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We take a deeper dive into the geometry and the number theory that underlay the butterfly graphs of the Harper
and the generalized Harper models of Bloch electrons in a magnetic field. The root of the number theoretical
characteristics of the fractal spectrum is traced to a close relationship between the Farey tree—the hierarchical
tree that generates all rationals and the Wannier diagram—a graph that labels all the gaps of the butterfly graph.
The resulting Farey-Wannier hierarchical lattice of trapezoids provides a geometrical representation of the nested
pattern of butterflies in the butterfly graph. Some features of the energy spectrum, such as absence of some of
the Wannier trajectories in the butterfly graph falling outside the number theoretical framework, can be stated
as a simple rule of minimal violation of mirror symmetry. In a generalized Harper model, number theoretical
framework prevails with the Farey-Wannier hierarchical lattice regrouping to form some hexagonal cells creating
different species of butterflies.
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I. INTRODUCTION

The butterfly graph—a quantum fractal, is a graph of en-
ergy spectrum of Bloch electrons in a two-dimensional square
lattice subjected to a traverse magnetic field. Resembling a
butterfly, it consists of self-similar pattern of nested sets of
copies of itself. Commonly referred as the Hofstadter but-
terfly after its discovery by Douglas Hofstadter in 1976 [1],
the subject has attracted a broad spectrum of physics and
the mathematics community [2–4]. Furthermore, there have
been various recent attempts to capture this iconic spectrum
in various laboratories [5]. The butterfly graph as a whole
describes all possible phases, the integer quantum Hall states,
of a two-dimensional electron gas [6] that arise as one varies
the electron density and the magnetic field. Each phase is char-
acterized by an integer that represents the quantum number
of Hall conductivity. Recent studies [2,7–9] have described
various features of the butterfly spectrum using pure number
theoretical reasoning and the quantum fractal is found closely
related to some abstract mathematical sets.

In this paper, we further examine the role of the number
theory in this quantum system where competition between a
crystalline lattice and cyclotron radius lies at the very heart of
the emergent hierarchical spectrum. We show that the Farey
tree—a hierarchical set that generates all prime fractions be-
tween zero and one and the Wannier diagram, which provides
a simple representation of the butterfly graph, are closely
related. Figure 1 highlights the number theoretical aspect of
the butterfly graph—a fractal made up of integers where the
integers represent the quantum numbers of Hall conductivity.
They appear as the slopes of straight line trajectories in a
unit square, the Wannier diagram. Furthermore, the nesting of
the butterfly spectrum is encoded in the Farey tree hierarchy.
Superposing the butterfly graph and the Wannier diagram as
shown in the rightmost panel in Fig. 1 unveils a hierarchical

lattice of trapezoids dubbed a Farey-Wannier lattice, where
every butterfly in the butterfly graph can be paired with a
trapezoid in the lattice. Our observation that the lattice ex-
cludes certain trapezoidal configurations that do not represent
butterfly patterns, falls outside number theoretical framework.
Such patterns are found to be described by a simple rule where
the forbidden configurations correspond to “higher order” vi-
olation of the symmetries of the butterflies.

In addition to the Harper model [10], the nearest-neighbor
(NN) tight-binding model of two-dimensional Bloch elec-
trons in magnetic field, we also discuss a generalized
next-nearest-neighbor (NNN) model [11–15] and show that
Farey hierarchy prevails in characterizing the hierarchical
structure of the energy spectrum. In the latter case, the Farey-
Wannier lattice regroups to form hexagonal cells that describe
butterflies with somewhat different number theoretical char-
acteristics. In our limited exploration, the butterfly recursions
for the generalized Harper equation is found to be described
by the scaling factors ζ = [n∗ + 1; 1, n∗] that underlie the
scalings of the the Harper equation spectrum. However, renor-
malization equations rooted in the Farey tree hierarchy leave
open the possibility of universality classes that describe self-
similar butterfly scalings in the generalized Harper model.

It is interesting and important to address the role of number
theory in characterizing some features of the butterfly graph in
various investigations of the variations of the Harper model—
a subject that continues to fascinate the scientific community.
In such studies, based mostly on numerics, number theoretical
tools are a great asset, as shown the case of a recent study of
perturbing the butterfly graph with density waves [16]. In this
paper, the Wannier-like diagram was found to provide a useful
insight toward the topological integers that label the gaps and
characterize an unusual kind of quantum Hall effects in the
system. This suggests the robustness of the role of number
theory in determining the spectral characteristics of butterfly
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FIG. 1. Sketch of plateau of Hall conductivity (left) and the butterfly graph where gaps are labeled with quantum numbers of the Hall
conductivity as shown by the arrows. The three vertical panels at the center portray the relationship between the butterfly graph (central panel)
and abstract mathematical hierarchical sets—namely, the Farey tree (top panel) and the Wannier diagram (bottom panel). In the rightmost panel,
the butterfly graph and the Wannier diagram are superimposed. This illustrates how the Wannier diagram provides a geometrical representation
of the butterfly graph as the boundaries and the centers of the butterflies are encoded in the Wannier trajectories.

graphs for a wide class of systems with competing length
scales.

In Sec. II, we began with a brief review of the butterfly
Hamiltonian and its relation with the Farey tree and the Wan-
nier diagram. Section III uses the mathematical framework
described in an earlier study [17] to show that the Farey Free
and the Wannier diagram are closely related. We would like
to point out that the importance of the Farey tree and the
Wannier diagram in the butterfly problem has been discussed
extensively in the past. However, to best of our knowledge, the
relationship between these two hierarchical sets has not been
known or discussed before.

