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Critical exponents of block-block mutual information in one-dimensional infinite lattice systems
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We study the mutual information between two lattice blocks in terms of von Neumann entropies for one-
dimensional infinite lattice systems. Quantum q-state Potts model and transverse-field spin-1/2 XY model are
considered numerically by using the infinite matrix product state approach. As a system parameter varies, block-
block mutual information exhibit singular behaviors that enable us to identify the critical points for the quantum
phase transitions. As happens with von Neumann entanglement entropy of single block, at critical points,
block-block mutual information for two adjacent blocks show a logarithmic leading behavior with increasing
the size of the blocks, which yields the central charge c of the underlying conformal field theory, as it should be.
It seems that two disjoint blocks show a similar logarithmic growth of the mutual information as a characteristic
property of critical systems but the proportional coefficients of the logarithmic term are very different from the
central charges. As the separation between the two lattice blocks increases, the mutual information reveals a
consistent power-law decaying behavior for various truncation dimensions and lattice-block sizes. The critical
exponent of block-block mutual information in the thermodynamic limit is estimated by extrapolating the
exponents of power-law decaying regions for finite truncation dimensions. For a given lattice-block size �,
the critical exponents for the same universality classes seem to have very close values each other. Whereas
the critical exponents have different values to a degree of distinction for the different universality classes.
As the lattice-block size becomes bigger, the critical exponent becomes smaller. We discuss a relation between
the exponents of block-block mutual information and correlation with the Shatten one-norm of block-block
correlation.
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I. INTRODUCTION

As an information of one system about another, corre-
lations quantify a relationship or connection between them.
Correlations have long been a central theme of physical
quantities in characterizing a unique property of strongly cor-
related systems in condensed matters. Conventional two-point
spatial correlation functions have been studied and their scal-
ing behaviors have been then used to characterize quantum
phases of many-body systems [1,2]. Recently much attention
has been drawn to quantum entanglement that can quantify
unique correlations present in quantum states. Such as entan-
glement entropy, concurrence, and Rényi entropy, quantum
information theoretical tools have been shown to be useful
to investigate quantum critical points and different phases in
strongly correlated systems [3].

Similar to conventional two-point correlations, in general,
a correlation between two blocks embedded in a large system
may also be considered to study a characteristic behavior of
the system. For a chosen size of blocks, block-block corre-
lations can be in principle from either classical or quantum
origin. Not due to entanglement, nontrivial quantum correla-
tions can exist [4]. Although correlations can be induced from
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such different origins and specific dominant correlations are
not known to characterize the system, the mutual information
can be used to measure all kinds of correlations of one block
about the other, i.e., the total amount of classical and quantum
correlations between two blocks [5–8]. In terms of the von
Neumann entropies, the mutual information I (A : B) between
two lattice blocks A and B (see Fig. 1) can be defined as

I (A : B) = S(A) + S(B) − S(A ∪ B), (1)

where S(α) = −Trρα log2 ρα is the von Neumann entropy
for the lattice blocks with α ∈ {A, B, A ∪ B}. To calculate the
mutual information between two lattice blocks in the system,
the density matrix ρα can be expressed in terms of expectation
values of operators in the blocks. The elements of the density
matrix have the form of generalized correlations functions
and contain, by definition, all block-site correlations. The
block-block mutual information in terms of the von Neu-
mann entropy consists of a weighted average of generalized
correlation functions and, in fact, measures the strength of
the overall correlation between two blocks of sizes �A and
�B. This implies that without knowing a dominant correlation
between blocks in the system and its corresponding operator,
the mutual information can capture a characteristic property of
the system even if hidden or exotic correlations present. The
two-point pairwise mutual information has then been used to
study quantum phase transitions [9–21]. A recent study shows
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FIG. 1. Two (a) adjacent and (b) disjoint lattice blocks A and B in
one-dimensional infinite lattice systems. The block sizes are denoted
by lA and lB, respectively. The size of the blocks lA and lB are denoted
by the number of sites inside the blocks, respectively. r = |i − j| is
the lattice distance between two blocks.

that similar to two-point spatial correlations, two-point pair-
wise mutual information can characterize one-dimensional
quantum critical systems by using its critical exponent [21].
In contrast with two-point pairwise mutual information, crit-
icality of systems has also been studied by considering the
mutual information between the two lattice blocks for bipar-
tite systems [17–20].

