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Collision of two self-trapped atomic matter wave packets in an optical ring cavity

Jieli Qin *

School of Physics and Materials Science, Guangzhou University, 230 Wai Huan Xi Road,
Guangzhou Higher Education Mega Center, Guangzhou 510006, China

Lu Zhou †

Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China

(Received 23 April 2021; revised 30 July 2021; accepted 16 September 2021; published 1 October 2021)

The interaction between atomic Bose-Einstein condensate (BEC) and light field in an optical ring cavity gives
rise to many interesting phenomena such as supersolid and movable self-trapped matter wave packets. Here we
examined the collision of two self-trapped atomic matter wave packets in an optical ring cavity, and abundant
colliding phenomena have been found in the system. Depending on the magnitude of colliding velocity, the
collision dynamics exhibit very different features compared with the cavity-free case. When the initial colliding
velocities of the two wave packets are small, they correlatedly oscillate around their initial equilibrium positions
with a small amplitude. Increasing the collision velocity leads to severe scattering of the BEC atoms; after the
collision, the two self-trapped wave packets usually break into small pieces. Interestingly, we found that such a
medium velocity collision is of great phase sensitivity, which may make the system useful in precision matter
wave interferometry. When the colliding velocity is further increased, in the bad cavity limit, the two wave
packets collide phenomenally similar to two classical particles—they first approach each other, then separate
with their shape virtually maintained. However, beyond the bad cavity limit, they experience severe spatial
spreading.
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I. INTRODUCTION

For a cold atomic cloud and light field coupling system, the
light field will put a mechanical potential on the atoms and,
at the same time, the atomic cloud which plays the role of a
medium also has a backaction on the light field. Therefore,
the dynamics of the system usually show complex nonlinear
features [1], and abundant interesting phenomena can take
place, such as soliton [2,3], self-organization [4–9], supersolid
[10–12], and many others [13–24]. Especially, in a ring cavity
and Bose-Einstein condensate (BEC) coupling system, self-
trapped wave packets can exist, and their moving dynamics
have been examined recently [25]. For the self-trapped wave
packets, the collision dynamic is another problem of fun-
damental significance [26–33] and, at the same time, their
collisions may also find various applications, for example,
logic gates implementation [34–39], entanglement generation
[40–43], and soliton interferometry [44–48].

In this work, we study the collision of two self-trapped
atomic matter wave packets in a ring cavity, as shown in
Fig. 1. A quasi-one-dimensional two-level atomic BEC is
loaded into a ring cavity. The system is driven by transversely
illuminating an off-resonant laser light on the BEC atoms
(with detuning �a and Rabi frequency �0), such that light
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fields of the two degenerate counterpropagating ring cavity
modes (â±eikcx, with kc being the wave number) are built up.
The light field couples the transition between the two atomic
energy levels (with strength G0) and forms an optical lattice
potential for the BEC atoms. This optical lattice will affect
the dynamics of the condensate in a feedback manner, and
can support self-trapped matter wave packets [25]. Moreover,
because the optical lattice potential is produced by the BEC,
the self-trapped BEC wave packet can move with this optical
lattice being taken along [25]. This gives us a good opportu-
nity to examine the collision of two such self-trapped wave
packets.

We found that the collision of two such self-trapped wave
packets shows rich phenomena under different colliding ve-
locities. For a small velocity collision, the two wave packets
only can oscillate around their initial equilibrium positions
with a small amplitude. But one should note that, due to the
long range feature of the cavity light mediated interaction, the
oscillations of the two wave packets are related rather than
independent; thus the system may be used in the field of syn-
chronizing matter wave oscillators. If the colliding velocity is
increased, the BEC atoms are severely scattered and, after the
collision, the two colliding wave packets usually break into
many small pieces. However, under appropriate parameters,
a considerable fraction of the atoms can be retrapped. It is
also found that this retrapping phenomenon is quite sensitive
to the initial relative phase between the two wave packets,
indicating a potential application in realizing high precision
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matter wave interferometers. If the colliding velocity is further
increased, the two self-trapped wave packets collide similar to
two free classical particles—they move close to one another,
then separate again and, during the collision, their shape can
be virtually maintained.