Section IV introduces a Farey-Wannier hierarchical lattice
of trapezoids that provides insight toward its relation to the
butterfly graph. In particular, every butterfly in the butterfly
graph can be paired with a trapezoidal cell in the Wannier

diagram. However, the converse is not true. Based on very
detailed numerical studies, we show that not all Wannier tra-
jectories lead to the formation of butterflies. This empirical
result that falls outside the number theoretical reasoning is
found to be related to an observation that the allowed butterfly
configurations correspond to minimum violation of geometri-
cal mirror symmetry.

Section V discusses a generalized Harper model with
unique species of butterflies. In the Appendix, we review
earlier work [17] describing self-similar Farey hierarchy as a
conformal map. The resulting Möbius transformation is iden-
tical to the self-similar butterfly recursion discussed recently
[8,9]. The number theoretical origin of these recursions extend
their applicability to describe self-similar hierarchies of the
NNN model and therefore provides another perspective on
hierarchical structures related to the Farey tree.
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II. THE BUTTERFLY GRAPH

The butterfly Hamiltonian, the Harper model, is a simple
model of two-dimensional noninteracting, spinless electrons
in a perpendicular magnetic field B where electrons moving
in a square lattice can hop only to its NN sites. The key
parameter in the problem is the magnetic flux per unit cell
of the lattice in the units of the flux quanta φ = Ba2

h̄/e . In its
simplest form, the model can be written as [18,19]

H = cos x + cos p, [x, p] = iφ, (1)

that is, a butterfly graph lives in the space of energy E and the
effective Planck’s constant φ. The graph resembles a butterfly
with a highly intricate recursive structure, consisting of noth-
ing but copies of itself, the sub-butterflies, nested infinitely
deeply.

For a rational flux φ = p
q , the butterfly spectrum consists

of q bands, separated by (q − 1) gaps that form the wings of
the butterfly. For q even, the two bands touch at the center
of the spectrum, that is, at E = 0. For the irrational case,
the spectrum is a Cantor set where the allowed values of the
energy is set of zero measure. This is known as the ten martini
problem—the name was coined by Barry Simon in his 1982
article [20], originating from the fact that Mark Kac offered
ten martinis to anyone who solves it.

A. Identifying subimages as butterflies

In the butterfly graph, infinitely nested sub-butterflies that
have lost most of the symmetries of the main butterfly may be
difficult to identify. Below we state what images qualify as the
“butterflies”, which are also referred as sub-butterflies.

In a given magnetic flux interval with the left and right
edges labeled as φL = pL

qL
and φR = pR

qR
, a butterfly is identified

when a single band at the left edge reforms again at the right
edge. In between the two edges, the bands split, forming a
very intricate fractal structure where, miraculously, the gaps
between the bands form smooth channels. The four dominant
gaps emanating from the four corners corresponding to the
upper and lower edges of the two bands meet at a flux value
labeled φc = pc

qc
, identified as the center of the butterfly. These

features are very distinct in the main butterfly formed by
single bands at φ = 0 and φ = 1 and center at φc = 1

2 but may
be somewhat opaque in a very distorted region of the butterfly
graph. As seen later, while discussing figures such as Figs. 8
and 9, this criterion provides an unambiguous way to identify
sub-butterflies in the Harper as well as the generalized Harper
model.

We note that in the Harper model, the sub-butterflies
in the region between φL and φR are well- approximated
by a distorted version of the original Hofstadter butterfly
[8,18]. However, in a generalized NNN-Harper model, dif-
ferent species of butterflies appear which are not related to
the main butterfly. In spite of not being the exact replica of the
main butterfly, they can be identified as sub-butterflies without
any doubt or uncertainty.

FIG. 2. The Farey Tree and the butterfly graph. The left-right
boundaries and the center of every sub-butterfly in the graph can be
labeled with a friendly Farey triplet.

B. Wannier diagram—butterfly skeleton

The Wannier diagram was named after Gregory Wannier,
who in 1978 revisited [21,22] the problem of a crystal in
a magnetic field shortly after the discovery of the butterfly
graph. It provides a simple representation of the spectrum by
labeling all the gaps of the spectrum with two integers (σ, τ ),
expressed as a linear Diophantine equation:

r = pσ + τq, ρ ≡ r

q
= σφ + τ. (2)

Here r labels the rth gap of the spectrum for a rational
magnetic flux φ = p

q and ρ is the density of the electrons
or the fraction of total number of states below Fermi energy.
The ρ vs φ plot can be viewed as representing the butterfly
skeleton as various Wannier trajectories representing the gaps
of the butterfly shrink to straight lines. For a given set of
values for (r, p, q), there are infinitely many solutions to any
such Diophantine equation. Indeed, it is easy to see that if
(σ, τ ) is a solution of equation, then so is (σ + nq, τ − np),
n = 0,±1,±2...... It turns out that for the rectangular lattice,
what we want is the smallest possible σ (in absolute value).