To more deeply understand mutual information in critical
systems, it would be interesting to study mutual information
between lattice blocks embedded in infinite lattice systems in
Fig. 1. Two consecutive subchains in one-dimensional spin
models [e.g., see Fig. 1(a)] exhibit a logarithmical growth of
the entanglement with respect to the size of subchains at criti-
cal points. Compared with two such consecutive subchains, no
correlation between disjoint lattice blocks [e.g., see Fig. 1(b)]
is expected for a large separation at a transition. Then it would
be interesting to study (i) how this correlation between disjoint
lattice blocks behaves with their separation r, i.e., how it
scales, at a quantum phase transition and also (ii) how the
size � of the lattice blocks affects the scaling. Such blocks in
critical systems [22–42] have been considered to investigate
the entanglement entropy, the entanglement negativity, and the
mutual information. Specifically, for a quantum formal field
theory, Furukawa et al. [24] predicted that the von Neumann
entanglement entropy of two lattice blocks A = [x1, x2] and
B = [x3, x4] in an infinite lattice is given by

S(A ∪ B) = SCC
A∪B − lim

n→1

1

n − 1
log Fn(x), (2a)

with the prediction of Calabrese and Cardy (CC) [24,25]

SCC
A∪B = c

3
log

(x21x32x43x41

x31x42

)
+ 2s1, (2b)

where c is the central charge of the conformal field theory,
xi j ≡ xi − x j and x = (x32x41)/(x31x42). The constant 2s1 is
determined under the condition SCC

A∪B → S(A) + S(B) in the
limit x21, x43 � x31, x42. The function Fn(x) depends on the
details of the model and thus it should be calculated case
by case [26,40]. The scaling functions of the von Neumann

entanglement entropy (mutual information) have been studied
for the Ising model [31,33,41] and for the spin-1/2 XXZ
model [24,41]. As is shown in Eqs. (2a) and (2b), actually,
it has been found that studying the scaling functions is a very
nontrivial task because the scaling functions depend not only
on the central charge but also on more universal information
of the conformal field theory [23,24,26].

In this paper we investigate the block-block mutual infor-
mation between two lattice blocks in infinite-lattice systems
by using the infinite matrix product state (iMPS) representa-
tion with the infinite time-evolving block decimation (iTEBD)
method [43–45]. To consider various universality classes at
critical points, we consider quantum q-state Potts model and
transverse-field spin-1/2 XY model, and calculate the von
Neuman mutual information for various sizes of lattice blocks.
We demonstrate that the block-block mutual information can
be a useful probe for detecting quantum phase transition. The
scaling of the block-block mutual information is studied at
the critical point in the thermodynamic limit. The numerical
results show that similar to conventional two-point correla-
tions, block-block information exhibits power-law decaying
behaviors. We find that as the size of lattice block � in-
creases, the critical exponent decreases. The scaling behaviors
of ground-state block-block mutual information are discussed
in associations with a characterization of critical systems. To
study a connection between block-block mutual information
and correlation, as the upper bound of block-block correla-
tions, the Shatten-one norm of the correlation density matrix
is calculated. The Shatten-one norm shows a power-law decay
to zero at the critical systems for the both quantum q-state
Potts model and transverse-field spin-1/2 XY model with the
truncation dimension χ = 150. Similar to the critical expo-
nents of the mutual information, it is found that the larger
the size of lattice block � becomes, the smaller the critical
exponent ηχ=150(�) of the Shatton-one norm becomes. Com-
parison to the exponent of the mutual information ηI

χ=150(�)
shows that regardless of the universality classes and the size
of the blocks, the critical exponents of the mutual informa-
tion and the Shatton-one norm seem to relate each other by
ηI

χ=150(�) ∼ 2ηχ=150(�).
This paper is organized as follows.
In Sec. IV B, we briefly introduce one-dimensional q-state

quantum Potts model and numerical iMPS approach. A sin-
gular behavior of block-block mutual information appears
to identify a quantum phase transition. In Sec. III, for the
both adjacent and disjoint blocks at the critical points, the
block-block mutual information shows a logarithmic scal-
ing behavior. In Sec. IV, block-block mutual information is
shown to decrease as the separation of blocks increases. The
power-law decaying behaviors and the critical exponents are
discussed in the thermodynamic limit for the transverse field
spin-1/2XY model as well as the q-state quantum Potts model
for various sizes of lattice blocks. In Sec. V, we calculate
the Shatton one-norm of the correlation density matrix as the
upper bound of the block-block correlation functions. The
relationship between the exponents of the mutual information
and the Shatton one-norm is discussed for the truncation di-
mension χ = 150.

