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Nonlinear dynamics of a self-mixing thin-slice solid-state laser subjected
to Doppler-shifted optical feedback
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Chaotic oscillations of a linearly polarized single longitudinal-mode thin-slice Nd : GdVO4 laser placed in a
self-mixing laser Doppler velocity scheme were dynamically characterized in terms of the intensity probability
distribution, joint time-frequency analysis, and short-term Fourier transformation of temporal evolutions, and
the degree of disorder in the amplitude and phase of the long-term temporal evolutions. The transition from
chaotic relaxation oscillations (ROs) to chaotic spiking oscillations (SOs) was explored via the chaotic itinerancy
(CI) regime by increasing the feedback ratio toward the laser from a rotating scattering object. The intensity
probability distribution was found to change from an exponential decay in the RO regime to an inverse power
law in the SO regime, which manifests itself in self-organized critical behavior, while stochastic subharmonic
frequency locking among the two periodicities of RO and SO takes place in the CI regime featuring quantum-
noise (spontaneous-emission)-induced order in the amplitude and phase of the spiking oscillations. All of the
experimental results were reproduced by numerical simulations of a model equation of a single-mode self-mixing
solid-state laser subjected to Doppler-shifted optical feedback from a rotating scattering object.
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I. INTRODUCTION

From a fundamental point of view, the laser is a system that
allows us to study complex systems far from thermal equi-
librium. In particular, it is useful for investigating nonlinear
dynamics exhibiting a variety of bifurcations leading to chaos
[1].

Chaotic phenomena have been observed in conventional
class-B laser systems, where polarization dynamics are adi-
abatically eliminated. Note that, under most conditions, these
systems are stable except within some range of parameter, and
each system presents its own deterministic irregular behavior.
Period-doubling sequences transitioning to chaotic relaxation
oscillations have been reported to occur in solid-state, CO2,
and semiconductor lasers with a modulated pump (injection
current) or loss at a frequency comparable to the relaxation os-
cillation frequency [2–4]. Subharmonic bifurcation cascades
to chaos and coexisting periodic solutions have been observed
for various relations between the modulation frequency and
frequency of the relaxation oscillation [5].

Subharmonic resonance cascades [6], intermittency [7],
and period doubling as well as quasiperiodic routes [8] to
chaos have been demonstrated in semiconductor lasers with
optical feedback. In fact, a variety of chaotic oscillations have
been explored in a semiconductor laser coupled to an external
cavity [9], which can be interpreted in terms of delay-driven
oscillators involving phase-sensitive interactions between ex-
ternal cavity modes and relaxation oscillations [10].

On the other hand, it is known that laser rate equations can
fully describe the motion of a particle in a highly asymmetric
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laser Toda potential with respect to the ground state, where
the damping rate in the rate equations for class-B lasers, κro,
increases with the logarithmic photon density, u(t ) = lns(t ),
in time t [11]. In the original Toda oscillator system [12],
the damping constant does not depend on u(t). In the ab-
sence of a driving force, the particle approaches the ground
state by exhibiting damped relaxation oscillations. Chaotic
phenomena in the modulated class-B lasers mentioned above
can be interpreted in terms of a particle moving within the
asymmetric laser Toda potential. The Hamiltonian motion
around the ground state (namely, the “soft mode”) results from
the balance between the damping force, κro (du/dt ), and the
driving force from a sinusoidal loss or pump modulation at a
frequency comparable to the relaxation frequency. Such peri-
odic soft-mode oscillations correspond to sustained periodic
relaxation oscillations around the stationary lasing solution,
s̄ ∝ w – 1 (w = W/Wth: relative pump power normalized by
the threshold, Wth ).

By controlling the modulation frequency and amplitude,
the periodic “hard-mode” oscillation, which corresponds to
regeneration of the first spike in the onset of the relaxation
oscillation, was demonstrated to build up from the nonlas-
ing solution of the laser rate equations, snl ∝ 2εw/(w–1)2

� 1, reflecting quantum (spontaneous emission) noise
(ε: spontaneous emission coefficient). Such periodic spike-
mode oscillations have been demonstrated in solid-state and
semiconductor lasers by using deep sinusoidal loss as well as
pump (injection current) modulations [13–16].

If a strong modulation is introduced, chaotic relaxation
oscillations (soft mode) and chaotic spiking oscillations (hard
mode) will be brought about analogously to a particle moving
in the laser Toda potential, where the strong periodic force
tends to push the particle irregularly in time because of the

2470-0045/2021/104(4)/044203(14) 044203-1 ©2021 American Physical Society

https://orcid.org/0000-0002-4301-7721
https://orcid.org/0000-0002-1079-0902
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.044203&domain=pdf&date_stamp=2021-10-06
https://doi.org/10.1103/PhysRevE.104.044203


KENJU OTSUKA AND SEIICHI SUDO PHYSICAL REVIEW E 104, 044203 (2021)

unbalanced damping and driving forces. The coexistence of
soft-mode and hard-mode attractors is predicted to exist in
lasers with delayed incoherent optical feedback, and a phys-
ical interpretation based on the laser Toda potential has been
given [17].