In 1982, the linear Diophantine equation got a big boost
after Thouless et al. [6] showed that the integer σ in Eqs. (2)
represents the quantum number of Hall conductivity and has
topological origin. Following this important discovery for
which David Thouless was awarded the Nobel prize in (2016),
Eqs. (2) has been the subject of various studies [12,23–26] and
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FIG. 3. (a)–(c) show an alternative way to construct the Farey tree using straight lines in a square. Lower panel:(a1)–(c1) show the
corresponding Wannier diagram. Panels (d) and (d1), respectively, show a general trapezoid in the Farey and in the Wannier construction,
with the coordinates of the four corners labeled. (d1) also labels the slopes of the nonparallel lines as (σ↑, σ↓) and the slopes of the diagonals
as (σ+, σ−).

is also referred to as the the gap labeling theorem [20]. In a
recent experimental investigation of the butterfly spectrum [5],
the calculation of (σ, τ ) from the measurement of the filling-
fraction ρ emerged as the key factor in providing laboratory
glimpses of the butterfly fractal.

C. Farey tree and the butterfly graph

Although the connection between the butterfly graph and
the Wannier diagram has been known since 1978, the relation-
ship between the hierarchical nature of the butterfly graph and
the Farey tree was pointed out in 2016 [2,7]. In 2020, these
empirical results were derived [8] using a previously known
renormalization group [18], thus establishing the fact that
the quantum mechanics of the Bloch electrons in a magnetic
field is intertwined with various number theoretical results.
Below we briefly review the Farey tree construction and its
relationship with the butterfly graph.

Discovered by Adolf Hurwitz in 1894, the Farey tree gen-
erates all primitive rationals between 0 and 1. As shown in
Fig. 2, this hierarchical treelike structure builds the entire set
of rationals by starting with 0 and 1. Given any two fractions
pL

qL
and pR

qR
that satisfy

pLqR − pRqL = ±1, (3)

then pL and qL are coprimes and so is pR and qR. This is
because any common factor of pL and qL must divide the

products pLqR and pRqL and hence the difference pLqR −
pRqL = ±1. Any two fractions satisfying Eq. (3) are two
neighboring fractions in the Farey tree and are known as the
friendly fractions. The Farey tree is constructed by applying
the Farey sum rule to pL

qL
and pR

qR
—the Farey parents that give

a new fraction pc

qc
—the Farey child:

pc

qc
= pL + qR

qL + qR
. (4)

Analogous to the friendly pair pL

qL
and pR

qR
, pc

qc
also forms a

friendly pair with each of its parents pL

qL
and pR

qR
, satisfying the

following two equations:

pLqc − pcqL = ±1, (5)

pcqR − pRqc = ±1. (6)

This implies that pc and qc are also coprime. In other
words, the entire Farey tree consists of all fractions p

q , where
p and q are coprime. These equations define a Farey triplet de-
noted as [ pL

qL
,

pc

qc
,

pR

qR
], which will be referred to as the friendly

Farey triplet.
The importance of friendly Farey triplets in the butterfly

spectrum was pointed out in our recent studies [2,8,9]. It was
shown that the magnetic flux values corresponding to friendly
triplets [ pL

qL
,

pc

qc
,

pR

qR
] in the Farey tree form the left boundary,
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the center, and the right flux boundaries of the butterflies,
encoding the hierarchical structure of the butterfly graph as
shown in Fig. 2. In other words, the butterfly graph is an
incarnation of the Farey tree adorned with butterflies.

III. RELATING FAREY TREE AND THE
WANNIER DIAGRAM

To show that the two hierarchical sets—the Farey tree and
the Wannier diagram—are related, we first review an alternate
way to construct the Farey tree as described by Hatcher [17].
Figure 3 shows the construction of the Farey tree in stages, as
we summarize below.

(1) Start with drawing a unit square and its diagonals.
(2) Draw a vertical line from the intersection point of the

diagonals down to the bottom edge of the square. Starting with
two rational numbers 0

1 and 1
1 , it gives a new rational number

1
2 . The process generates two trapezoids: one to the left of 1

2
with parallel lines at 0

1 and 1
2 and another to the right of 1

2 with
parallel lines at 1

2 and 1
1 .

(3) Repeat the above process with each trapezoid, that is,
draw its diagonals and then draw vertical lines to the bottom
from the intersection point of the diagonals of the trapezoids.
This gives the Farey fractions 1

3 and 2
3 . The vertical line from

each of the fractions generates two new trapezoids, one to the
left and the other to the right of that fraction.

(4) Continue this process: With each new trapezoid, draw
its diagonals and the vertical line from the point of intersec-
tion of the diagonals. This will generate all rationals because
the vertical lines from the diagonals of the trapezoid formed
by two parallel lines at pL

qL
and pR

qR
meet the bottom edge at

pL+pR

qL+qR
—the Farey sum of the two fractions. This is shown in

panel (D).
(5) In general, for every trapezoid so formed with two par-

allel lines at friendly fractions pL

qL
and pR

qR
, the y coordinates of

the upper left and the upper right corners of the trapezoid are
1
qL

and 1
qL

. The coordinate of the intersection of the diagonals

is ( pL+pR

qL+qR
, 1

qL+qR
). By induction, this proves that the length of

every vertical line of the trapezoid at fraction p
q is 1

q .
From this geometrical construction of the Farey tree, we

now show that the Farey tree is closely related to the Wannier
diagram, an important result.

As illustrated in the upper panels of Fig. 3, relating the
Farey tree to the Wannier diagram involves symmetrization of
the Farey construction about the y = 1

2 line of the square. In
other words, as the unit square is transformed into a two-torus,
the resulting geometrical figure is the Wannier diagram where
the x − y-axes are identified as the variables φ − ρ of the
Wannier diagram.