The rest of the paper is organized as follows. In Sec. II,
the physical model is described and the main formulas are
presented. As the base to study the collision dynamics, the
mobility of a single self-trapped matter wave packet is briefly
reviewed in Sec. III. Section IV shows the main results of this
work. In this section, the collision dynamics are studied both
within (subsection IV A) and beyond (subsection IV B) the
bad cavity limit. At last, the paper is summarized in Sec. V.

II. MODEL

The Hamiltonian of the considered system reads

Ĥ = −h̄�c(â†
+â+ + â†

−â−) +
∫

ψ̂†Ĥaψ̂ dx. (1)

The first term accounts for the light field of the two coun-
terpropagating cavity modes, â+ (â†

+) and â− (â†
−) are their

annihilation (creation) operators, �c is the detuning between
the cavity modes and the pump laser, and h̄ is the reduced
Planck constant. The second term is for the BEC and its
interaction with the light field, where ψ̂ is the atomic field
operator and Ha is the single-atom Hamiltonian

Ĥa = p̂2
x

2m
+ V̂ac + V̂ap, (2)

with

V̂ac = h̄U0[â†
+â+ + â†

−â− + (â†
+â−e−2ikcx + H.c.)], (3)

V̂ap = h̄η0[â+eikcx + â−e−ikcx + H.c.]. (4)

Here, the physical meanings of the different terms are as
follows. p̂2

x/(2m) is the kinetic energy of a BEC atom with
p̂x = −ih̄∂x being the momentum operator along the x axis
and m being the mass of the atom. V̂ac is the optical po-
tential caused by the two-photon scattering process between
the two cavity modes and its strength is U0 = h̄G2

0/�a. V̂ap

is the optical potential caused by the two-photon scattering
process between the pump light and one of the cavity modes
and η0 = h̄G0�0/�a is its strength, or, in other words, the
effective cavity pumping strength. For simplicity, we adopt
natural units m = h̄ = kc = 1 in the following content.

Applying the mean field theory, the quantum mechanical
operators are approximately replaced by their c-number mean
values (and here we also scale them by the total atom number
N), i.e., â± → α±/

√
N and ψ̂ → ψ/

√
N . Taking the mean

values of the corresponding Heisenberg equations, the mean
value variables obey equations

i
∂

∂t
α± = (−�c + U − iκ )α± + UN±2α∓ + ηN±1, (5)

i
∂

∂t
ψ =

(
−1

2

∂2

∂x2
+ Veff

)
ψ, (6)

Here, we have included the cavity loss with decay
rate κ phenomenological. And for the neatness of the
equations we also introduced some new variables: η =

√
Nη0, U = NU0, N±1 = ∫ |ψ |2 exp(∓ix)dx, N±2 =∫ |ψ |2 exp(±2ix)dx, Veff = Vac + Vap, Vac = U (|α+|2 +

|α−|2) + U [α∗
+α− exp(−2ix) + c.c.], and Vap = η[α+ exp

(ix) + α− exp(−ix) + c.c.].
The steady state can be obtained by letting ∂tα± = 0 and

ψ (x, t ) = ψ (x) exp(−iμt ) with μ being the BEC chemical
potential, that is

μψ (x) =
[
−1

2

∂2

∂x2
+ Veff (x)

]
ψ (x), (7)

α+ = − (−�c + U − iκ )ηN+1 − ηUN+2N−1

(−�c + U − iκ )2 − U 2N−2N+2
, (8)

α− = − (−�c + U − iκ )ηN−1 − ηUN−2N+1

(−�c + U − iκ )2 − U 2N2N−2
. (9)

From these equations, one sees that by transversely pumping
the BEC an effective optical lattice potential can be built up.
This effective potential can support a self-trapped BEC wave
packet and, because this potential comes from the BEC, such a
self-trapped wave packet is movable with the potential being
taken along [25]. In this work, we devote our efforts to the
collision dynamics of two such wave packets.