On the other hand, the effect of noise on nonlinear sys-
tems is an intriguing subject from the general viewpoints
of nonlinear dynamics and applications. In various devices,
an increase in the noise amplitude leads to degradation of
the output signal. In nonlinear systems, however, this is not
always the case and a finite amount of noise can induce a
dynamical state which is more ordered. Examples of such
noise-induced order include stochastic excitation of a subhar-
monic of a periodic modulation signal in a solid-state laser
upon modulation of the pump rate by noise and a periodic
signal (“stochastic resonance”) in the presence of bistability
[18] and the minimization of pulse interval fluctuations in the
intensity of a laser diode with optical feedback when adding
noise (“coherence resonance”) [19]. However, to date, most of
the studies on noise-induced ordering have been restricted to
the effect of “externally applied” artificial noise on the control
parameter. In real nonlinear systems, intrinsic quantum noise
always exists, and it degrades performance. Here, lasers pro-
vide a promising system for investigating the effect of internal
intrinsic quantum noise (spontaneous emission) on nonlinear
dynamics in a highly asymmetric laser Toda potential.

In this paper, we propose that a thin-slice solid-state laser
with coated end mirrors (abbreviated as TS3L) subjected to
Doppler-shifted optical feedback from a light scattering ob-
ject is a well controllable, stable, and affordable system to
carry out comprehensive dynamical and statistical studies in
a wide modulation range. In the TS3L, the self-mixing mod-
ulation effect resulting from interference between the lasing
field and the feedback field is enhanced because of the large
fluorescence-to-photon lifetime ratio, K = τ/τp, on the order
of 105–106, owing to the extremely short photon lifetime
[20], and quantum noise affects nonlinear dynamics through
the 102–103 orders of magnitude larger spontaneous emission
coefficient as compared with conventional class-B lasers, e.g.,
solid-state and CO2 lasers, owing to the small active volume.
The proposed laser enabled us to perform comprehensive
studies on nonlinear dynamics and the effect of quantum noise
on modulated class-B lasers in a wide modulation range.

The present work elucidates the nonlinear dynamics hidden
in class-B lasers involving soft- and hard-mode oscillations
for various relations between the modulation frequency and
frequency of the relaxation oscillation and the effect of in-
trinsic multiplicative quantum noise (spontaneous emission)
on hard-mode spiking oscillations that are expected to occur
under strong periodic modulation.

By paying special attention to the dynamic characteri-
zation of qualitatively different chaotic oscillations, which
were observed in the feedback ratio of light scattered toward
the laser, the intensity probability distribution was found to
change from an exponential decay in the chaotic soft-mode
regime to an inverse power law in the chaotic hard-mode
regime, via a chaotic itinerancy regime where stochastic
frequency locking among two periodicities of soft- and hard-
mode oscillations takes place and features a quantum-noise
(spontaneous-emission)-induced order in the amplitude and

FIG. 1. Experimental apparatus. PD: photodiode; SFPI: scanning
Fabry-Perot interferometer; DO: digital oscilloscope; SA: spectrum
analyzer; VA: variable optical attenuator; BS: beam splitter.

phase. The inverse power law in the intensity probability
distributions of the chaotic spiking oscillations, in particular,
manifests itself in the laser Toda potential. Over the years, the
universality of the inverse power law has attracted particular
attention [21,22] for its mathematical properties, and some-
times, its surprising physical consequences in a diverse range
of natural and man-made phenomena.

All the experimental results were reproduced in numerical
simulations of the model equation of a single-mode self-
mixing TS3L subjected to Doppler-shifted delayed optical
feedback from a moving scattering object.

The paper is organized as follows: The basic properties of
TS3L and self-mixing laser Doppler velocimetry are presented
in Sec. II. Experimental results on three types of chaotic os-
cillation are demonstrated for different feedback coefficients
in Sec. III. Numerical results are presented in Sec. IV; they
confirm that the experimental intensity probability distribu-
tions of the chaotic spiking oscillations follow an inverse
power law and that there is quantum-noise-induced order in
the chaotic itinerancy regime featuring stochastic frequency
locking of soft-mode and hard-mode periodicities. Section V
summarizes the results and discusses the physical significance
of the observed nonlinear dynamics.

An analogy between class-B laser rate equations and the
laser Toda oscillator model is presented in the Appendixes
as an aid for understanding the soft-mode and hard-mode
oscillations described in the main text.

II. TS3L PROPERTY AND SELF-MIXING LASER
DOPPLER VELOCIMETRY SCHEME

Before discussing the characterization of the nonlinear dy-
namics of the TS3L placed in a state of chaotic oscillations
by Doppler-shifted optical feedback scattered from a moving
object toward the laser, let us review the basic properties of
the Nd:GdVO4 TS3L used in the experiment and self-mixing
laser Doppler velocimetry in the weak feedback regime.

A. Basic properties of thin-slice Nd:GdVO4 laser

The experimental setup is shown in Fig. 1. A nearly col-
limated lasing beam from a laser diode (LD; wavelength:
808 nm) was passed through an anamorphic prism pair (AP)
to transform an elliptical beam into a circular one, and it
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FIG. 2. (a) Input-output characteristics, slope efficiency = 25%. (b) Optical spectrum. Pump power, W = 100 mW. (c) Pump-dependent
relaxation oscillation frequency.

was focused onto a thin-slice laser crystal by a microscopic
objective lens (OL) of numerical aperture NA = 0.5. The laser
crystal was a 3-mm-diameter clear-aperture, 300-μm-thick,
3 at.%-doped a-cut Nd:GdVO4 whose end surfaces were
directly coated with dielectric mirrors M1 (transmission at
808 nm > 95%; reflectance at 1064 nm = 99.8%) and M2

(reflectance at 1064 nm = 99%) and whose Fresnel num-
ber was 4×104. The lasing optical spectra were measured
by a scanning Fabry-Perot interferometer (SFPI) (Burleigh
SAPLUS, 2 GHz free spectral range, 6.6 MHz resolution).

