
PHYSICAL REVIEW E 104, 044202 (2021)

Normal form for the onset of collapse: The prototypical example
of the nonlinear Schrödinger equation
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The study of nonlinear waves that collapse in finite time is a theme of universal interest, e.g., within optical,
atomic, plasma physics, and nonlinear dynamics. Here we revisit the quintessential example of the nonlinear
Schrödinger equation and systematically derive a normal form for the emergence of radially symmetric blowup
solutions from stationary ones. While this is an extensively studied problem, such a normal form, based on
the methodology of asymptotics beyond all algebraic orders, applies to both the dimension-dependent and
power-law-dependent bifurcations previously studied. It yields excellent agreement with numerics in both
leading and higher-order effects, it is applicable to both infinite and finite domains, and it is valid in both critical
and supercritical regimes.
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I. INTRODUCTION

The nonlinear Schrödinger (NLS) model [1–4] is, arguably,
one of the most central nonlinear partial differential equations
(PDEs) within mathematical physics. NLS is a ubiquitous
envelope wave equation for various physical contexts. Its
applications span water waves [5–7], nonlinear optical me-
dia [8,9], plasma physics [10], and more recently, the atomic
physics realm of Bose-Einstein condensates [11,12].

The solitary waves of NLS have been central to all of the
above investigations. A similarly prominent feature of NLS is
its finite-time, self-similar blowup in higher (integer) dimen-
sions or for higher nonlinearity powers. Indeed, this has been
central to both books [3,13,14] and reviews [15–17] and the
object of continued study in the physical and mathematical
literature; see, e.g., [18–20] and [21,22] for some recent ex-
amples and [23] for connections with Keller-Segel models of
bacterial colonies. Importantly for our purposes, these focus-
ing aspects have become accessible to physical experiments.
In nonlinear optics, the well-known, two-dimensional collaps-
ing wave form of the Townes soliton has been observed [24],
as well as the collapse of optical vortices [25] or the loss
of phase information of collapsing filaments [26]. Also, in
the flourishing area of Bose-Einstein condensates, the Townes
soliton has recently been announced [27], while collapsing

wave forms in higher dimensions had been experimentally
identified earlier [28,29].

The emergence of collapsing solutions out of solitonic ones
has been long studied [30,31] and summarized in numer-
ous reviews and books [3,13,14]. Nevertheless, remarkably,
a normal form—a prototypical model equation compactly
describing the relevant bifurcation, namely, the onset of col-
lapsing solutions out of noncollapsing ones as a nonlinearity
or dispersion parameter is varied—does not exist, to the best
of our knowledge. Recent attempts to capture even the well-
known log-log law of the critical case and its corrections [18]
will confirm that. It is known that at the critical point at which
collapse emerges, σd = 2 (with σd < 2 being subcritical and
σd > 2 supercritical), where σ is the nonlinearity exponent
and d the spatial dimension, a symmetry enabling self-similar
rescaling of the solution towards becoming singular at a finite
time (the so-called pseudo-conformal invariance) arises; for
details, see, e.g., pp. 35–37 of [3]. Beyond this critical point,
solitary waves become unstable and, in a form somewhat
reminiscent of the traditional pitchfork bifurcation, two col-
lapsing branches of solutions emerge [32]. Yet, this is no
ordinary pitchfork like, e.g., the one experimentally probed
in BECs in double-well potentials [33]. Here, pseudoconfor-
mal symmetry breaks and, thus, collapse phenomena will not
follow the standard cubic pitchfork normal form but rather are
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associated with the exponentially small, beyond-all-algebraic-
orders phenomenology of the relevant symmetry breaking.
Our aim is to go beyond the heuristic (steady state only)
arguments of earlier studies [30,31] and the rigorous, albeit
qualitative, results in this direction of [34] and present a sys-
tematic quantitative derivation of the associated normal form.
It is worth noting that while d is an integer parameter and σ

is typically such that 2σ is integer in physical applications,
here we will use these as continuous parameters in order to
systematically unfold the relevant bifurcation structure of the
system. Key features of our analysis are the following:

(1) We unify the case of general nonlinearity exponent and
that of arbitrary dimension, offering a result broadly applica-
ble in the above physical settings of interest.

(2) Our analysis captures both the case of the critical log-
log collapse and the supercritical t−1/2 collapse.

(3) Crucially, we capture not only the leading collapse
order but also systematically the higher-order corrections.

(4) We find excellent agreement with computations of the
stationary solutions and of the dynamical evolution. Despite
the perturbative nature of the approach, analytical and nu-
merical results remain nearly indistinguishable for a wide
parametric range.

II. PROBLEM FORMULATION AND
ASYMPTOTIC ANALYSIS

Our starting point is the radially symmetric NLS in dimen-
sion d with nonlinearity determined by the exponent σ :

i
∂ψ

∂t
+ ∂2ψ

∂r2
+ (d − 1)

r

∂ψ

∂r
+ |ψ |2σψ = 0. (1)

For the self-similar dynamics of such radially symmetric
models in the vicinity of the critical case dσ = 2 [3,13],
we establish the normal form of Eq. (21) below. While we
will principally analyze the supercritical case of dσ > 2, our
formulation covers also the critical (σd = 2) and subcritical
(σd < 2) cases. Our aim is to obtain the self-similar solution
profile and, more importantly, the reduced, normal form dy-
namics of its rate of collapse (i.e., the rate of amplitude growth
or of width shrinkage), assuming localized initial conditions
subject to collapse. The consideration of sufficient conditions
for collapse is an important problem that has been considered
elsewhere [35,36]. Our consideration of radially symmetric
data is justified, since nonisotropic initial conditions converge
towards a radially symmetric profile, as was originally numer-
ically observed in [37] and subsequently studied in [38,39].