Here, we also note that besides being used for calculating
the steady state, Eqs. (8) and (9) are also used to describe
dynamics of the light field in the bad cavity limit [49,50],
which means that the cavity decay rate is much larger than
the atom-cavity coupling; hence the cavity light field can
quickly decay to the steady state. Mathematically this is to say
that ∂tα± ≈ 0; thus Eqs. (8) and (9) approximately hold, and
they together with Eq. (6) can describe the bad cavity limit
dynamics [while, beyond the bad cavity limit, the dynamics
should be described by the original equations (5) and (6)].

III. MOBILITY OF A SINGLE SELF-TRAPPED
MATTER WAVE PACKET

Before dealing with the collision of two self-trapped
matter-wave packets, let us first have a brief review on the
results of mobility of a single self-trapped matter wave packet.
Usually, the mobility of a wave packet in a static optical lattice
is determined by the Peierls-Nabarro barrier [51]—when the
velocity of a wave packet is higher than a critical value, it
can move across the lattices; otherwise, it cannot. However,
for the system we are considering now, things are different.
In the present system, the optical lattice is created by the
BEC; when the BEC wave packet moves, the potential will
also move accordingly. Especially, in the bad cavity limit, the
lattice can instantaneously follow the movement of the BEC
wave packet; thus the movement of the BEC wave packet
will not be prevented no matter how small its velocity is; see
Fig. 2 where, even though the velocity is set to a small value
v0 = 0.5, the wave packet moves freely.

Beyond the bad cavity limit, an initial moving wave packet
undergoes a decelerating motion; see Fig. 3. In this case,
the cavity light field cannot instantaneously follow the dy-
namics of BEC, but some time is needed. When the BEC
wave packet moves, the effective optical lattice can no longer
follow exactly; instead, it falls some distance behind, as shown
by the inset in panel (a). This falling behind potential put a
friction force on the moving BEC wave packet; therefore, it
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FIG. 1. Diagram of the considered system. The ring cavity sup-
ports two degenerate counterpropagating modes (â+ and â−) and has
a loss rate κ . A laser beam is transversely shined on the BEC atoms
to pump the system and the pumping strength is η. Two self-trapped
atomic BEC wave packets with initial opposite velocities v0± collide
in the cavity, interacting with the light field.

decelerates and after traveling some distance it stops at a new
steady-state location.

IV. COLLISION OF TWO SELF-TRAPPED
MATTER WAVE PACKETS

In the last section, we show that in the ring cavity a single
self-trapped matter wave packet is movable. This gives us
a good opportunity to study the collision of two such self-
trapped matter wave packets. We first find the self-trapped
steady state ψ0 (which consists of two localized wave packets
centered at −x0 and +x0) using the imaginary time evolution

FIG. 2. Mobility of a single self-trapped wave packet under the
bad cavity limit. Top panel (a): time evolution of the atomic density
|ψ (x, t )|2. Bottom panel (b): time evolution of the corresponding
effective optical lattice potential Veff (x, t ). Parameters used are �c =
−1, U = −0.5, κ = 50, η = 75, and the initial velocity is a small
one, v0 = 0.5.

FIG. 3. Mobility of a single self-trapped wave packet beyond
the bad cavity limit. Top panel (a): |ψ (x, t )|2. Bottom panel (b):
Veff (x, t ). The inset shows the atomic density and effective potential
at t = 0.4, with the two vertical dotted lines indicating the center
of the wave packet and bottom of the effective potential. Parameters
used are �c = −1, U = −0.5, κ = 5, η = 7.5, and the initial veloc-
ity is v0 = 2.5.

method. Then, opposite initial velocities are given on the two
wave packets by imprinting a positive velocity phase factor on
the left side wave packet and a negative velocity phase factor
on the right side wave packet, i.e.,

ψ (x, t = 0) = ψ0(x) exp [iφ(x)], (10)

with

φ(x) =
{

v0+x + �φ, x � 0,

v0−x, x > 0.
(11)

Here v0± are the initial velocities of the two wave packets
and �φ is an initial overall phase difference between the two
wave packets. Since within or beyond the bad cavity limit the
self-trapped wave packet moves in very different ways, next
we examine the collision dynamics in these two cases sepa-
rately. Within the bad cavity limit, the dynamics are simulated
using Eqs. (6), (8), and (9), while, beyond the bad cavity limit,
Eqs. (5) and (6) are used.

