for greater values of both, in a significant increase of the
amplitude of oscillations. We expect such waves to be present
in the signals generated by earthquakes, fracking, and other
similar events in situations involving transverse fracture of an
appropriately prestrained waveguide.
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APPENDIX

The KdV undular bore described by the problem (1) and
(2) can be also considered as a function of the time variable,
measured at fixed values of the distance. Then an asymptoti-
cally equivalent problem formulation in the appropriate set of
scaled variables can be obtained in the form

ũx̃ − ũũt̃ − ũt̃ t̃ t̃ = 0. (A1)

Here, on comparison to (1), the scaled space variable x̃ and
time variable t̃ have been swapped. The problem should now
be formulated as the evolution of an increasing profile of the
form

ũ(0, t̃ ) =
{

0, t̃ < 0,

1, t̃ > 0,
(A2)

and the undular bore solution is shown in Fig. 12(a) as a
function of t̃ for the fixed value of x̃. The oscillations again
appear on the upper level.

We note that under a simple change of variables

ũ → 1 − û, x̃ → x̂, t̃ → t̂ − x̂, (A3)

Eq. (A1) is mapped to the equation

ûx̂ + ûût̂ − ût̂ t̂ t̂ = 0, (A4)

FIG. 12. (a) The solution of the KdV equation (A1) at x̃ = 0.05
(blue, solid) with initial profile (A2) (red, dot) and (b) the solution of
the KdV equation (A4) (blue, solid) at x̂ = 0.05 with initial profile
(A5) (red, dot).

and the initial profile (A2) to

û(0, t̂ ) =
{

1, t̂ < 0,

0, t̂ > 0.
(A5)

On solving Eq. (A4), which has positive nonlinearity and
negative dispersion coefficients, with the initial profile (A5),
we will obtain a somewhat differently looking wave structure
shown in Fig. 12(b), with oscillations now developing on the
lower level of the step.

Our models developed in the paper are similar to (A4), and
therefore the waves registered in our experiments look similar
to Fig. 12(b). Since there exists a simple mapping between the
wave structures shown in Fig. 12(a) and Fig. 12(b), we refer
to both as undular bores (up to the mapping).
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