Introducing the well-known stretched variables [3,13,32],
involving the time-dependent width factor L(t ),

ξ = r

L
, τ =

∫ t

0

dt ′

L2(t ′)
, ψ (r, t ) = L−1/σ eiτv(ξ, τ )

leads to

i
∂v

∂τ
+ ∂2v

∂ξ 2
+ (d − 1)

ξ

∂v

∂ξ
+ |v|2σv − v+iG

(
ξ
∂v

∂ξ
+ 1

σ
v

)

= 0, (2)

where the blowup rate is defined by

G = −LLt = −Lτ /L. (3)

Notice that this suggests a shrinking solution width for G > 0
and an expanding one for G < 0. In this dynamic change
of variables, and in order to close the dynamics in this “co-
exploding” frame [upon determining [G(τ )], we impose a
pinning condition of the form [32]∫ ∞

−∞
Re[v(ξ, τ )]T (ξ ) dξ = C (4)

for some constant C and some (essentially arbitrary) “template
function” T , to enable us to uniquely identify the solution v

and the blowup rate G. In our numerical examples we choose
T = δ(ξ − 2) [40]. Finally, we write

v(ξ, τ ) = V (ξ, τ )e−iG(τ )ξ 2/4

to give (using G′ ≡ dG/dτ )

i
∂V

∂τ
+ G′ξ 2

4
V + ∂2V

∂ξ 2
+ (d − 1)

ξ

∂V

∂ξ
+ |V |2σV − V

− i(dσ − 2)G

2σ
V + G2ξ 2

4
V = 0. (5)

For our time-dependent numerical results, Eq. (2) is spa-
tially discretized using second-order central finite differences
and integrated in time using MATLAB’S ode23t. To solve the
steady-state problem we used CHEBFUN [41]. Asymptotically,
we aim to solve (5) in the limit G → 0 and dσ → 2. Our
strategy will be as follows. We will solve (5) separately in
the near [ξ = O(1)] and far [ξ = O(G−1)] fields [42]. We will
find that the far field has a turning point at ξG = 2, resulting
in an exponentially small reflection back towards the near
field [43]. Matching with the near-field solution yields our
onset-of-collapse normal form.

A. Near field

We suppose (and will verify through our analysis) that the
solution evolves exponentially slowly and that σ and d are
exponentially close to σc, dc satisfying dcσc = 2 [3,13]. Thus
the second from the left and from the right terms in Eq. (5)
can be neglected for now. We look for a solution:

V = ei�(τ )[Vreg(ξ, τ ; G(τ )) + Vexp(ξ, τ )], (6)

where Vreg is the (real) regular algebraic expansion in G, Vexp

is exponentially small in G, and the exponentially-slowly-
varying phase � is determined by the pinning condition.

We expand the solution in (even and odd) powers of G
(with G > 0) as

Vreg =
∞∑

n=0

G2nVn, � =
∞∑

n=0

G2n+1�n. (7)

That the expansion for V contains only even powers of G
follows from the correction term in Eq. (5) being proportional
to G2; that the expansion for � contains only odd powers of G
follows from the pinning condition—see Eq. (37) below. This
gives the leading-order equation

∂2V0

∂ξ 2
+ (dc − 1)

ξ

∂V0

∂ξ
+ V 2σc+1

0 − V0 = 0, (8)
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the solution of which is the critical ground-state soliton. The
next order V1 then satisfies

∂2V1

∂ξ 2
+ (dc − 1)

ξ

∂V1

∂ξ
+

(
4

dc
+ 1

)
V 2σc

0 V1 − V1 = −ξ 2V0

4
,

(9)
with V ′

1 (0) = 0, and V1 → 0 as ξ → ∞.

B. Far field

The expansion (7) breaks down at large distances, when
Vreg is small. For small amplitudes the |Vreg|2σVreg term is
negligible, and a linear analysis of the corresponding operator
shows that Vreg decays exponentially. Similarly, as ξ → ∞,
the solution to (8) is dominated by

V0(ξ ) ∼ Adc e
−ξ

ξ (dc−1)/2
= Adc G

(dc−1)/2e−ρ/G

ρ (dc−1)/2
, (10)

for some dimension-dependent constant Adc . We note, in par-
ticular, the values A1 = 121/4 (from the quintic NLS exact
soliton solution [3]), and A2 ≈ 3.518 [18].

In the far field we rescale ξ = ρ/G to give

G2 ∂2Vreg

∂ρ2
+ G2 (dc − 1)

ρ

∂Vreg

∂ρ
+ |Vreg|2σcVreg − Vreg + ρ2

4
Vreg

= 0.

The exponential decay of Vreg renders it exponentially small
in G in the far field, allowing us to neglect the nonlinear term
|Vreg|2σcVreg. We now look for a WKB solution as

Vreg ∼ Gkeφ(ρ)/G
∞∑

n=0

An(ρ)Gn, (11)

with k to be determined below. At leading order this gives the
following eikonal equation:

(φ′)2 = 1 − ρ2

4
⇒ φ = −

∫ ρ

0

(
1 − ρ̄2

4

)1/2

d ρ̄ (12)

(so that Vreg is decreasing in ρ). Note the turning point at ρ =
2 from Eq. (12). The amplitude equation for A0 then leads to

A0 = a0

ρ (dc−1)/2(−φ′)1/2
= 21/2 a0

ρ (dc−1)/2(4 − ρ2)1/4
,

for some constant a0, which we will determine by matching
with the near-field solution (10). As ρ → 0, the far field yields

Gkeφ(ρ)/GA0 ∼ a0Gke−ρ/G

ρ (dc−1)/2
. (13)

Matching (13) with (10) gives k = (dc − 1)/2 and a0 = Adc .
For ρ > 2 only the solution of (12) in which

φ′ = i

(
ρ2

4
− 1

)1/2

has a finite Hamiltonian. Thus for ρ > 2,

Vreg = αGkeiφ2(ρ)/G
∞∑

n=0

Bn(ρ)(iG)n, (14)

for some constant α, where

φ2 =
∫ ρ

2

(
ρ̄2

4
− 1

)1/2

d ρ̄, B0(ρ) = 21/2a0

ρ (dc−1)/2(ρ2 − 4)1/4
.