A. Bad cavity limit

1. Small velocity collision

Even though under the bad cavity limit a single self-trapped
wave packet with a small initial velocity can move like a free
particle [which has been shown in panels (a1),(a2) of Fig. 2],
two such wave packets will collide in a very different manner.
In Fig. 4, the collision of two self-trapped wave packets with
initial velocity v0± = ±0.5 is numerically simulated. We see
that this time the two wave packets can no longer move freely,
but only oscillate around their initial equilibrium positions
(x = ±2π ) with a small amplitude [top panel (a)] and, looking
for the effective optical potential, we found that it also no
longer moves; instead, it becomes an almost static one [bottom
panel (b)].
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FIG. 4. Small velocity collision of two self-trapped wave pack-
ets. Top panel (a): |ψ (x, t )|2. Bottom panel (b): Veff (x, t ). Parameters
used are �c = −1, U = −0.5, κ = 50, η = 75, �φ = 0 and initial
velocity is v0± = ±0.5.

This phenomenon can be understood as follows. For sim-
plicity, one imagines that the left direction moving wave
packet �L(x + xL,t ) (xL,t is the center of the wave packet at
time t) creates a comoving optical lattice potential VL(x, t ) =
−V0 cos(x + xL,t ) (actually, the optical lattice has a more com-
plex form—see the form of Veff—but we found that such a
simple form already can qualitatively explain the phenom-
ena we have observed). Similarly, the right direction moving
wave packet �R(x + xR,t ) also creates a comoving optical
lattice potential VR(x, t ) = −V0 cos(x + xR,t ). Then, the total
effective optical lattice potential is the sum of VL and VR,
VL+R = −2V0 cos[x + (xL,t + xR,t )/2] cos[(xL,t − xR,t )/2]. In
the present case, the two wave packets only oscillate around
their initial positions with a small amplitude, xL,t = −xR,t ≈
−2π ; thus the total effective optical potential is approximately
VL+R = −2V0 cos(x), which is a static one. And in such a
static optical lattice, wave packets with small initial velocity
can only oscillate around their initial equilibrium positions.

We emphasize that, although the phenomenon presented
here looks like the dipole oscillations of two wave packets
in a static optical lattice, this is in fact an untouched collision
phenomenon. In a true static optical lattice, two spatially sepa-
rated wave packets undergo dipole oscillations independently.
However, here the two wave packets interact with each other
without contact via the cavity light field, such that their oscil-
lations are not independent. For example, if initially we only
give a small velocity to one of the wave packets, in a true static
optical lattice only this wave packet will oscillate and the other
one will keep still, but here this initially moving wave packet
will drive the initial standstill wave packet to oscillate too;
see Fig. 5, where oscillations of both the two wave packets
are obvious and an overall free motion is also observed due
to the initial velocity imbalance. The related motion of the
two spatially separated wave packets in this case might find
applications in synchronizing matter wave oscillators [52,53].

2. Large velocity collision

Next, we deal with the large velocity collision. In Fig. 6,
we set the initial velocity to v0± = ±6, so as to let the kinetic

FIG. 5. Collision of a small velocity moving self-trapped wave
packet with an initial standstill one. Initially, a small velocity of
v0− = −1.0 is given to the wave packet at x = 2π , while for the other
one at x = −2π , no initial velocity is given, i.e., v0+ = 0.

energy v2
0±/2 = 18 be larger than the initial effective optical

lattice depth (V depth
eff ≈ 5). We found that in such a case the

two wave packets behave like two classical particles: they
first approach each other and then they split again with their
shape virtually maintained. During the overlapping time, due
to their wave natures, an interference pattern is formed; see
the top panel 6(a). This may remind one of the collision of two
BEC bright solitons [31], which is phenomenally very similar.
However, we note that for the bright solitons their shapes are
exactly maintained during the evolution, but here the shape
maintenance is only “virtual”; if one examines the very detail
of Fig. 6, very slight broadening of the wave packets can be
observed.