In summary, starting with the geometrical construction of
the Farey tree (Fig. 3), the Wannier diagram emerges in two
steps. First, all vertical lines are extended up to the upper
edge of the unit square, which is identified with the ρ = 1 line
of the Wannier diagram. Second, new lines are added so the
entire configuration is symmetrical about ρ = 1/2. In other
words, the density ρ as a function of φ satisfies the condition
ρ(φ) = ρ(1 − φ).

TABLE I. The slopes and the y intercepts of the diagonals de-
noted as (σ±, τ±) and nonparallel lines (σ↑,↓, τ↑,↓) of the trapezoidal
cells shown in Fig. 3(d1), where pLqR − pRqL = ±1.

σ+, τ+ ±[nLqR − (nR + 1)qL], ∓[nL pR − (nR + 1)pL]
σ−, τ− ±[(nL + 1)qR − nRqL], ∓[(nL + 1)pR − nR pL]
σ↑, τ↑ ±[(nL + 1)qR − (nR + 1)qL], ∓[(nL + 1)pR − (nR + 1)pL]
σ↓, τ↓ ±[nLqR − nRqL], ∓[nL pR − nR pL]

The key point to be noted is that all the slanting lines
in Fig. 3 have integer slopes and integer intercepts when
the parallel lines of the trapezoid are at friendly frac-
tions and the height of each parallel line at fraction p

q

is 1
q . To see this, consider a general trapezoid, shown in

Fig. 3(d1), for example, the diagonal line with a positive
slope, denoted as σ+ = ±( nR+1

qR
− nL

qL
)/( pR

qR
− pL

qL
) = (nR +

1)qL − nLqR as pLqR − pRqL = ±1. Table I lists slopes and
intercepts of all nonparallel lines of the trapezoid.

IV. FAREY-WANNIER LATTICE
AND THE BUTTERFLY GRAPH

The Wannier trajectories form a very special type of hi-
erarchical lattice made up of trapezoidal cells in every Farey
interval [ pL

qL
− pR

qR
], where the Farey fractions pL

qL
and pR

qR
are

neighbors in the Farey tree, i.e., they satisfies the friendly frac-
tion condition pLqR − pRqL = ±1. The points of intersections
of the diagonals of the trapezoids represent the center of the
butterfly. In this lattice, all slanting lines have integer slopes

FIG. 4. Butterfly graph with four of its sub-butterflies identified
by (red) dots at the center and the corresponding trapezoidal cells(in
red) of the Farey-Wannier lattice.
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FIG. 5. In the friendly interval [1/3 − 1/2], the upper panel shows a chain of butterflies at the center, a butterfly at the upper edge and a
butterfly at the lower edge. Lower left panel shows the corresponding Wannier diagram. The right panel shows another possible Farey-Wannier
lattice in this interval. However, such a lattice of trapezoids whose centers are marked with black dots, does not correspond to butterfly
configuration. Coordinates of various points and the slopes of various Wannier trajectories (in red) along with the �σ corresponding to the
trapezoidal cells are shown. Figure illustrates how quantum mechanics improvises on the number theory encoded in the Wannier diagram to
create butterflies as it chooses only certain trapezoids (shown with red dots) that represent butterflies. The flux interval [1/3, 1/2] supports only
two butterflies exhibiting horizontal mirror symmetry about ρ = 1

2 , corresponding to the asymmetry parameter �σ = 1 and −1, respectively.
Wannier trajectories, shown to intersect at black dots correspond to �σ = ±3 and do not correspond to any butterflies. In other words, the
butterflies exhibit minimum violation of mirror symmetry.

and also integer intercepts. As described below in Sec. IV B,
not all trapezoidal cells correspond to butterflies. Such a hi-
erarchical lattice where every trapezoid represents a butterfly
will be dubbed the Farey-Wannier lattice as shown in Fig. 4,
where the butterfly graph is superimposed on the Wannier
diagram.

A. Nests and chains

Characterization of the Hofstadter butterfly graph consist-
ing of nests and chains as described in our recent study [8]
emerges naturally in Farey-Wannier lattice representation of
the butterfly graph. In general, a friendly interval [ pL

qL
− pR

qR
],

where (qL < qR), consists of a stack of qL trapezoids and

(qR − qL ) triangular regimes. With trapezoids representing
butterflies, the triangular regimes get partitioned into an infi-
nite chain of trapezoids of different widths that asymptotically
approaches zero. In other words, triangular regions of the
Farey-Wannier lattice represent a chain of butterflies and each
trapezoid is infinitely nested. Figure 5 shows a slab of hierar-
chical lattice in a friendly interval [1/2 − 1/3] with trapezoids
and triangles which overlay the corresponding butterfly graph.
This interval consists of two trapezoids representing two
butterflies. With higher order Farey fractions, each butterfly
gets infinitely nested. This is further illustrated in Fig. 6
with three friendly intervals [2/7 − 1/3], [1/3 − 2/5], [2/5 −
3/7]. As described below, not all trapezoids represent
butterflies.
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FIG. 6. Butterfly and the corresponding Wannier diagram in three friendly magnetic flux intervals [2/7, 1/3], [1/3, 2/5], and [2/5, 3/7].
Each trapezoid is uniquely determined by a dot (red or black) at the intersection of the two diagonals. Red dots represent the configurations
that correspond to the butterflies and can be paired with the red dots in the butterfly graph on the left. Configurations corresponding to black
dots do not appear—a feature not determined by the number theoretical arguments. Trapezoids with black dots are forbidden configurations
that correspond to higher values of �σ—the asymmetry parameter, shown explicitly for the left and the right trapezoids. For central interval
[1/3, 2/5], the values of �σ = 2, −4, 6, 0, 4, −6 (from top to bottom). The trapezoids with horizontal mirror symmetry have �σ = 0.