The fact that only one of the oscillatory exponentials arises
beyond the turning point, i.e., for ρ > 2, forces an exponen-
tially small reflection back towards the near field, which we
will obtain by analyzing the turning point region. This is a
key feature of our exponential asymptotics analysis.

C. Turning point

We see that A0, B0 → ∞ as ρ → 2 corresponding to the
WKB approximation breaking down as the turning point is
approached, requiring an “inner” analysis in its vicinity. To
approximate the solution in the vicinity of the turning point
we rescale the independent variable as ρ = 2 + G2/3s. Then,
with s = O(1) as G → 0, the equation near the turning point
becomes, to leading order,

d2Vreg

ds2
+ sVreg = 0,

with the solution Vreg = λAi(−s) + μBi(−s), where Ai and
Bi are Airy functions of the first and second kind, respectively.
The asymptotic expansions of Ai and Bi give

Vreg ∼ λe−2(−s)3/2/3

2
√

π (−s)1/4
+ μe2(−s)3/2/3

√
π (−s)1/4

as s → −∞, (15)

Vreg ∼ e2is3/2/3

2
√

πs1/4
(λe−iπ/4 + μeiπ/4)

+ e−2is3/2/3

2
√

πs1/4
(λeiπ/4 + μe−iπ/4) as s → ∞.

(16)

Matching with (11) and (14) gives α = eiπ/4 and

λ = iμ = a0i
√

πGk−1/6eφ(2)/G.

Including both WKB solutions in ρ < 2 replaces (11) with

Vreg ∼ (eφ(ρ)/G + γ e−φ(ρ)/G)Gk
∞∑

n=0

An(ρ)Gn, (17)

where matching with (15) gives

γ = i

2
e2φ(2)/G = i

2
e−π/G.

D. Exponentially small correction to the near field

As ρ → 0, using Eq. (13), we have

γ e−φ(ρ)/GGk
∞∑

n=0

An(ρ)Gn ∼ a0γ G(dc−1)/2eρ/G

ρ (dc−1)/2
. (18)

This term will match with the exponentially small correction
to the near field. In the original near-field scaling, using Eq. (6)
neglecting time derivatives and quadratic terms in Vexp (which
are doubly exponentially small), but keeping all the other
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exponentially small terms, gives

∂2Vexp

∂ξ 2
+ (dc − 1)

ξ

∂Vexp

∂ξ
+ V 2σc

reg [σcV
∗

exp + (σc + 1)Vexp]

− Vexp + G2ξ 2

4
Vexp

= − (d − dc)

ξ

∂Vreg

∂ξ
− i

∂Vreg

∂τ
+ �′Vreg − G′ξ 2

4
Vreg

− 2(σ − σc)V 2σc+1
reg logVreg + i(dσ − 2)G

2σ
Vreg,

where �′ = d�/dτ . We now use Vexp = Uexp + iWexp and
separate into real and imaginary parts. Since Vreg satisfies
the homogeneous version of the equation for Wexp, there is a
solvability condition: multiplying that equation by ξ dc−1Vreg,
integrating from 0 to R, and using (8), we obtain

Rdc−1Vreg(R)
∂Wexp

∂ξ
(R) − Rdc−1Wexp(R)

∂Vreg

∂ξ
(R)

= −
∫ R

0
ξ dc−1Vreg

∂Vreg

∂τ
− ξ dc−1 (dσ − 2)G

2σ
V 2

reg dξ .

(19)

As R → ∞ we evaluate the boundary terms by matching
using (18), giving

lim
R→∞

Rdc−1

(
Vreg(R)

∂Wexp

∂ξ
(R) − Wexp(R)

∂Vreg

∂ξ
(R)

)

∼ lim
R→∞

a0e−R(a0Im(γ )eR) − (a0Im(γ )eR)(−a0e−R)

= 2a2
0Im(γ ).

Now∫ ∞

0
ξ dc−1V 2

reg dξ ∼
∫ ∞

0
ξ dc−1(V0 + G2V1 + · · · )2 dξ

∼ b0 + 2G2c0 + · · · ,

say, where

b0 =
∫ ∞

0
ξ dc−1V 2

0 dξ, c0 =
∫ ∞

0
ξ dc−1V0V1 dξ .

Thus the solvability condition (19) gives

2c0G
dG

dτ
= (dσ − 2)b0

2σ
G − A2

dc
e−π/G. (20)

A similar analysis can be performed when G < 0. Combining
the two results gives

2c0G
dG

dτ
= (dσ − 2)

2σ
b0G − A2

dc
sgn(G) e−π/|G|, (21)

which is our principal result, namely, the normal form for the
onset of collapse. We note that the normal form preserves the
symmetry τ → −τ , G → −G [and V → V ∗] of (5).

The natural bifurcation parameter is r = (dσ − 2). For all
r < 0, G = 0 is the only equilibrium branch of solutions.
When r > 0 this branch becomes unstable, and two new non-
trivial equilibrium branches emerge. In contrast to the usual
pitchfork bifurcation, here the branch with G > 0 is stable
(corresponding to a stable collapse in forward time) while

1.95 2 2.05 2.1 2.15 2.2 2.25
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

G

FIG. 1. Variation of the blowup rate G of Eq. (3), as a function of
σ for d = 1, domain size K = 50. PDE results (black lines) obtained
from Eq. (2) are in excellent agreement with the asymptotic solution
obtained from Eq. (23) [with a and b truncated at O(G2), gray lines].
The solitonic branch (G = 0) is stable up to σ = 2 (solid line) and
becomes unstable for σ > 2 (dashed line). The stable collapsing
branch (G > 0) is depicted with solid line, and the mirror image [i.e.,
arising for G → −G, τ → −τ and Im(v) → − Im(v)] branch in the
bottom (G < 0) is illustrated with dash-dotted line.

the branch with G < 0 is unstable (corresponding to stably
collapsing in negative time, i.e., “coming back from infinity”).
Moreover, a key feature here is the exponential (rather than the
standard power law) nature of the bifurcation of the collapsing
branch, yielding a nearly vertical bifurcation for G = G(σ ), as
shown in Fig. 1.