The physics behind this is also quite different. In
the case of a BEC bright soliton, the shape maintaining

FIG. 6. Large velocity collision of two self-trapped wave pack-
ets. The same as Fig. 4, except that the initial velocities of the two
wave packets are set to v0± = ±6.0.
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FIG. 7. Medium velocity collision of two self-trapped wave packets. Top panels (a1)–(c1): |ψ (x, t )|2. Bottom panels (a2)–(c2): Veff (x, t ).
Panels (a1),(a2): in-phase (�φ = 0) collision dynamics. Panels (b1),(b2): opposite-phase (�φ = π ) collision dynamics. Panels (c1),(c2):
average of |ψ (x, t )|2 and Veff (x, t ) over 256 simulations with random values of relative phase �φ. Other parameters used are �c = −1,
U = −0.5, κ = 50, η = 75, and v0± = ±2.5.

collision is due to the integrability of the system. Here
the phenomenon should be understood by examining the
corresponding effective optical lattice potential. The simple
analytical discussion in the previous small velocity colli-
sion case also adopts; the two wave packets still create a
total effective optical lattice potential VL+R = −2V0 cos[x +
(xL,t + xR,t )/2] cos[(xL,t − xR,t )/2]. But this time the centers
of the wave packets move freely, that is, xL,t = −2π + v0t and
xR,t = 2π − v0t ; therefore, the total effective potential is sim-
plified to VL+R = −2V0 cos(x) cos(v0t ). This formula implies
that every time t passes through the value of (m + 1/2)π/v0

with m being an integer number, the minimums of the total
lattice potential change to maximums, and vice versa. This
effectively causes the optical lattice potential to comove with
the two wave packets, as shown in the bottom panel (b). As
a result, the two wave packets can virtually maintain their
shapes during the evolution.

3. Medium velocity collision

The medium velocity collision shows absolutely new fea-
tures, as shown in Fig. 7, where we set the collision velocity
to be v0± = ±2.5. For such a collision velocity, the kinetic
energy (v2

0±/2 = 3.125) is a little smaller than the depth of

the initial effective optical lattice (V depth
eff ≈ 5). But, as the

wave packets begin to move, the depth of the effective optical
lattice will be reduced. Therefore, they can overcome the
lattice barrier and move close to each other. However, this time
the two wave packets no longer can separate again with their
shape maintained. In fact, the atoms are severely scattered; the
self-tapped wave packets break into many small pieces and
widely spread in the space.

The lack of wave packet shape maintenance in this case
may be regarded as a drawback at first sight. However, we
found that this can prolong the time that interference can be

observed. In the shape-maintaining large velocity collision,
the two wave packets overlap for a very short time interval;
when they separate again, the interference pattern disappears.
But here, the interference can last for quite a long time. In
panels (a1),(b1), the evolution of atomic density |ψ (x, t )|2
for relative phases �φ = 0 and �φ = π is plotted. And for
comparison in panel (c1), we show the average atomic density
over 256 simulations with random values of the initial relative
phase �φ. Since the random phase average will wipe out the
interference pattern, the difference between panels (a1),(b1)
and (c1) indicates the effect of interference. Comparing these
panels, we see that interference can be observed from the time
of about t = 2.5 to the end of the numerical simulation t = 20.

One may also expect that a remote interference [54] of the
two wave packets can be observed even before they meet,
due to the long-range feature of the cavity light field medi-
ated interaction. But this does not happen, indicated by the
fact that, before the two wave packets meet (t < 2), panels
(a1),(b1) are the same as panel (c1). It is because of the fact
that the cavity light field is determined by the atomic density
|ψ (x, t )|2, having nothing to do with the phase of the BEC
wave function; see the formulas in Sec. II.