The input-output characteristics and an optical spectrum
are shown in Figs. 2(a) and 2(b), where linearly polarized
single-longitudinal-mode oscillations at λ = 1064 nm were
observed in the entire pump power region and the intensity
fluctuation with respect to the average was measured to be
2�I/Iav = 5.4%.

The fluorescence-to-photon lifetime ratio, K = τ/τp,
which is the key parameter for self-mixing modulations
with extreme optical sensitivity, was experimentally evaluated
using the pump-dependent relaxation oscillation frequency,
fRO = (1/2π )[(w − 1)/ττp]1/2, as shown in Fig. 2(c). As-
suming τ = 90 μs for Nd:GdVO4 lasers, the photon lifetime
is estimated to be τp = 24 ps. The resultant lifetime ratio is as
large as K = 3.75×106.

B. Self-mixing laser Doppler velocimetry signals
with reduced optical feedback

The self-mixing modulation experiment [23] was carried
out using Doppler-shifted light scattered from a rotating cylin-
der toward the TS3L cavity, as depicted in Fig. 1. Here, the
Nd:GdVO4 laser was modulated at fD = 2v/λ because of
the self-mixing modulation at the beating frequency between
the laser and Doppler-shifted light scattered toward the TS3L
cavity (v: moving speed along the lasing axis).

The power spectrum intensity of laser Doppler velocimetry
(LDV) signals is proportional to (ηK )2, where η = |Eb/Eo|
is the field amplitude feedback ratio (Eo: laser output field
amplitude; Eb: feedback field amplitude toward the laser) [20].
Because of the extremely large K value of 3.75×106, the
present TS3L exhibited chaotic oscillations in the absence of a
variable optical attenuator, VA, as depicted in Fig. 1. Measure-
ments were carried out using an InGaAs photoreceiver (New
Focus 1812, 25 kHz–1 GHz) connected to a digital oscillo-

scope (Tektronics TDS 3052, DC-500 MHz) and a spectrum
analyzer (Tektronix 3026, DC–3 GHz). Typical power spec-
tra for different attenuations are shown in Figs. 3(a)–3(c),
where each power spectrum was obtained by averaging 100
power spectra measured at intervals of the update, 160 μs.
Chaotic oscillations appeared when the round-trip attenuation
by the variable attenuator was TA � −20 dB. The correspond-
ing power spectrum is shown in Fig. 3(d).

III. DYNAMICAL CHARACTERIZATION OF TS3L
PLACED IN CHAOTIC OSCILLATIONS

This section shows the chaotic dynamics observed in
different feedback intensity regimes and characterizes the dy-
namics in terms of intensity probability distributions, Poincaré

FIG. 3. (a)–(c): Self-mixing LDV signals under weak optical
feedback with different round-trip attenuations, TA. W = 58 mW.
(d) Power spectrum corresponding to chaotic oscillations for
TA = –8 dB.
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FIG. 4. (a) Temporal evolutions of soft-mode and hard-mode chaos. The output voltage was calibrated by using dc bias output. (b)
Corresponding power spectra. (c) Intensity probability distributions. The base of the logarithmic functions is e (Eulers Number) and 10 for soft
mode and hard mode, respectively. W = 50 mW.

sections, return maps of the peak amplitudes and phases, and
their degrees of disorder.

A. Soft-mode chaos and hard-mode chaos

Chaotic relaxation oscillations (namely, soft-mode chaos)
occurred in the weak optical feedback regime, −20 dB <

TA < −13 dB. A typical chaotic waveform and correspond-
ing fast Fourier transform (power spectrum) are shown in
the top panels of Figs. 4(a) and 4(b), where fD was tuned
to 3 MHz while the relaxation oscillation frequency with-
out modulation was fRO = 2 MHz. The power spectra of
such chaotic soft-mode chaos have broadened peaks around
fD = 3 MHz and fRO = 2 MHz. On the other hand, chaotic
spiking oscillations (namely, hard-mode chaos) appeared in
the strong optical feedback regime, −9 dB < TA < 0 dB. An
example waveform and corresponding power spectrum are
shown in the bottom panels of Figs. 4(a) and 4(b). Note that
the spiking frequency was measured from the time series to
be on average fSO

∼= 1.5 MHz; however, their power spectrum
broadened and the fSO peak could not clearly be identified
from the power spectrum. This point will be discussed in
Sec. III B.

The intensity probability distributions for soft- and hard-
mode chaos are shown in Fig. 4(c), where fitting lines and
Pearson product-moment correlation coefficients R are de-
picted. From repeated acquisition of chaotic time series for
various values of fD and fRO in the regime of fD � fRO,
the intensity probability distribution was concluded to obey
an exponential decay P(s) ∝ e−αs for soft-mode chaos and
an inverse power law, P(s) ∝ s−β for hard-mode chaos. The
scaling parameter typically lay in the range 0.9 < α, β < 2,
while |R| > 0.99.

The universality of the inverse power law for chaotic spik-
ing oscillations is surprising because the intensity probability
distributions of spike-pulse waveforms in a periodic spiking
oscillation deviate from an inverse power law, as will be

addressed in Appendix A. In short, spike pulses with random
peak intensities and pulse widths are self-organized such that
an inverse power law P(s) ∝ s−β is established for overall
spike pulses in the long-term evolutions. This suggests that the
laser Toda potential system driven by a strong force exhibits
self-organized critical behavior, while it has been argued
that earthquakes, landslides, forest fires, sizes of power out-
ages, and species extinctions are examples of self-organized
criticality in nature [24]. This point will be discussed in
Appendix B.