Before we compare with direct numerical simulations, we
extend our analysis both by calculating higher-order terms
in the normal form (21) and by considering the effect of
a finite domain. First, though, we illustrate the relationship
between (20) and the well-known log log law of collapse.

E. The log - log law of collapse

Notice that our analysis is still valid for r = 0. We show
that in this case the asymptotic behavior of (20) as τ → ∞
implies the well-known log-log law of collapse.

In the critical case, with G > 0, Eq. (20) is

2c0G
dG

dτ
= −A2

d e−π/G. (22)

Recall

dτ

dz
= 1

L2
, G(τ ) = −LLz = −Lτ

L
.

Integrating this last equation,

log
L

L(0)
= −

∫ τ

0
G(τ ) dτ = 2c0

A2
d

∫ G

G(0)
G̃2eπ/G̃ dG̃

∼ − 2c0

A2
dπ

G4eπ/G,

as τ → ∞ and G → 0. Thus, at leading order (which is what
is needed for the log - log law)

G ∼ π

log(− log L)
.
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Then,

zc − z(τ ) =
∫ ∞

τ

L2 dτ =
∫ L

0

L̃

G(L̃)
dL̃

∼
∫ L

0

L̃ log log 1/L̃

π
dL ∼ L2 log log 1/L

2π

as L → 0. Thus

L2 ∼ 2π (zc − z)

log log 1/L
∼ 2π (zc − z)

log | log(zc − z)|
as expected. However, as noted in [18], this leading-order
asymptotic behavior of L as z → zc is so weak that it requires
unrealistically large amplitudes before it is observed. This is
associated with the fact that G(τ ) → 0 only logarithmically as
τ → ∞, so that the leading-order asymptotics of Eq. (22) for
large τ is only a good approximation at very large τ . However,
Eq. (22) itself (in contrast to its large τ asymptotics) provides
a good approximation to G(τ ) for all τ (except possibly for
an initial τ = O(1) transient, as is discussed in our numerical
implementation within Sec. II I).

F. Higher-order terms

While Eq. (21) includes only the leading-order behavior
of each term, higher-order corrections can be calculated in a
systematic manner. Higher-order terms in the evaluation of
the right-hand side of (19) are straightforward to evaluate,
requiring simply the evaluation of more terms in the regular
expansion (7). Evaluating higher-order terms in the left-hand
side of (19) is more challenging but still possible. The result
is

2c(G)G
dG

dτ
= (dσ − 2)

2σ
b(G)G − a(G)2sgn(G)e−π/|G|,

(23)
where a, b, and c have power series expansions in G2. In
some of our numerical examples we include the O(G2) and
O(G4) terms in the expansions of a, b, and c. To simplify the
presentation, we illustrate the calculation for the case d = 1,
with G > 0.

We write the dominant WKB solution in the far field as

Vreg ∼ κ (G)Gkeφ(ρ)/G
∞∑

n=0

An(ρ)Gn, (24)

where κ ∼ 1 as G → 0. Most of the difficulty in determining
the higher-order terms in (23) comes from the problem of
determining κ , which we defer to Secs. II F 1 and II F 2 below.

Once we know κ , the turning point calculation is es-
sentially unchanged and gives simply the amplitude of the
exponentially small reflected field as κγ . The solvability con-
dition (19) then gives

1

2

∫ ∞

0

∂V 2
reg

∂τ
dξ − (dσ − 2)

2σ
G

∫ ∞

0
V 2

reg dξ = −2a2
0κ

2Im(γ ),

(25)
where for an infinite domain Im(γ ) = e−π/G/2 (while for a
finite domain γ is given by (33), as is elaborated below).
Substituting in the expansion (7) for Vreg gives an asymptotic
series for each term on the left-hand side. In particular, if we
write ∫ ∞

0

∂V 2
reg

∂τ
dξ = 4cG

∂G

∂τ
,

∫ ∞

0
V 2

reg dξ = b,

then

2c
∂G

∂τ
= (dσ − 2)

2σ
b − 2a2

0κ
2Im(γ ),

with

b ∼
√

3 π

4
+

√
3 π3

256
G2 + 0.380 G4 + · · · ,

c ∼
√

3 π3

512
+ 0.380 G2 + 2.016 G4 + · · · .

The expansion for κ , determined below, is

κ (G) ∼ 1 −
(

1 + 12π2

4608

)
G2 + 0.0152 G4 + · · · .

To show this we need to match the higher-order terms in the
far-field expansion (24) with the near-field solution.

1. Higher-order terms in the far field

Let us return to the far-field expression (24). The equation
for A1 is

2A′
1φ

′ + A′′
0 + A1φ

′′ = 0,

i.e.,

d

dρ
[A1(−φ′)1/2] = A′′

0

2(−φ′)1/2
= a0(8 + 3ρ2)

4(4 − ρ2)5/2
.

Thus,

A1 = a0ρ(24 − ρ2)

24
√

2 (4 − ρ2)7/4
,

where the arbitrary multiple of (−φ′)−1/2 is proportional to A0

and is absorbed into the coefficient κ (G). Proceeding similarly
at higher orders gives

A2 = a0(2320 − 996ρ2 + 9ρ4)

576
√

2 (4 − ρ2)13/4
, A3 = a0ρ(33 189 120 + 4 863 840ρ2 + 226 296ρ4 − 36 378ρ6 + 2021ρ8)

829 440
√

2(4 − ρ2)19/4
,

A4 = a0(3 269 916 928 + 7 846 589 568ρ2 + 815 011 440ρ4 − 619 928ρ6 − 321 339ρ8 + 18 189ρ10)

19 906 560
√

2(4 − ρ2)25/4
.

As ρ → 0,

A0 → a0, A1 → 0, A2 → 145a0

4608
, A3 → 0, A4 → 12 773 113a0

637 009 920
.
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To determine higher-order terms in the expansion of κ , we need to match this behavior with the large-ξ behavior of the near-field
solution.