The most interesting phenomenon in the medium veloc-
ity collision is the retrapping of BEC atoms shown in panel
(a1)—after the two wave packets collide, a considerable frac-
tion of the atoms are retrapped around x = 0, forming a new
long time stable wave packet. We attribute this phenomenon to
the dynamical property of the optical lattice potential, because
when we simulate the collision of two matter wave packets in
a static optical lattice, such a phenomenon is not observed. We
also found that this phenomenon is extremely sensitive to the
initial relative phase �φ between the two wave packets. As
shown in Fig. 8, when �φ slightly departs from the value of
zero, the atomic density at x = 0, t = 20 sharply drops from
its maximum to almost zero. This sensitivity of atomic density
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FIG. 8. Sensitivity of the medium velocity collision with respect
to the relative phase. Atomic density ρ(x = 0, t = 20) as a function
of �φ is plotted. The inset is a detailed plot of the curve around
�φ = 0. Parameters used are �c = −1, U = −0.5, κ = 50, η = 75,
and v0± = ±2.5.

with respect to the relative phase between two initially spatial
separated matter wave packets may make the system useful in
realizing a high precision matter wave interferometer [44–48].

In this case, we also found that the initial spatial separation
between the two wave packets also substantially affects the
collision dynamics. In Fig. 9, we keep other parameters ex-
actly the same as in panels (a1),(a2) of Fig. 7, only triple the
initial spatial separation between the two wave packets, and
very different collision dynamics are observed—strong scat-
tering of the atoms occurs even before the two wave packets
meet each other. This is because the two wave packets can
interact indirectly via the cavity light field even though they
are spatially separated, i.e., the cavity mediated interaction is
a long range one [55–57].

At the last of this subsection, we make two notes. First, in
the small or large collision case, we also studied the effect
of initial spatial separation and relative phase �φ between

FIG. 9. Medium velocity collision of two self-trapped wave
packets with a large initial spatial separation. The same as panels
(a1),(a2) of Fig. 7 except that the initial spatial separation of the two
wave packets is set to a value of 12π , which is three times as large as
that in Fig. 7.

FIG. 10. Small velocity collision of two self-trapped wave pack-
ets beyond the bad cavity limit. Similar to Fig. 4, except that the
simulation is done beyond the bad cavity limit with parameters
�c = −1, U = −0.5, κ = 5, η = 7.5, �φ = 0, and initial velocity
v0± = ±0.5.

the two wave packets. We found that the initial spatial sep-
aration hardly affects the dynamics for both cases, and the
relative phase only shifts the interference stripe during the
overlapping time of the two wave packets in the large ve-
locity case. No other interesting new phenomenon has been
observed. Secondly, for the medium velocity collision, the
matter wave packets and the effective optical lattice evolve in
such a complex way that, as a result, we fail to find a simple
analytical explanation of the dynamics like that in the small or
large velocity case.

B. Beyond bad cavity limit

1. Small velocity collision

Recall that, beyond the bad cavity limit, a single moving
self-trapped wave packet feels a friction force from the optical
potential; as a result its motion quickly stops. This may lead
one to think that, beyond the bad cavity limit, oscillation of
the two wave packets during a small velocity collision will
also quickly vanish. But, in fact, we found that the oscillation
is hardly damped, as shown in Fig. 10. This is because the
small amplitude oscillations of the two wave packets produce
an almost static optical lattice (this has been explained in the
case of the bad cavity limit, and here it also holds), and a static
potential will have no friction effect on the wave packets; thus
the oscillation does not damp.

2. Large velocity collision

The large velocity collision dynamics beyond the bad cav-
ity limit are shown in Fig. 11. In the top panel (a), for reference
the two white lines show the free particle moving trajectories,
x = ±x0 − v0±t = ±2π ∓ 6t . Comparing the evolution of the
two wave packets with these two lines, the effect of friction
obviously shows. Compared with the bad cavity limit Fig. 6,
another feature in this figure is the spatial spreading of the
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FIG. 11. Large velocity collision of two self-trapped wave pack-
ets beyond the bad cavity limit. Similar to Fig. 6, except that the
simulation is done beyond the bad cavity limit with parameters
�c = −1, U = −0.5, κ = 5, η = 7.5, �φ = 0, and initial velocity
v0± = ±6.0. The two white lines show the free particle moving
trajectories for reference.