Figures 5(a) and 5(b) show the Poincaré sections [s, ṡ]
and return maps of the peak intensities and the time interval
between peaks, [sp, i, sp,i+1] and [tp, i, tp,i+1], for soft- and
hard-mode chaotic oscillations. The Poincaré sections of the
soft-mode and hard-mode chaos show qualitatively different
topologies and coexist in the phase space. The standard de-
viations of the peak intensities, RA = A/〈A〉, and of the time
interval between peaks, RT = T/〈T 〉, are a measure of disor-
der in the amplitude and phase. From repeated experiments,
RA and RT were evaluated be 0.31 and 0.25 on average for the
soft-mode chaos, while these values were found to increase to
RA = 0.39, RT = 0.31 on average for the hard-mode chaos.
This suggests a larger degree of disorder in spiking chaos.

B. Chaotic itinerancy: Alternating appearance
of soft-mode and hard-mode chaos

When the optical feedback was increased beyond the range
of soft-mode chaos, i.e., TA � −13 dB, bursts of spiking chaos
appeared and the survival times of the chaotic relaxation
oscillations, tRO = (sum of dwell times in relaxation oscil-
lations)/(total time series) decreased with increasing optical
feedback, leading to the chaotic spiking oscillations shown
in Fig. 4 above TA � −9 dB. In short, self-induced switching
emerged in which there were chaotic relaxation oscillations
and chaotic spiking oscillations at the boundary between
soft-mode and hard-mode chaos. This unusual behavior has
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FIG. 5. (a) Poincaré sections of soft- and hard-mode chaos. (b) Return maps of peak intensities. (c) Return maps of time interval between
peaks.

been observed in LiNdP4O12 TS3L modulated at harmonic
frequencies of fRO [25], where numerical simulations proved
that self-induced switching between the ruins of soft and
hard-mode attractors takes place deterministically even in the
absence of quantum (spontaneous emission) noise. Therefore,
switching behavior manifests itself in the so-called chaotic
itinerancy (namely, CI) frequently observed in vast complex
systems [26–32].

The concept of CI refers to dynamical behavior in which
the system itinerates over the “ruins” of localized chaotic
attractors in some irregular way, while chaotic dynamics en-
ables the system to form easy switching paths among the
localized chaotic attractors [26]. During this itinerancy, the
orbits visit a neighborhood of an attractor ruin with a relatively

regular and stable motion, for relatively long times, and then
the trajectory jumps to another attractor ruin of the system. In
addition, in the present TS3L system subjected to self-mixing
modulations, the laser’s quantum noise has an intriguing effect
on the itinerant behavior.

Figure 6(a) shows chaotic waveforms for different round-
trip optical attenuations, TA, observed at the pump power,
W = 50 mW. As shown in Fig. 6(b), the survival time tRO

decreased according to an inverse power law, i.e., tRO ∝ T −γ

A .
The distinct power spectrum and intensity probability distri-
bution observed for TA = −11.5 dB are shown in Fig. 6(c).
It is interesting that a clear peak appeared at the spiking
frequency, fSO = fD/2 = 1.5 MHz, while it was broadened
for the chaotic hard-mode spiking waveforms (Fig. 4).

FIG. 6. Chaotic itinerancy observed at W = 50 mW. (a) Temporal evolutions for different attenuations, TA. (b) Survival time of soft-mode
chaos versus attenuation. (c) Power spectrum and intensity probability distribution for TA = –11.5 dB.
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FIG. 7. (a) Zoomed-in views of time series for TA = –11.5 dB and its joint time-frequency analysis. (b) Short-term Fourier transform
(power spectra) around switching point. (c) Return maps for hard-mode spiking peaks.

Furthermore, the relaxation oscillation frequency in the soft-
mode chaos [Fig. 4(a)], which is depicted by the dashed line,
shifted from 2 MHz to fRO = 3

4 fD = 2.25 MHz toward fD.
Such a nonlinear frequency pulling of the relaxation oscil-
lation frequency without modulations toward the modulation
frequency fD has often been identified in the CI regime. As
for the intensity probability distribution, the peculiar “slope”
appeared to correspond to a quiet region of s(t) between the
upper bound of soft-mode chaos intensity fluctuations and the
lower bound of hard-mode chaotic fluctuations.

The power spectrum shown in Fig. 6(c) suggests nonlinear
frequency locking among two periodicities fRO and fSO in the
form of [ fSO: fRO] = [2:3] through the self-mixing modulation
at fD in the CI regime. To clarify this situation, let us examine
the dynamics occurring in the switching regions indicated by
⇓ in Fig. 6 for TA = −11.5 dB through a joint time-frequency
analysis (JTFA) of time series [33]. The results are shown
in Fig. 7(a), while the short-term Fourier transform power
(power spectra) around RO and SO chaos indicated by ↓ are
shown in Fig. 7(b). It is obvious that a [2:3] type of frequency
locking is established in the switching region between the
soft- and hard-mode time series during the temporal evolu-
tions, as indicated by ⇑ at 3 fSO = 2 fRO in Fig. 7(b), On the
other hand, the degree of disorder in the amplitude and phase
in the overall spiking time series is greatly lowered to RA =
0.193 and RT = 0.062, as shown in Fig. 7(c). This implies
that spiking chaos oscillations are tamed by frequency locking
among the two periodicities, fSO and fRO. The appearance
of such tamed spiking oscillations is presumably considered
to involve quantum noise, i.e., spontaneous emission, since
spiking oscillations are born from a nonlasing solution which
depends on the spontaneous emission coefficient, as men-
tioned in the Introduction. The quantum-noise-induced order
will be addressed later in numerical simulations.

Such a [p : q] frequency locking accompanied by forma-
tion of an easy switching path among the ruins of soft- and
hard-mode attractors [26] was identified in the CI regime for

various sets of fD and fRO. Experimental results exhibiting
[3:4] and [1:2] frequency locking, which feature tamed spik-
ing oscillations, are shown in Figs. 8 and 9, respectively.