B. Minimal Symmetry violation

Figures 5, 6, and 8 illustrate an arbitrariness in the choice
of selecting trapezoidal and triangular regimes, as we seek
one-to-one correspondence between the trapezoids and butter-
flies. In constructing a Farey-Wannier lattice representing an
isomorphism between the hierarchy of trapezoids and butter-
flies, we now address the key question of what determines the
right choice of grouping trapezoidal and triangular regimes
of the lattice, shown with red dots in the Figs. 5, 6, and 8.
The configurations corresponding to black dots are not used
in the butterfly graph and are rejected. A close inspection
of the correspondence between the Farey-Wannier lattice and
the butterfly graph shows that the trapezoid cells that do not
represent a butterfly can be singled out by a parameter that
characterizes the degree of violation of horizontal mirror sym-
metry. Such a symmetry corresponds to the difference in the
magnitude of Chern numbers (σ+, σ−) as for the central but-
terflies that exhibit mirror symmetry |σ+| = |σ−|. We define a
parameter �σ as

�σ = |σ+| − |σ−| = |(2nR + 1)qL − (2nL + 1)qR|. (7)

For central trapezoids, �σ = 0 as nR = qR−1
2 , nL = qL−1

2 .
In a given interval [ pL

qL
− pR

qR
], defined by the friendly fractions,

there exists qL butterflies (when qL < qR), each characterized
by a unique �σ . Therefore, �σ can be taken as a measure
of the asymmetry of the trapezoid (and the corresponding
butterfly) as the higher the value of �σ , the greater the degree
of violation of horizontal mirror symmetry. The trapezoids
that are not paired with butterflies correspond to higher values
of �σ . In other words, given all possible trapezoids in a
given rectangular strip, each labeled with a unique value of

�σ , nature uses trapezoids with smallest possible value to
represent butterflies in the butterfly graph.

Figures 5, 6, and 8, where all allowed and forbidden con-
figurations are labeled with a unique value of �σ , provide
a rather convincing case of the empirical rule of minimal
symmetry violation by the butterflies. Demonstration of the
rule in a very narrow flux friendly magnetic flux interval
[7/17 − 12/29](also see Fig. 7) is particularly important as
the panel IV Fig. 8 shows the allowed and forbidden config-
urations corresponding to two consecutive allowed values of
�σ as the allowed values of �σ are even integers.

V. NEW SPECIES OF BUTTERFLIES

We now discuss the number theoretical properties of the
energy spectrum in a generalized Harper Model [11–14] de-
scribed by the tight-binding Hamiltonian:

H = ta cos p + tb cos x + tab[cos(x − p) + cos(p − x)]. (8)

Here ta and tb are NN hopping along the x and y directions
and tab defines the NNN hopping between the diagonals of the
square lattice.

As we tune the parameters, the energy spectrum shows
changes, although the patterns resembling butterflies persist.
We examine the role of number theory in characterizing the
energy spectrum with a key question whether the Farey sum
rule [ Eq. (4)] continues to define the butterflylike spectrum.

In our study of the NNN model spectrum, the Farey hier-
archy was found to prevail. However, in addition to butterflies
that obey the Farey sum rule, which we refer to as type-I
butterflies, there are type-II and type-III butterflies, where the
Farey triplet [ pL

qL
,

pc

qc
,

pR

qR
] does not form a friendly triplet. The
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FIG. 7. The butterfly graph in the friendly flux interval [7/17 − 12/29]. An insert at the center (inside the gap) shows the relative location
of this narrow flux interval with respect to the flux interval [2/5 − 3/7] that is shown in Fig. 6. Blowups of regions marked on the right (I–V),
along with the double arrows are shown in Fig. 8.

modified Farey sum rules for these species of butterflies are
given below.

For type-II butterflies:

pLqR − pRqL = ±2, pcqR − pRqc = ±1,

pcqL − pLqc = ±1. (9)

Consequently, pc = pL+pR

2 and qc = qL+qR

2 .
For type-III butterflies:

pcqR − pRqc = ±2, pcqR − pRqc = ±1,

pLqR − pRqL = ±1. (10)

Therefore, pL = pc−pR

2 and qL = qc−qR

2
or

pcqL − pLqc = ±2, pcqL − pLqc = ±1,

pLqR − pRqL = ±1, (11)

and therefore pR = pc−pL

2 and qR = qc−qL

2
Therefore, pxqy − pyqx = ±1 is true for two of the three

pairs from (L, c, R). For the third pair, pxqy − pyqx = ±2 ≡
D. That is, among the three pairs of magnetic flux fractions at
the left and right boundaries and at the center, two pairs are
NN in the Farey tree and one pair is NNN in the tree.

Figure 10 shows an example of the spectrum for special
parameter values ta = tab = 1 and tb = 0, where butterflies

satisfying modified Farey sums (9) and (10) are labeled with
green and blue dots, respectively. The blowups of the spec-
trum, as shown in the right panels, reveal an orderly placement
of three species, adding a unique type of order and rich-
ness to the butterfly spectrum of the Harper model. Apart
from clear differences in their number theoretical proper-
ties, characteristic patterns are seen to be associated with
each of the three types of butterflies and this helps in vi-
sual identification of the new butterflies in the generalized
Harper spectrum. Furthermore, the location of the three dis-
tinct classes of butterflies appear to be somewhat correlated,
indicating a rather mysterious entanglement among the three
species.