2. Higher-order terms in outer limit of the inner expansion

When d = 1 we may solve (9) for V1 using variation of parameters to give

V1(ξ ) = v1(ξ )

16

∫ ξ

0
v2(ξ̄ )ξ̄ 2V0(ξ̄ ) d ξ̄ + v2(ξ )

16

∫ ∞

ξ

v1(ξ̄ )ξ̄ 2V0(ξ̄ ) d ξ̄ , (26)

where

v1 = sinh(2ξ )

cosh3/2(2ξ )
, v2 = cosh(4ξ ) − 3

cosh3/2(2ξ )
.

As ξ → ∞,

v1 ∼ 21/2e−ξ , v2 ∼ 21/2eξ , V0 ∼ 121/4e−ξ ,

and therefore we obtain

V1 ∼
√

2

16

∫ ∞

0
(v2ξ̄

2V0 − 121/421/2ξ̄ 2) d ξ̄ +
√

2

16

∫ ξ

0
121/421/2ξ̄ 2 d ξ̄+

√
2

16

∫ ∞

ξ

21/2121/4ξ̄ 2e−2ξ̄ d ξ̄

=
(

− π2

64
√

2 33/4
+ ξ 3

4
√

2 33/4
+ 31/4

16
√

2
(1+ 2ξ+ 2ξ 2)

)
e−ξ

= (ω0 + ω1ξ + ω2ξ
2 + ω3ξ

3)e−ξ ,

defining in this way the ωi’s. The crucial term which deter-
mines κ is the constant multiple of e−ξ at infinity, which is

ω0 = 12 − π2

64
√

2 33/4
.

Before we do the matching, we do a similar calculation on V2.
If we write the general equation for Vn as

LVn = rhsn,

where L is the operator on the left-hand side of (9), then the
solution is

Vn(ξ ) = −v1(ξ )

4

∫ ξ

0
v2(ξ̄ )rhsn(ξ̄ ) d ξ̄

− v2(ξ )
∫ ∞

ξ

v1(ξ̄ )rhsn(ξ̄ ) d ξ̄

4
.

Now, for V2,

rhs2 = −ξ 2V1

4
− 10V 3

0 V 2
1 . (27)

Again we are looking for the constant×e−ξ term in V2 as ξ →
∞. The second term in (27) produces a constant×e−ξ term in
V2 of

5
√

2

2
e−ξ

∫ ∞

0
v2ξ̄

2V 3
0 V 2

1 d ξ̄ ≈ 0.039 87e−ξ .

The first term produces a constant×e−ξ term of

e−ξ
√

2

16

∫ ∞

0
[v2ξ̄

2V1 − 21/2ξ̄ 2(ω0 + ω1ξ̄ + ω2ξ̄
2 + ω3ξ̄

3)] d ξ̄

+ e−ξ
√

2

16

∫ ∞

0
21/2ξ̄ 2(ω0 + ω1ξ̄+ω2ξ̄

2 + ω3ξ̄
3)e−2ξ̄ d ξ̄

≈ 0.024 225e−ξ .

Putting the two contributions together, we find the
constant×e−ξ term in V2 is

0.0641e−ξ .

Matching the near field with the far field, recalling that a0 =
121/4, now gives

121/4 + G2

(
12 − π2

64
√

2 33/4

)
+ 0.0641G4 + · · ·

= 121/4κ (G)

(
1 + 145

4608
G2 + 12 773 113

637 009920
G4 + · · ·

)
,

so that

κ (G) ∼ 1 −
(

1 + 12π2

4608

)
G2 + 0.0152 G4 + · · · . (28)

G. Finite domain

Usually, when numerically simulating (1) or (5) the domain
is truncated to some large but finite domain [0, K]. In the
critical case dσ = 2, this was earlier studied in [44,45]. For
a finite domain both oscillatory WKB solutions are present
in ρ > 2, and the ratio of their amplitudes is determined by
the position of the boundary and the nature of the boundary
condition. Here we impose the Neumann condition

∂v

∂ξ
= 0 at ξ = K. (29)

We present the analysis for G > 0; a similar calculation may
be performed when G < 0.
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1. Far field beyond the turning point

In the far-field scaling ξ = ρ/G, Eq. (29) becomes

G
∂V

∂ρ
= iρV

2
at ρ = KG. (30)

We see immediately that the turning point lies inside the domain only if K > 2/G. Let us first suppose that this is the case. Now
both oscillatory exponentials are present for ρ > 2 and we have

Vreg = α(G)Gkeiφ2(ρ)/G
∞∑

n=0

Bn(ρ)(iG)n + β(G)Gke−iφ2(ρ)/G
∞∑

n=0

Bn(ρ)(−iG)n,

for some constants α(G), β(G), where

φ2 =
∫ ρ

2

(
ρ̄2

4
− 1

)1/2

d ρ̄.

Then,

∂Vreg

∂ρ
= αiφ′

2(ρ)

G
eiφ2(ρ)/GGk

∞∑
n=0

Bn(ρ)(iG)n + αeiφ2(ρ)/GGk
∞∑

n=0

B′
n(ρ)(iG)n

− βiφ′
2(ρ)

G
e−iφ2(ρ)/GGk

∞∑
n=0

Bn(ρ)(−iG)n + βe−iφ2 (ρ)/GGk
∞∑

n=0

B′
n(ρ)(−iG)n.

The boundary condition (30) accordingly gives

αiφ′
2(KG)eiφ2(KG)/G

∞∑
n=0

Bn(KG)(iG)n + αGeiφ2(KG)/G
∞∑

n=0

B′
n(KG)(iG)n

− βiφ′
2(KG)e−iφ2(KG)/G

∞∑
n=0

Bn(KG)(−iG)n + βGe−iφ2(KG)/G
∞∑

n=0

B′
n(KG)(−iG)n

= iKG

2

(
αeiφ2(KG)/G

∞∑
n=0

Bn(KG)(iG)n + βe−iφ2(KG)/G
∞∑

n=0

Bn(KG)(−iG)n

)
.