As for Fig. 8, spiking oscillations were excited at fSO =
fD/2 and exhibited subharmonic locking with 3

4 fRO, as indi-
cated by ⇑, while fRO in the soft-mode chaos was found to
shift toward fD in the CI regime, similarly to Fig. 7.

As for Fig. 9, fD was tuned close to fRO, while fRO was
locked to fD and exhibited subharmonic locking with fSO =
1
2 fD = 1

2 fRO. Tamed spiking oscillations with decreased dis-
order in amplitude and phase, RA and RT , were brought about
in both cases, as depicted in Figs. 8(c) and 9(c).

IV. NUMERICAL RESULTS

The numerical results presented below support the experi-
mental observations and conjectures discussed so far.

The generalized dynamical equations for self-mixing lasers
can be obtained by extending the Lang-Kobayashi equations
[9] to include Doppler-shifted feedback of light scattered from
a moving target [20]:

dN (t )/dt = {w − 1 − N (t )

− [1 + 2N (t )]E (t )2}/(K/2), (1)

dE (t )/dt = N (t )E (t ) + ηE (t − tD)cos�(t )

+ {2ε[N (t ) + 1]}1/2ξ (t ), (2)

dφ(t )/dt = η[E (t − tD)/E (t )]sin�(t ), (3)

�(t ) = �Dt − φ(t ) + φ(t − tD). (4)

Here, E (t ) = (gτ )1/2E (t ) is the normalized field ampli-
tude, and N (t ) = gNthτp[N (t )/Nth − 1] is the normalized
excess population inversion, where Nth is the threshold
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FIG. 8. Chaotic itinerancy featuring [3:4] frequency locking. W = 46 mW. TA = –10 dB.

population inversion. g is the differential gain coefficient,
where gain is defined as G = Gth + g[N (t ) − Nth]. w =
W/Wth is the relative pump rate normalized by the thresh-
old, φ(t) is the phase of the lasing field, �(t) is the phase
difference between the lasing and the feedback field, and η is
the amplitude feedback ratio. �D = ωD/κ is the normalized
instantaneous frequency shift of the feedback light from the
lasing frequency. t and tD are the time and delay time normal-
ized by the damping rate of the optical cavity κ = 1/(2τp).
The last term of Eq. (2) includes quantum (spontaneous emis-
sion) noise, where ε is the spontaneous emission coefficient

and ξ (t) is Gaussian white noise with zero mean, and the value
〈ξ (t )ξ (t ′)〉 = δ(t − t ′) is δ correlated in time. In the short-
delay limit, Eqs. (1)–(4) reduce to the laser rate equations,
which are given in Appendix A.

A. Soft-mode chaos and hard-mode chaos

The temporal evolutions were calculated by using pa-
rameters corresponding to the experimental results of the
soft-mode and hard-mode chaos shown in Figs. 4(a) and 4(b),
assuming w = 1.38, K = 3.75×106, ε = 10−8, �D = 10−4,

FIG. 9. Chaotic itinerancy featuring [1:2] frequency locking. W = 70 mW. TA = –12 dB.
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FIG. 10. Numerical results on soft- and hard-mode chaos. w = 1.38, K = 3.75×106, ε = 10−8, �D = 9×10−4, and tD = 10.

and tD = 10. Numerical results representing soft-mode and
hard-mode chaos are shown in Figs. 10(a) and 10(b), as-
suming η = 1.65×10−4 and 8×10−4, respectively. Here, the
timescale was returned to real time by using τp = 24 ps. The
threshold intensity feedback ratio for chaotic oscillations was
found to decrease as ε increases. Numerical waveforms and
the corresponding power spectra match the experimental re-
sults in Figs. 4(a) and 4(b) remarkably well. In particular,
the peculiar power spectrum for chaotic spiking reproduces
the experimental one in detail, as shown in the bottom panel
of Fig. 4(b). The calculated intensity probability distributions
for chaotic relaxation and spiking oscillations are shown in
Fig. 10(c), where correlation coefficients are evaluated to be
R = −0.996 and −0.992, respectively. These values are also

close to the experimentally obtained R = −0.993 for both
chaotic relaxation and spiking oscillations in Fig. 4(c).

The calculated Poincaré sections and return maps of the
peak intensities and their time intervals, [sp, i, sp,i+1] and
[tp, i, tp,i+1], for chaotic relaxation and spiking oscillations
are shown in Figs. 11(a), 11(b), and 11(c), respectively. The
associated standard deviations of the peak intensities, RA =
A/〈A〉, and the time interval between peaks, RT = T/〈T 〉,
were RA = 0.31, RT = 0.21 for chaotic relaxation and RA =
0.43, RT = 0.34 for chaotic spiking oscillations. These de-
grees of disorder are close to the average values of RA = 0.31,
RT = 0.25 for chaotic relaxation oscillations and RA = 0.39,
RT = 0.31 for chaotic spiking oscillations obtained in the
experiment (Fig. 5).

FIG. 11. Calculated Poincaré sections and return maps of peak intensities and time intervals between peaks corresponding to Fig. 10.
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FIG. 12. Numerical results of chaotic itinerancy. η = 1.8×10−4. Other parameters are the same as those for Fig. 10.

B. Chaotic itinerancy: Alternating appearance
of soft-mode and hard-mode chaos

An example of the calculated temporal evolutions exhibit-
ing alternating chaotic relaxation and spiking oscillations in
the CI regime is shown in Fig. 12(a), together with the
intensity probability distribution that features a slope, assum-
ing η = 1.8×10−4. The other parameters are the same as
those for the chaotic soft- and hard-mode oscillations shown
in Fig. 10.