Distinction between the types I–III, as illustrated in Fig. 9
is further summarized in Table II.

A. Self-similarity for the butterflies

Our previous studies have discussed in detail the self-
similar hierarchies of type-I butterflies where the magnetic
flux interval for every sub-butterfly is related to the main but-
terfly by a Möbius transformation [9]. The Appendix provides
a broader perspective on the recursions that accommodates the
types I–III. Here we give examples illustrating self-similarity
of the type-II and type-III butterflies.
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FIG. 8. Blowups of regions (1–5) marked in Fig. 7 corresponding
to friendly interval [7/17 − 12/29] and the corresponding Wannier
diagrams, illustrating allowed (red dots) and forbidden (black dots)
at the points of intersections of the diagonals of the trapezoidal
configurations. With 17 vertically stacked butterflies symmetri-
cally placed about E = 0 as shown in Fig. 7, this figures show
only nine butterflies consisting of the central butterfly and the
eight butterflies above the center. The butterflies below the cen-
tral butterflies are related by symmetry to the butterflies above the
center. These nine butterflies are shown in five panels representing
the five segments labeled in Fig. 7. The corresponding Wannier
diagram on the right displays the allowed and the forbidden con-
figurations, also labeled with the corresponding (color coded) �σ

values.

Figure 9 shows three levels of recursions for the cen-
tral band of the spectrum, corresponding to the type-
II butterfly triplets [1/3, 1/4, 1/5] → [4/19, 3/14, 2/9] →
[15/71, 11/52, 7/33]. The renormalization equation can be
constructed by relating the first two levels of the hierar-
chy, namely, [1/3, 1/4, 1/5] → [4/19, 3/14, 2/9]. From the
level-1 triplet [1/3, 1/4, 1/5], we pick any two fractions and
relate it to the corresponding fractions in a level-2 triplet
[4/19, 3/14, 2/9], constructing a Möbius map as described in
the Appendix. The resulting transformation is independent of
the choice of the pair of friendly fractions used to construct the
transformation and all three choices give the transformation
matrix T = [−1 1

−6 5] as described in Eq. (A3). The scaling

exponent is found to be 2 + √
3, falling in the universality

class of the Harper model.
Analogously, Fig. 11 shows the hierarchical struc-

ture for a type-III butterfly corresponding to the but-
terfly triplets [3/8, 7/18, 2/5] → [13/34, 23/60, 5/13] →
[49/128, 85/222, 18/47]. The scaling factor is again found to
be ζ = 2 + √

3.
We conclude with two important remarks about the the

transformation T that maps one pair of Farey fractions

( px

qx
,

py

qy
) to another pair ( p′

x
q′

x
,

p′
y

q′
y
), preserving the determinant

D = pxqy − pyqx = p′
xq′

y − p′
yq′

x and the order of fractions,

namely, px

qx
→ p′

x
q′

x
and py

qy
→ p′

y

q′
y
.

(1) The transformation matrix T in Eq. (A3) describes
the recursions for the type-I, type-II, and type-III butterflies.
Furthermore, if at least two of the fractions in the Farey triplet
[ pL

qL
,

pc

qC
,

pR

qR
] that characterize butterflies are friendly fractions,

the determinant D is unity and trace of T is an integer. This
implies that the scaling exponent ζ is an irrational number of
the form ζ = [n∗ + 1; 1, n∗] and therefore the scaling asso-
ciated with all three types of butterflies belongs to the same
universality class. However, Eq. (A3) includes the possible
scenario where none of the pairs of fractions in the Farey
triplet [ pL

qL
,

pc

qC
,

pR

qR
] are friendly fractions and transformation

maps two fractions with D 
= 1. This will lead to other uni-
versality classes, different from the class that describes type-I
butterflies. Whether the NNN model described here supports
these classes of butterflies has not been seen in our limited
exploration of the parameter space.

(2) Missing in these recursions are the renormaliza-
tions of σ±, (σ↑, σ↓), and �σ . In view of the fact that
Wannier trajectories have integer slopes and integer inter-
cepts suggests that the required recursions may mimic the
simplicity and the elegance found in the Farey tree hier-
archy. However, these equations have remained elusive so
far.

B. Anomalous bands

The energy spectrum of the generalized Harper model
hosts type-I, type-II, and type-III butterflies. This raises the
natural question: Which bands of the energy spectrum trans-
form from type I to type II or type III and which bands remain
unchanged as NNN coupling tab is tuned. In the Harper model,
there are bands with ambiguous Chern numbers as the Chern
number to the left and right of the band are not the same,
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FIG. 9. Upper left panel shows the butterfly graph for tab = ta = 1 and tb = 0. Lower panel overlays the butterfly graph and the correspond-
ing Wannier diagram showing an example of a hexagonal cell. The right panels show blowups of the upper left panel identifying type-I (red),
type-II (green), and type-III (blue) sub-butterflies and the corresponding Farey relations, all color coded. The upper right panel is a zoomed
version of the dotted box. Figures 10 and 11 below show the self-similar blowups of the flux intervals [1/5 − 1/3] (type-II, green hexagonal)
and [3/8 − 2/5] (type-III, blue trapezoid) shown explicitly in this panel. Lower right panel shows chain of three species of butterflies. For
some of the butterflies, the flux intervals [pL/qL − pR/qR](color coded) shown at the center of the butterflies along with the Farey fractions
that define the boundaries and the centers of the butterflies.

as is the case for the central band at φ = 1/3. Two of the
butterflies that share this band are [2/7, 3/10, 1/3](N = 4)
and [1/3, 3/8, 2/5(N = −2). The two possible values 4 and
−2 are two possible solutions of the Diophantine equation
qM + pN = 1 as it has infinity of solutions N = N0 + nq as
4 = −2 + 2.3 with N0 = −2 and n = 2. Such bands appear
to transform in the presence of NNN terms, transforming the
type-I butterfly to to type II.