Thus

αeiφ2(KG)/G

(
(2φ′

2(KG) − KG)
∞∑

n=0

Bn(KG)(iG)n − 2iG
∞∑

n=0

B′
n(KG)(iG)n

)

= βe−iφ2 (KG)/G

(
(2φ′

2(KG) + KG)
∞∑

n=0

Bn(KG)(−iG)n + 2iG
∞∑

n=0

B′
n(KG)(−iG)n

)

so that

β = ναe2iφ2 (KG)/G, (31)

where

ν = (2φ′
2(KG) − KG)

∑∞
n=0 Bn(KG)(iG)n − 2iG

∑∞
n=0 B′

n(KG)(iG)n

(2φ′
2(KG) + KG)

∑∞
n=0 Bn(KG)(−iG)n + 2iG

∑∞
n=0 B′

n(KG)(−iG)n
.

This replaces the condition β = 0 which was imposed on an infinite domain. Assuming KG = O(1), we obtain to leading order
that

ν ∼ ν0 =
√

(KG)2 − 4 − KG√
(KG)2 − 4 + KG

. (32)

We see that ν0 → 0 as K → ∞ as expected.
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2. Turning point

We now have

Vreg = αGkeiφ2(ρ)/G
∞∑

n=0

Bn(ρ)(iG)n + βGke−iφ2(ρ)/G
∞∑

n=0

Bn(ρ)(−iG)n ρ > 2,

Vreg = Gkeφ(ρ)/G
∞∑

n=0

An(ρ)Gn + γ Gke−φ(ρ)/G
∞∑

n=0

An(ρ)(−G)n ρ < 2,

where γ (G) is the coefficient of the exponentially small reflection that we need to determine. Locally, with ρ = 2 + G2/3s,

Vreg ∼ αa0

G1/6−ks1/4
e2is3/2/3 + βa0

G1/6−ks1/4
e−2is3/2/3 s > 0,

Vreg ∼ a0

G1/6−k (−s)1/4
eφ(2)/Ge2(−s)3/2/3 + γ a0

G1/6−k (−s)1/4
e−φ(2)/Ge−2(−s)3/2/3 s < 0.

The equation near the turning point is still, at leading order,

d2Vreg

ds2
+ sVreg = 0,

with the solution

Vreg = a0
√

πGk−1/6[λAi(−s) + μBi(−s)],

and asymptotic behavior

Vreg ∼ λa0

2G1/6−k (−s)1/4
e−2(−s)3/2/3 + μa0

G1/6−k (−s)1/4
e2(−s)3/2/3 as s → −∞,

Vreg ∼ λa0

G1/6−ks1/4

1

2

(
e2is3/2/3−iπ/4 + e−2is3/2/3+iπ/4

) + μa0

G1/6−ks1/4

1

2i

(
e−2is3/2/3+iπ/4 − e2is3/2/3−iπ/4

)
as s → ∞,

leading this time to the connection formulas

λ

2
= γ e−φ(2)/G,

λe−iπ/4

2
+ μeiπ/4

2
= α, μ = eφ(2)/G,

λeiπ/4

2
+ μe−iπ/4

2
= β.

Eliminating λ and μ gives

eφ(2)/G = αe−iπ/4 + βeiπ/4, 2γ e−φ(2)/G = αeiπ/4 + βe−iπ/4.

Now imposing (31) gives

α = eiπ/4eφ(2)/G

1 + iνe2iφ2(KG)/G

so that

γ = i

2
e2φ(2)/G

(
1 − iνe2iφ2(KG)/G

1 + iνe2iφ2(KG)/G

)
. (33)

3. Exponentially small correction to the near field

Matching with the near field proceeds as in the case of an infinite domain, leading as before to

−2c0G
dG

dτ
+ (dσ − 2)G

2σ
b0 = 2a2

0Im(γ ). (34)

At leading order ν is real and therefore

Im(γ ) ∼ (1 − ν2
0 )e−π/G

2
[
1 − 2ν0 sin (2φ2(KG)/G)) + ν2

0

] , (35)

where

φ2 =
∫ KG

2

(
ρ̄2

4
− 1

)1/2

d ρ̄ = KG
√

(KG)2 − 4

4
− log

(
KG +

√
(KG)2 − 4

2

)
,

and ν0 is given by (32). We see that as K → ∞, ν0 → 0 and Im(γ ) → e−π/G/2, as expected.
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4. Turning point outside the domain

For completeness we consider also the case in which KG < 2. Then the boundary condition (30) must be imposed directly
on the far-field solution,

Vreg ∼ eφ(ρ)/G
∞∑

n=0

An(ρ)Gn + γ e−φ(ρ)/G
∞∑

n=0

An(ρ)(−G)n,

giving

φ′(KG)eφ(KG)/G
∞∑

n=0

An(KG)Gn + Geφ(KG)/G
∞∑

n=0

A′
n(KG)Gn − γφ′(KG)e−φ(KG)/G

∞∑
n=0

An(KG)(−G)n

+ γ Ge−φ(KG)/G
∞∑

n=0

A′
n(KG)(−G)n = iKG

2

(
eφ(KG)/G

∞∑
n=0

An(KG)Gn + γ e−φ(KG)/G
∞∑

n=0

An(KG)(−G)n

)
.

At leading order

γ = 2φ′(KG) − iKG

2φ′(KG) + iKG
e2φ(KG)/G

=
√

4 − (KG)2 − iKG√
4 − (KG)2 + iKG

e2φ(KG)/G,

so that

Im(γ ) = −KG

2

√
4 − (KG)2 e2φ(KG)/G,

and the final equation is

π3

512
G

dG

dτ
= π (σ − 2)

16σ
G +

√
4 − (KG)2KG e2φ(KG)/G.

(36)

H. Evaluation of the phase �

While we did not need to know the phase � in order to
determine Eq. (23) for G, we do need to evaluate � if we are
to compare the numerical solution v of (2) with the asymptotic
expansion (7).