The short-term power spectra of soft- and hard-mode
chaos in the switching region indicated by ⇓ are shown in
Fig. 12(b). The clear peak corresponding to spiking oscil-
lations at fSO = fD/2 as well as a nonlinear shift in the
relaxation oscillation frequency from 2 MHz to fRO = 3

4 fD =
2.25 MHz toward fD match the experimental results shown in
Fig. 7.

The calculated return maps of the peak intensities and their
time intervals, [sp, i, sp,i+1] and [tp, i, tp,i+1], for the overall
hard-mode spiking time series are shown in Fig. 12(c). The
associated standard deviations of the peak intensities, RA =
A/〈A〉, and the time interval between peaks, RT = T/〈T 〉,
were RA = 0.162 and RT = 0.082 for tamed chaotic spiking
oscillations. These values are close to the average experimen-
tal values of RA = 0.193 and RT = 0.062 in the experimental
results in the CI regime.

The parametric excitation of spiking oscillations due to
harmonic frequency modulations at fD = 2× fSP as well as
resonant relaxation oscillations featuring a nonlinear fRO

pulling toward fD, which reproduce the experimental results
shown in Sec. III B, are considered to encourage subharmonic
frequency locking of the two periodicities of the soft mode and
hard mode in the CI regime. In addition, periodic spike-mode
oscillations due to harmonic frequency injection-current and
pump modulations were demonstrated in semiconductor and
solid-state lasers, respectively [15,16].

C. Numerical analysis of the effect of spontaneous
emission noise on chaotic itinerancy

Let us examine the effect of spontaneous emission noise on
self-induced switching among chaotic relaxation and spiking
oscillations on the basis of the numerical simulations.

Self-induced switching among the ruins of soft- and
hard-mode attractors had already been proved to take place
deterministically even in the absence of the quantum (spon-
taneous emission) noise term in Eq. (2) [25]. On the other
hand, the experimental results and numerical reproductions
shown in the previous sections strongly suggest that quan-
tum (spontaneous emission) noise affects the deterministic
chaotic itinerancy phenomenon, i.e., taming of spiking oscilla-
tions presumably associated with stochastic frequency locking
among two periodicities of soft and hard modes, i.e., fSO and
fRO.

Here, numerical simulations were carried out for vari-
ous values of the spontaneous emission coefficient ε, using
Eqs. (1)–(4). Example results are shown in Fig. 13, assuming
w = 1.1, K = 3.75×106, η = 2.5×10−4, and �D = 2×10−4,
where the total integration time is 107. The spontaneous emis-
sion coefficient is given by ε = cστ/πwonL, where c is the
velocity of light, σ is the stimulated emission cross section,
wo is the lasing beam spot size averaged over the cavity length
L, and n is the refractive index. Large spontaneous emission
coefficients, on the order of 10−8–10−7, are estimated for the
short-cavity TS3Ls with L � 1 mm. Figure 13 indicates that
the survival time of soft-mode chaotic relaxation oscillations,
tRO = (sum of dwell times in soft-mode oscillations)/(total
integration time), depends on the strength of the spontaneous
emission noise, i.e., ε.

To clarify the effect of ε on tRO, repeated numerical exper-
iments were performed for different values of ε. The survival
time, tRO, averaged over ten data sets of 107 points each is
plotted as a function of ε in Fig. 14(a), where the critical
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FIG. 13. Effect of spontaneous emission noise on chaotic itinerancy. w = 1.1, K = 3.75×106, η = 2.5×10−4, and �D = 2×10−4.

intensity that distinguishes hard-mode (spiking) chaos from
soft-mode (relaxation oscillation) chaos was set to Ic = 0.5
for all datasets.

The survival time, tRO, reaches a minimum value and
increases afterward as ε increases, showing increased in-
tensity fluctuations. In addition, the degree of disorder was
evaluated in terms of the standard deviations of the peak
intensities, RA = A/〈A〉, and the time interval between peaks,
RT = T/〈T 〉, for the overall time series of the hard-mode
spiking oscillations. It is obvious that the degree of disorder
reaches a minimum value at a certain ε, corresponding to the
minimum for tRO around ε = 5×10−8, as shown in Fig. 14(a).

These results imply that an optimum value of ε exists at
which chaotic spiking oscillations are mostly tamed over time
through stochastic frequency locking among the periodicities
of fRO (relaxation oscillation) and fSO (spiking oscillation).
The power spectra for ε = 1×10−8 and 5×10−8 are shown
in Fig. 14(b). They indicate that the relaxation oscillation
frequency in the free-running condition ( fRO = 1.1 MHz)
is pulled toward the self-mixing modulation frequency and
frequency locked to fRO = fD = 1.32 MHz. Then, chaotic

spiking oscillations are excited at fSO = 1
2 fRO. The fSO-peak

intensity was enhanced mostly at the optimum value of ε,
around 5×10−8 in this case. As ε increases beyond the op-
timum value, the system tends to develop chaotic spiking
oscillations with increased disorder.

The theoretical results shown in Figs. 12–14 verify the
effect of quantum (spontaneous emission) noise on determin-
istic chaotic itinerancy phenomena and explain the quantum-
noise-induced order through stochastic frequency locking of
two periodicities of fRO and fSO observed in the experi-
ments. Moreover, such noise-induced ordering did not arise
by adding Gaussian white noise to the pump rate in the form
of w + δξ (t) in the simulation, where δ is the noise strength.