wave packets. Within the bad cavity limit, moving of the wave
packets will reduce the depth of the effective lattice, but, as the
moving continues, the lattice quickly recovers; thus the wave
packets hardly spread. However, beyond the bad cavity limit,
the optical lattice can no longer recover in time; therefore, the
wave packets cannot be well trapped, and they spread. Even
worse, as the wave packets spread, according to formulas in
Sec. II, the values of N±1,±2 become small and the depth of the
optical lattice will be further reduced. Thus, as time goes on,
the potential becomes weaker and weaker, see bottom panel
(b), and the wave packets spread wider and wider.

FIG. 13. Sensitivity of the medium velocity collision with re-
spect to relative phase beyond the bad cavity limit. Atomic density
ρ(x = 0, t = 20) vs �φ0 is plotted as the solid violet line. Parameters
used are �c = −1, U = −0.5, κ = 5, η = 7.5, and v0± = ±3.5. For
comparison, the gray dashed line shows the phase sensitivity of a
usual double slit interference, ρ = ρ0[1 + cos(�φ)]/2.

3. Medium velocity collision

Beyond the bad cavity limit, the retrapping phenomenon
of matter wave after a medium velocity collision can also
be observed, as shown in panels (a1),(a2) of Fig. 12. But,
due to the friction force, this time a larger initial velocity
is needed to be given on the wave packets (here v0 = 3.5,
compared to v0 = 2.5 in the bad cavity limit). And because
of the friction force, this time for other phases �φ �= 0, the
atoms also cannot move very far away; thus in panels (b1),(c1)
we also observe that a large fraction of the atoms distribute
around the region near x = 0. This will lead to a loss of the
phase sensitivity. As shown in Fig. 13, this time the violet
solid curve of ρ(x = 0, t = 20) vs �φ is much broader than
that in the bad cavity limit case of Fig. 8. However, even

FIG. 12. Medium velocity collision of two self-trapped wave packets beyond the bad cavity limit. Similar to Fig. 7 except that the
simulation is done beyond the bad cavity limit with parameters �c = −1, U = −0.5, κ = 5, η = 7.5, and v0± = ±3.5.
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though the phase sensitivity has been lost to a certain extent,
it is still better than that of a usual double slits interference,
which is ρ = ρ0[1 + cos(�φ)]/2, shown as the gray dashed
line in the same figure.

V. SUMMARY

In summary, we found very rich colliding phenomena of
two self-trapped BEC wave packets in a ring cavity, due to the
complex interplay between the BEC and optical lattice poten-
tial induced by it. The colliding dynamics strongly depend on
the collision velocity. In the small velocity collision case, the
induced optical lattice is almost static and the wave packets
do not have enough kinetic energy to overcome the lattice
barrier; thus they only oscillate around their initial equilibrium
position with a small amplitude. Because the cavity mediated
interaction is long range, even though the two wave packets
are contactless, their oscillations are related rather than inde-
pendent; this indicates a possibility of realizing matter wave
oscillator synchronization. In the medium velocity collision
case, the wave packets and the induced optical lattice potential
strongly affect each other, and this leads to a severe scattering
of the BEC atoms. Under appropriate parameters, parts of the
atoms can be retrapped after the collision. Interestingly, we

found that the retrapped atomic density is very sensitive with
respect to the initial phase difference of the two wave packets.
This implies a high precision matter wave interferometer may
be built using the present system and, in the large velocity
collision case, the two wave packets can collide with their
shape virtually maintained under the bad cavity limit, while
beyond the bad cavity limit, the wave packets suffer severe
spatial spreading.

Here, we consider the system within the mean field theory.
It is known that quantum fluctuation of both the matter wave
field [58,59] and cavity light field [60] will induce a depletion
of the BEC atoms and the scattered atoms can possess interest-
ing properties, such as correlation [61,62], entanglement [56],
and squeezing [63] in the collision process. This would be a
promising future research direction.
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