With template function T = δ(ξ − ξ0) and choosing the
constant C = V0(ξ0), the pinning condition (4) is

Re
(
ei�(τ )e−iG(τ )ξ 2

0 /4Vreg
) = V0(ξ0) + T.S.T,

where T.S.T stands for transcendentally small terms in G
(coming from Vexp). Since Vreg is real this gives

cos

(
� − Gξ 2

0

4

)
Vreg(ξ0) = V0(ξ0). (37)

Inserting the expansions (7) gives at leading order

−1

2

(
�0 − ξ 2

0

4

)2

V0(ξ0) + V1(ξ0) = 0,

so that

�0 = ξ 2
0

4
±

√
2V1(ξ0)

V0(ξ0)
.

With ξ0 = 2 this gives �0 ≈ 2.1942.

I. Initial transients

The analysis thus far assumes that G′ and �′ are exponen-
tially small in G, giving a balance between the terms on the
right-hand side of Eq. (21). However, for short times there
may be an initial transient in which

−�′V + G′ξ 2

4
V

is not small compared to

G2ξ 2V

4
,

which affects the calculation of V1, and therefore the left-hand
side of (21).

If we include these terms in the correction to V0 we find

Vreg ∼ V0 + G2V1 + G′V1 − �′Ṽ1 + · · · ,

where

∂2Ṽ1

∂ξ 2
+ 5V 4

0 Ṽ1 − Ṽ1 = −V0,

so that

Ṽ1 = v1

∫ ξ

0

v2V0 d ξ̄

4
+ v2

∫ ∞

ξ

v1V0 d ξ̄

4

= −31/4(cosh 2ξ − 2ξ sinh 2ξ )

4 cosh3/2 2ξ
.

In this case∫ ∞

0
V 2

reg dξ ∼
∫ ∞

0
V 2

0 dξ + 2(G2 + G′)
∫ ∞

0
V0V1 dξ

− 2�′
∫ ∞

0
V0Ṽ1 dξ + · · ·

∼ b0 + 2(G2 + G′)c0 + · · · ,

since ∫ ∞

0
V0Ṽ1 dξ = 0.

Thus Eq. (21) becomes, for G > 0,

c0

(
2G

dG

dτ
+ d2G

dτ 2

)
= (dσ − 2)b0

2σ
G − A2

dc
e−π/G. (38)
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A similar calculation can be performed for G < 0; combining
the two results gives

c0

(
2G

dG

dτ
+ d2G

dτ 2

)
= (dσ − 2)b0

2σ
G − A2

dc
sgn(G)e−π/|G|.

(39)
The behavior of (38) is easier to see by writing it as the first-
order system

c0
dβ

dτ
= (dσ − 2)b0

2σ
G − A2

dc
sgn(G)e−π/|G|, (40)

dG

dτ
= β − G2. (41)

We see that this system is slow-fast: β evolves exponentially
slowly by comparison to G. Thus there is an initial fast tran-
sient in which G evolves to lie on the slow manifold β = G2,
after which the slow dynamics of (21) take over.

In the critical case dσ = 2 the system of Eqs. (40) and (41)
is similar to that derived in [18] at leading order. In [18]
the exponential term is e−π/β1/2

rather than e−π/|G|; however,
during the fast dynamics right-hand side of (40) is negligible,
while during the slow dynamics β1/2 is exponentially close to
|G|, so that asymptotically the systems are equivalent. In [18]
higher-order terms in the coefficient c0 are included (through
a numerical fit rather than through an asymptotic expansion),
but there is no corresponding attempt to calculate higher-order
terms in the coefficient of the exponential.

J. Subcritical case

Equations (40) and (41) are also valid in the subcritical
case dσ < 2. In that case the fast transient is not confined to
the initial evolution but reappears periodically as the system
performs an interesting relaxation oscillation, which we now
describe.

With an initial condition G = 0, β = β0 > 0, say, there is
an initial fast transient in which β = β0 is constant and G
moves from zero to β

1/2
0 [which we suppose is O(dσ − 2)].

The system then follows the slow manifold β = G2 with the
dynamics given by (21). In the subcritical case there is no
finite G solution, and G decreases slowly from β

1/2
0 to zero.

However, at G = 0 the time derivative

dG

dτ
= (dσ − 2)b0

4σc0
< 0.

Thus G continues to negative values, with the dynamics still
given by (21). For negative G the fast equation (41) is un-
stable, but because the solution became exponentially close to
the slow manifold in the progression from (β, G) ≈ (β0, β

1/2
0 )

to (β, G) ≈ (0, 0), it takes a long time for the difference
β − G2 to grow sufficiently for the fast dynamics to take
over. This happens when (β, G) reaches (β0,−β

1/2
0 ), at which

point there is a fast transition in which β is constant (and
equal to β0) and G varies quickly from −β

1/2
0 to β

1/2
0 . Such

behavior, in which the solution of a dynamical system follows
an unstable manifold for a significant time, is often known as a
canard [46,47], and it follows in this case from the invariance
of (40) and (41) under τ → −τ , G → −G. Once the solu-
tion reaches the slow manifold again at (β, G) ≈ (β0, β

1/2
0 )

the cycle repeats. We show an example of the phase plane,

FIG. 2. Top panel: Phase plane for (40) and (41) when (dσ −
2)b0/2σ = 0.001. Bottom panels: G(τ ) and β(τ ) when (dσ −
2)b0/2σ = 0.001, for initial conditions G = 0 and β = 0.1, 0.3, 0.5,
0.7, 0.9.

Eqs. (40) and (41), and some sample trajectories, in Fig. 2.
Nevertheless, a more systematic study of the relevant subcrit-
ical phenomenology at the PDE level is a topic of substantial
interest in in its own right that is worthwhile to be considered
in future work.

On a finite domain there is the extra complication that the
turning point at ξ = 2/|G| is forced to exit the domain for
a range of values of G close to zero, with the slow dynam-
ics for this range given by (36) rather than (34). However,
when G is very close to zero, the exponential terms in these
equations are insignificant in comparison to the term pro-
portional to dσ − 2, so in fact this change makes very little
difference.