V. CONCLUSIONS

In summary, systematic investigations were performed on
the nonlinear dynamics of a laser-diode-pumped thin-slice
Nd:GdVO4 laser (TS3L) subjected to self-mixing modula-
tion with a Doppler-shifted field from a moving scattering
object. The highly sensitive self-mixing modulation effect

FIG. 14. (a) Survival time of soft-mode chaos and degree of amplitude disorder versus spontaneous emission coefficient corresponding to
Fig. 13. (b) Power spectra near the optimum ε of 5×10−8.
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inherent to a thin-slice solid-state laser with an extremely
large fluorescence-to-photon lifetime ratio as well as its large
spontaneous emission coefficient led to the observation of the
generic dynamics hidden in modulated class-B lasers. These
dynamics include self-organized critical behavior of chaotic
spiking oscillations, which exhibit intensity probability dis-
tributions obeying an inverse power law; chaotic itinerancy
(CI) among the ruins of relaxation oscillations and spiking
oscillations around frequencies of fRO and fSO; and taming
of chaotic spiking oscillations, with an enhanced degree of
order in amplitude and phase, through quantum (spontaneous
emission) noise mediated stochastic subharmonic frequency
locking among two periodicities, fRO and fSO (< fRO), in the
CI regime.

All the experimental results were correctly reproduced in
numerical simulations of a model equation of self-mixing
class-B lasers including spontaneous emission noise. The the-
oretical approach toward the universality of the inverse power
law inherent to chaotic spiking oscillations in laser Toda po-
tential remains as an interesting future task.

APPENDIX A: LASER TODA OSCILLATOR MODEL

This Appendix reviews the analogy between laser rate
equations and the Toda oscillator system as an aid for under-
standing the soft-mode and hard-mode oscillations described
in the main text.

The laser rate equations for class-B lasers subjected to
periodic loss modulation are given by

dn/dt = w − n + ns, (A1)

ds/dt = K{[n − (1 + m cos ωDt )]s + εn}. (A2)

Here, w is the pump power normalized by the threshold
pump power, n is the population inversion density normalized
by the threshold, s is the normalized photon density, m = 2η is
the modulation amplitude, ωD = 2πτ fD is the normalized
angular modulation frequency, ε is the spontaneous emission
coefficient, and time is normalized by τ . In the short delay
limit, i.e., tD → 0, Eqs. (1)–(4) in Sec. IV reduce to the laser
rate equations (A1) and (A2) with a loss modulation term.
These rate equations are considered to describe the fundamen-
tal dynamics of self-mixing lasers [20].

To provide physical insight into relaxation oscillations
(soft mode) and spiking oscillations (hard mode) described
in the main text, let us introduce the Toda potential for laser
rate equations (A1) and (A2), which include a spontaneous
emission term. The dynamics of the photon density can be
understood in analogy with the motion of a particle in the
following laser Toda potential V, by making a logarithmic
transformation, u(t) ≡ ln s(t ):

d2 u/dt2 + κro(du/dt ) + ∂V/∂u = FD, (A3)

V = K[wεe−u+ (eu− 1)(1+ m cos ωDt ) − (w − 1)u − wε],
(A4)

κro = ε

[
K (1 + mcosωDt ) + du

dt

]
/(eu + ε) + 1 + eu, (A5)

FD = KmωDsin(ωDt ) − Km cos(ωDt ). (A6)

Equations (A4) and (A5) contain an additional cos(ωDt )
component, which is responsible for parametric excitation of
the nonlinear laser oscillator subjected to loss modulation.

The calculated laser Toda potential is shown in Fig. 15(a),
assuming m = 0, w = 1.38, and ε = 1×10−8. The particle

FIG. 15. (a) Particle motion corresponding to soft- and hard-mode oscillations in laser Toda potential. (b) Periodic soft-mode oscillation.
(c) Periodic hard-mode oscillation. (d) Magnified view of single spike-pulse and hyperbolic-function fitting curve. (e) Intensity probability
distribution of periodic spiking oscillations shown in (c). W = 57 mW.
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moves within a highly asymmetric laser Toda potential with
a complicated damping rate, κro. Here, the damping rate in-
creases as the photon density, s(t ) = eu(t ), increases, whereas
it does not depend on u(t) in the original Toda oscillator [12].

Without a driving force FD in Fig. 15(a), the particle ap-
proaches the ground state G, which corresponds to the lasing
stationary solution of Eqs. (A1) and (A2) without modulation,
sl = w–1, and shows damped relaxation oscillations.

The Hamiltonian motion around the ground state, i.e.,
periodic relaxation oscillations (soft mode), is established if
a periodic driving force is applied at the relaxation oscilla-
tion frequency, fRO, such that the damping force, κro(du/dt ),
balances the periodic driving force, FD. In addition to the
soft mode, a spikelike waveform that builds up from the
nonlasing stationary solution of Eqs. (A1) and (A2), snl =
2εw/(w − 1)2 � 1, within the asymmetric potential is also
expected to manifest itself in the large signal regime by tun-
ing the strength and frequency of the driving force. In fact,
periodic spiking oscillations (hard mode) were realized in
semiconductor lasers through the use of deep injection current
modulation [16] and in solid-state lasers through the use of
deep loss or pump modulation at fSP (< fRO) [13–15].

In the present self-mixing modulation scheme, periodic
relaxation and spiking oscillations were obtained by tuning
the modulation frequency fD and feedback rate TA, as shown
in Figs. 15(b) and 15(c), respectively. The modulation fre-
quency fD was tuned close to fRO = 2.7 MHz for the periodic
soft-mode oscillation, while the periodic hard-mode oscilla-
tion was obtained when fD was set to fSP = 1.7 MHz. The
optical feedback rate was adjusted appropriately to preserve
sustained periodic oscillations in both cases. The pulse width
[full width at half maximum (FWHM)] of the periodic spikes
was measured to be 30 ns.