VI. SUMMARY AND CONCLUSIONS

The Wannier diagram, also known as the gap labeling
theory, encodes some of the quintessential features of the
energy spectrum of Bloch electrons. Discovered soon after
the discovery of the butterfly graph, this alternative elegant
description provided an important benchmark for laboratory
realization of the butterfly spectrum. In this paper, the Farey
tree—a beautiful part of number theory, is shown to to be
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FIG. 10. For parameters corresponding to Fig. 9, the three panels show three levels of blowups of a type-II butterfly (inside green
hexagonal). Asymptotically, the blowups approach a self-similar structure.

intimately related to the Wannier diagram. Consequently, the
butterfly graph can be viewed as an incarnation of an abstract
mathematical set that organizes all rationals between 0 and
1, adding an immense simplicity and mystique to remarkable
complexity of Bloch electrons in a magnetic field involving
interplay between two competing periodicities. The central
to this rather intriguing and nonintuitive simplicity lurking in
the butterfly graph is based on the key observation that the
process of constructing a Farey tree involves straight lines
that have integer slopes and integer intercepts. Alternatively,

submerged in the Wannier diagram—a graph of straight lines
with integer slopes and integer intercepts—is a hierarchical
lattice of trapezoids whose parallel lines are perpendicular
to the x axis, representing two fractions that are neighbors
in the Farey tree. Stated more explicitly, given two vertical
lines drawn at fractions pL

qL
and pR

qR
to the x axis of lengths

1
qL

and 1
qR

, respectively, where pLqR − pRqL = ±1, creates
trapezoids whose diagonals and slanting lines have integer
slopes and integer intercepts. Constructing a hierarchy of this
lattice using the Farey sum rule and stacking such trapezoids
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TABLE II. Summary of type-I, type-II, and type-III butterflies which are color coded in red, green, and blue in the Fig. 8.

Type I Type II Type III

Farey rule pc
qc

= pL+qR
qL+qR

pc
qc

=
pL+pR

2
qL+qR

2
, pL

qL
=

pc−pR
2

qc−qR
2

or pR
qR

=
pc−pL

2
qc−qL

2

(Mx, Nx ) ML = MR, NL = NR ML 
= MR, NL 
= NR ML = MR, NL = NR

Representative cell in the Farey-Wannier lattice Trapezoid Hexagonal Trapezoid
Conformally related to main butterfly Yes No No

symmetrically in a unit square generates the entire Wannier
diagram.

Dwelling mostly on the number theoretical aspects of the
butterfly spectrum, here we also unveil a simple rule that cap-
tures a non-number-theoretical characteristic. Our observation
that not all Wannier trajectories find representation in the
butterfly graph can be stated as a simple rule of minimal vio-
lation of symmetry of the butterflies. In other words, quantum
mechanics of Bloch electrons in a magnetic field improvises
on number theory to generate the butterfly spectrum. We hope
that this empirical result based on very extensive numerical
studies can be proven rigorously using renormalization theory.

In a generalized Harper model, the Farey hierarchy pre-
vails. Intriguingly, the NNN model uses NNN Farey fractions
to create unique species of butterflies. These butterflies with
somewhat different number theoretical characteristics are
not the exact replica of the main butterfly. However, their
recursions can be described by the renormalization group
framework that describes the recursive structure of the Harper
model. What perturbations take us outside this renormaliza-
tion and perhaps outside the number theoretical description
inherent in the energy spectrum remains an interesting open
question.

Our brief discussion of the butterfly graph in the NNN
model explores a very small part of the multidimensional pa-
rameter space of the NNN model. Furthermore, However, this
preliminary number theoretical and numerical studies of the
generalized Harper model show immense richness, order, and
complexity, indicating a very fertile and new field of research
in the subject of Bloch electrons in a magnetic field. Although
these species of butterflies were found to be described by the
universality class of type-I butterflies, that is, are characterized
by scaling exponent ζ = [1 + n∗; 1, n∗], we point out that the

renormalization equations as described in the Appendix leave
open the possibility of new university classes. Furthermore,
unlike the Hofstadter butterfly spectrum, other types of but-
terflies are not replicas of the main butterfly and thus require
a type of renormalization different from the Wilkinson renor-
malization [18,19] that explains the hierarchical structure of
the Harper model. Finally, the chain of butterflies consisting of
three species as shown in Fig. 9 suggests that the three species
of butterflies are somewhat entangled. We hope our studies
will stimulate further research in this fascinating field.