III. NUMERICAL VERIFICATION

Equation (21) predicts the existence of a stable branch of
solutions bifurcating from dσ = 2. We compare this predic-
tion with direct numerical simulations of (2) by fixing d = 1
(for which the ground-state soliton is analytically available)
and varying σ close to σc = 2 although, as indicated above,
our results can be straightforwardly applied to the radial,
higher-dimensional case. The relevant bifurcation diagram
can be seen in Fig. 1. Here we compare the PDE results ob-
tained directly from Eq. (2) with the normal form of Eq. (21),
finding excellent agreement between the two. This is shown
in Fig. 3. The top panel showcases the exponential nature of
the relevant bifurcation over eight orders of magnitude of the
associated ODE [i.e., the positive steady state of Eq. (21)]
and PDE data, in excellent agreement between the two. No-
tice that the finite nature of the computation leads to some
nearly imperceptible oscillations in the top panel of the figure,
also observed but not commented earlier [30,32]. The full
power of our methodology is revealed when factoring out the
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FIG. 3. Collapsing solution branch for d = 1, domain size K =
50. Top panel: The leading-order asymptotic solution (black) is
shown against a stationary numerical solution of (2) (red). The two
lines essentially coincide. The weak deviations from linearity are due
to the sinusoidal term in (35). Bottom panel: Exponentially scaled
illustration of the same result to show the accuracy of our higher-
order analysis, in which the expansion of a and b in (23) is truncated
at leading order, at O(G2) and at O(G4). The full numerical result
calculated using CHEBFUN [41] is shown in black.

exponentially small leading order by rescaling through eπ/G;
see the bottom panel of Fig. 3. Here we present the first-
and second-order corrections, illustrating how they progres-
sively match, in a remarkably quantitative fashion, the PDE
results.

In Fig. 4 we show how we capture not only the rate
of collapse but also near perfectly both the real and the
imaginary parts of the profile of the associated solution
u + iw. The asymptotic profile in the far field is a uniform
approximation, the details of which are presented in the
Appendix.

Lastly, our methodology also enables an excellent cap-
turing of the associated dynamics as shown in Fig. 5. The
initial condition for the numerical solution is the analytical
expression of the ground-state soliton for d = 1: v(ξ, τ = 0)
= 31/4√sech2ξ , the initial condition for the blowup rate is
G(τ = 0) = 0. Here, in addition to the spatiotemporal evo-
lution of the field in the (ξ, τ ) variables, the evolution of
the collapse rate G(τ ) towards its stable asymptotic value
is observed in the inset and compared against the numerical
solution, showing excellent agreement. We have found this to

FIG. 4. Comparison of the numerical (black, dashed) and asymp-
totic approximations of the steady solution v = u + iw of (2) when
K = 50, σ = 2.001. The main plot shows the near field, where the
asymptotic solution is given by (7) truncated at O(G2); the inset
shows a uniform approximation to the far field combining (17)
and (14), truncated at leading order, the details of which are given
in (A1).

be true for generic localized initial conditions in the vicinity
of the unstable solitary wave solution.

IV. CONCLUSIONS AND FUTURE CHALLENGES

We have revisited the collapse of a nonlinear Schrödinger
equation. A unifying, mathematically compact, yet quanti-
tatively accurate normal form is identified that combines
the famous log-log behavior at the critical point, the emer-
gence of a stable self-similarly collapsing branch past that
point, the exponentially small breaking of the pseudoconfor-
mal invariance of the critical point, the Hamiltonian nature
of the original model, and the dissipative features of the

FIG. 5. K = 50, σ = 2.001. Spatiotemporal evolution (ξ − τ

space) of |v|2 − |V0|2. The inset shows the evolution of G(τ ) for the
full numerical solution of (2) (black), and for the solution of the finite
domain version of (23) truncated at O(1) (blue), O(G2) (orange),
and O(G4) (green). The renormalized NLS reaches a steady-state
solution after τ ≈ 300.

044202-11



S JON CHAPMAN et al. PHYSICAL REVIEW E 104, 044202 (2021)

renormalized dynamics. This constitutes a broadly applica-
ble (in optics, BECs, and beyond) normal form associated
with the onset of collapse. This also prompts numerous ex-
citing questions for the future, such as, e.g., on the stability
of the collapsing solutions or on the potential normal form
for generalized Korteweg–de Vries equations [48,49] and
their traveling waves, of broad relevance to water waves and
plasmas.

APPENDIX: UNIFORM APPROXIMATION
IN THE FAR FIELD

In the far field we found in Sec. II G the “outer” approxi-
mation, away from the turning point, as

Vreg ∼ αGkeiφ2(ρ)/GB0(ρ) + βGke−iφ2(ρ)/GB0(ρ) ρ > 2,

Vreg ∼ Gkeφ(ρ)/GA0(ρ) + γ Gke−φ(ρ)/GA0(ρ) ρ < 2,

and the “inner” approximation, near the turning point, as

Vreg ∼ a0
√

π Gk−1/6[λAi(−s) + μBi(−s)],

with ρ = 2 + G2/3s. In order to compare with the numerical
solution, it is helpful to have a uniformly valid asymptotic

approximation. If we set

X (ρ) =
(

3φ2(ρ)

2G

)2/3

=
[

3

2G

∫ ρ

2

(
ρ̄2

4
− 1

)1/2

d ρ̄

]2/3

for ρ > 2 and

X (ρ) = −
(

3(φ(2) − φ(ρ))

2G

)2/3

= −
[

3

2G

∫ 2

ρ

(
1 − ρ̄2

4

)1/2

d ρ̄

]2/3

for ρ < 2, then

Vuniform(ρ) = a021/2√πGkλ

(
X (ρ)

ρ2 − 4

)1/4

Ai( − X (ρ))

+ a021/2√πGkμ

(
X (ρ)

ρ2 − 4

)1/4

Bi( − X (ρ))

(A1)

is a uniformly valid, leading-order approximation for all ρ >

0. The inset in Fig. 4 shows Vuniform(Gξ )eiG(�0−iξ 2/4).
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