Note that the spike-pulse waveform is well fitted by the
following hyperbolic function:

s(t ) = spsech2

(√
sp

2ττp
(t − t0)

)
, (A7)

similarly to Carson’s giant pulse model [34]. to is the time at
which the peak photon number occurs. A magnified view of a
single spike-pulse waveform in Fig. 15(c) and the hyperbolic
fitting curve are shown in Fig. 15(d), assuming τ = 90 μs and
τp = 24 ps. A large coefficient of determination of R2 = 0.99
is attained in this case. The asymmetric nature in the pulse
shape in Fig. 15(d) is considered to arise from larger initial
population inversions in the onset of a spike pulse, with a
faster rise time and a slower decay time [35]. Furthermore,
it is interesting that the spike-pulse waveform is formally
equivalent to the following one-soliton solution of the Toda
oscillator system [36]:

�n(t ) = (sinh2k)sech2[(sinh k)(t − t0) + kn], (A8)

which is found by normalizing the time by
√

2ττp and setting
sp in Eq. (A7) to sinh2k, where k is the spring constant and n
is an integer.

The intensity probability distribution P(s) for the peri-
odic spiking oscillation corresponding to Fig. 15(c) is shown
in Fig. 15(e). P(s) does not obey an inverse power law as
expected from Eq. (A7), while it reaches a minimum at
the inflection point sc, which is expressed by the following
equation:

sc = spsech2

(
arctanh

1√
3

)
= 2

3
sp. (A9)

P(s) increases monotonically in the region s > sc.
In the chaotic spiking oscillations shown in Sec. III A,

chaotic spike pulses with different peak intensities sp,i and
pulse widths (FWHM) �τp,i, were fitted by the hyperbolic
function given by Eq. (A7) similarly to Fig. 15(d), while
�τp,i increases with decreasing sp,i. This suggests that the
self-organized critical behavior in chaotic spiking oscilla-
tions obeys an inverse power law, where chaotic spike pulses
are organized in the laser Toda oscillator system such that
the overall intensity probability distribution for chaotic spike
pulses during long-term evolutions obeys an inverse power
law.

FIG. 16. Functional transition of spike-pulse waveforms from hyperbolic to Gaussian associated with quantum-noise-induced frequency
locking in the chaotic itinerancy. (a), (b) Experimental results. (c), (d) Numerical results.
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FIG. 17. Statistical graphics of chaotic spike pulses. Fitting parameters: Ep,0 = −1.184×10−6, a = 5.782×10−8, b = 36.281,
c = 5.274×10−10, and d = −2.623×108.

Finally, let us show an intriguing functional transition of
the spike-pulse waveform from the hyperbolic function given
by Eq. (A7) for hard-mode spiking chaos to the Gaussian
function for quantum-noise-mediated tamed spiking chaos in
the CI regime, which has not been identified in the original
Toda oscillator system without noise.

Zoomed-in views of the experimental chaotic spiking os-
cillation and tamed spiking oscillation in the CI regime
corresponding to Figs. 4(a) and 7(a) are shown in Fig. 16(a).
The corresponding magnified waveforms of spike pulses indi-
cated by the arrows are shown in Fig. 16(b), together with
hyperbolic and Gaussian fitting curves. Figures 16(c) and
16(d) show zoomed-in views of numerical results correspond-
ing to Figs. 10(a) and 12(a). The numerical results reproduce
the experimental ones. The nontrivial functional transition
from hyperbolic to Gaussian is apparent, featuring large co-
efficients of determination, R2. All spike pulses with different
peak intensities and tamed spiking oscillations were fitted by
hyperbolic and Gaussian functions, respectively.

Although a concrete theoretical explanation has been left
as a future task, we have shown analytical expressions for a
particle moving in a laser Toda potential subjected to self-
mixing modulation. The parametric excitation of the nonlinear
oscillator responsible for subharmonic frequency locking of
two periodicities through quantum noise as well as the math-
ematical equivalence between the spike-pulse (hard mode)

and soliton solutions of the Toda lattice have been explored.
Moreover, the nontrivial functional transition of spike-pulse
waveforms from hyperbolic to Gaussian in the chaotic itiner-
ancy was reproduced theoretically. These results suggest the
robustness of the model equations of a TS3L subjected to
self-mixing modulation, Eqs. (1)–(4), and the corresponding
laser Toda oscillator expressed by Eqs. (A3)–(A6).

APPENDIX B: STATISTICAL GRAPHICS
OF CHAOTIC SPIKE PULSES

Finally, we show the intriguing relation between three
quantities of peak intensity sp, pulse width �τp, and pulse
energy (area) Ep of spikes, which is established behind the
inverse power law of intensity probability distributions. Each
spike-pulse waveform is approximated by a hyperbolic func-
tion, while it exhibits an asymmetric nature with a long-time
tail depending on the peak intensity. We calculated these three
quantities for 165 spike pulses of chaotic spiking oscillations
shown in Fig. 4(a) by using ORIGINPRO software, as depicted
in the top panel of Fig. 17(a). The three-dimensional statisti-
cal graphics of spike pulses and their projections are shown
in the bottom panel of Fig. 17(a). Individual pulse energies
are self-organized to lie on the parabolic surface given by
Ep = Ep,0 + asp + b�τp + cs2

p + d�τ 2
p with a large coeffi-

cient of determination, R2 = 0.996, as shown in Fig. 17(b).
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