APPENDIX: FAREY TREE HIERARCHY
AND MÖBIUS TRANSFORMATION

We describe an important symmetry property of the Farey
tree where, by the word symmetry, we do not refer to the
Euclidean geometrical symmetry, but symmetry described by
invertible algebraic transformations that maps one pair of
Farey fractions to another. That is, we seek a transformation
T ,( px(1)

qx(1)
,

py(1)

qy(1)

)
→

( px(2)

qx(2)
,

py(2)

qy(2)

)
= T

( px(1)

qx(1)
,

py(1)

qy(1)

)
,

(A1)

where each pair satisfies (px(l )qy(l ) − py(l )qx(l )) = D 
= 0
(l = 1, 2) and the mapping preserves the order, that is,
px (1)
qx (1) → px (2)

qx (2) and py (1)
qy (1) → py (2)

qy (2) . To obtain T , we construct two
matrices T1 and T2 as

T1 =
⎡
⎣px(1) py(1)

qx(1) qy(1)

⎤
⎦, T2 =

⎡
⎣px(2) py(2)

qx(2) qy(2)

⎤
⎦. (A2)

We will now show that the required map is [17]

T = T2T −1
1 = 1

D

⎡
⎣px(2)qy(1) − py(2)qx(1) px(1)py(2) − px(2)py(1)

qx(2)qy(1) − qx(1)qy(2) px(1)qy(2) − py(1)qx(2)

⎤
⎦. (A3)

To prove Eq. (A3), consider a transformation that maps a primitive fraction p
q to another primitive fraction p′

q′ , defined as

p

q
→ p′

q′ = ap + bq

cp + dq
≡

a p
q + b

c p
q + d

. (A4)

The above equation can also be written as(
p
q

)
→

(
p′
q′

)
=

(
a b
c d

)(
p
q

)
≡ M

(
p
q

)
. (A5)

Under this transformation, 0
1 → b

d and 1
0 → a

c . In
other words, M−1 maps a pair of fractions ( b

d , a
c ) to

( 0
1 , 1

1 ).
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FIG. 11. The three panels shows three levels of blowups of a type-III butterfly shown in the flux interval [3/8 − 2/5] in Fig. 9.
Asymptotically scaling exponent corresponds to ζ = 2 + √

3.

Therefore, the transformation that maps ( px (1)
qx (1) ,

py (1)
qy (1) ) to

( px (2)
qx (2) ,

py (2)
qy (2) ) can be constructed as a two-step process where

we first map ( px (1)
qx (1) ,

py (1)
qy (1) ) to ( 0

1 , 1
1 ), where (a b

c d) = T −1
1 , and

then map ( 0
1 , 1

1 ) to ( px (2)
qx (2) ,

py (2)
qy (2) ), where (a b

c d) = T2.

This completes the proof that T = T2T −1
1 where (T1, T2)

are given by Eq. (A2).
For self-similar hierarchical structures, the renormalization

equation connecting two consecutive levels l and l + 1 is

given by (
p(l + 1)
q(l + 1)

)
= T

(
p(l )
q(l )

)
. (A6)

This equation encoding the Farey tree hierarchy also describes
the recursive structure of type-I, type-II, and type-III butter-
flies. The eigenvalues of T determine the asymptotic scalings
of the butterfly flux interval. These eigenvalues are of the
form (ζ , ζ−1). This is because the matrix T has real trace
and its determinant is unity as from the product rule of the
determinant, Det[T ] = Det[T2].Det[T −1

1 ] = D. 1
D = 1.
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For type-I butterflies, every sub-butterfly is a renormalization of the main butterfly [8,18]. In this recursive scheme, every
friendly triplet [ pL

qL
,

pc

qc
,

pR

qR
] is related to [ 0

1 , 1
2 , 1

1 ] by a conformal map—a Möbius transformation. This transformation can be

constructed by choosing a pair of friendly fractions. For example, we can choose px (1)
qx (1) = 0

1 and py (1)
qy (1) = 1

1 and we write px (2)
qx (2) = p∗

L
q∗

L

and pR (2)
qR (2) = p∗

R
q∗

R
and obtain a simplified recursion [8,9]:

φ(l + 1) = (p∗
R − p∗

L )φ(l ) + p∗
L

(q∗
R − q∗

L )φ(l ) + q∗
L

≡
[

(p∗
R − p∗

L ) p∗
L

(q∗
R − q∗

L ) q∗
L

][
p(l )
q(l )

]
. (A7)

The transformation also maps 1
2 to φc as with φ(l ) = 1

2 , we get φ(l + 1) = p∗
L+p∗

R
q∗

L+q∗
R

The eigenvalues of the transformation matrix, denoted as (ζ , ζ−1), determine the asymptotic scaling factors and are given by

ζ = lim
l→∞

px(l + 1)

px(l )
= lim

l→∞
qx(l + 1)

qx(l )
= (q∗

L + p∗
R − p∗

L )

2
±

√(
q∗

L + p∗
R − p∗

L

2

)2

− 1. (A8)

Expressed as a continued fraction expansion, these quadratic irrationals are given by

ζ = [n∗ + 1; 1, n∗], n∗ = q∗
L + p∗

R − p∗
L − 2, (A9)

where

[n∗ + 1; 1, n∗] ≡ n∗ + 1 + 1

1 + 1

n∗ + 1

1 + 1

n∗ + 1

1 + 1

n∗.....

(A10)

The scaling exponent (A10) describes type-I, type-II, and type-III butterflies. The possibility of a new universality class
requires |pxqy − pyqx| = D > 1 for all three pairs of fractions in a given Farey triplet that defines a butterfly.
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