Summary of this work is given in Sec. VI. In Appendix A,
we present the mutual information of the two adjacent blocks
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as a function of the system parameter in the one-dimensional
quantum q-state Potts model. Appendix B devotes to the
detailed discussions on central charges from the block en-
tanglement entropies in the one-dimensional quantum q-state
Potts model. Appendix C shows the detailed scaling behaviors
of block-block mutual information for the transverse-field
spin-1/2 XY model. In Appendix D, the block-block mutual
information is calculated in the ordered and the disordered
phases for the q-state quantum Potts model. It is shown that
the block-block mutual information decays to zero exponen-
tially in the both ordered and disordered phases.

II. ONE-DIMENSIONAL q-STATE QUANTUM POTTS
MODEL AND MUTUAL INFORMATION

We consider q-state quantum Potts model [46] with the
nearest-neighbor interaction in a transverse magnetic field λ.
The Hamiltonian can be written as

H = −
∞∑

i=1

[
q−1∑
p=1

Mi
x,pMi+1

x,q−p + λMi
z

]
, (3)

where Mx,p = (Mx,1)p and the Potts spin matrices Mx/z are
given as

Mx,1 =
(

0 Iq−1

1 0

)
and Mz =

(
q − 1 0

0 −Iq−1

)
, (4)

with the (q − 1) × (q − 1) identity matrix Iq−1. Due to the
spontaneous symmetry breaking with the symmetry group Zq,
q-degenerate ground states emerge in the broken symmetry
phases. It is known that a (dis-)continuous quantum phase
transition occurs for (q > 4) q � 4 in the one-dimensional
quantum q-state Potts model [47–50].

To consider an one-dimensional infinite lattice of the sys-
tem, we employ a wave function |ψ〉 of Hamiltonian in the
iMPS representation. The iTEBD algorithm with the second-
order Trotter decomposition leads to a numerical ground state
|ψg〉 in the iMPS representation. As the initially chosen state
approaches to a ground state, according to a power law, the
time step is decreased from an initial time step dt = 0.1 to
dt = 10−6. Then numerical iMPS wave functions for ground
states are obtained for the truncation dimensions between χ =
20 and χ = 150. Actually, in the broken-symmetry phases,
randomly chosen several initial states can reach different or-
thogonal ground states that are degenerate ground states for
a spontaneous symmetry breaking and can be distinguished
by using quantum fidelity [50,51]. Our iMPS approach gives
the full description of the ground state in a pure state by the
iMPS ground-state wave function |ψg〉. The reduced density
matrices ρA/B are obtained from the full density matrix ρ =
|ψg〉〈ψg| by tracing out the degrees of freedom of the rest
of the lattice block A or B, i.e., ρA/B = TrAc/Bc ρ. Thus, also
ρA∪B = Tr(A∪B)c ρ.

Based on our iMPS ground-state wave functions, we first
consider the mutual information Iq(A : B) between the two
lattice blocks of � contiguous sites, i.e., �A = �B = �, with
the lattice distance r = 2 and 3 in Fig. 1(b). For the broken

FIG. 2. Mutual information Iq(λ) of two disjoint lattice blocks
with the lattice distances r = 2 and 3 as a function of the transverse
field λ for one-dimensional q-state quantum Potts model with various
sizes of lattice blocks �.

symmetry phases, i.e., λ < λc, if one chooses a random state
as a reference state, one can detect q degenerate ground states
by using the quantum fidelity [50]. All q degenerate ground
states give the same block-block mutual information.

In Figs. 2(a) q = 2, 2(b) q = 3, 2(c) q = 4, and 2(d) q = 5,
we plot the mutual information Iq(λ) as a function of the
transverse field λ for various sizes of lattice blocks �. One
can notice that compared for smaller lattice-block size, the
block-block mutual information for bigger lattice-block size
has a bigger value. Furthermore, all the block-block mutual
information exhibit a singular behavior for various sizes of
lattice blocks �. The singular points correspond to the phase
transition points λc = 1. The overall features of the block-
block mutual information for r = 3 are similar to those for
r = 2. Only the case r = 2 has a larger value than the case
r = 3. Consequently, the block-block mutual information of
the disjoint lattice blocks can detect quantum phase transition.

The disjoint lattice blocks of r = 1 in Fig. 1(b) is the very
adjacent lattice blocks in Fig. 1(a). The block-block mutual
information of the adjacent lattice blocks also exhibit overall
similar features to those of the disjoint lattices-blocks for
r = 2 and r = 3 (see Fig. 10 in Appendix A). Only the values
of the mutual information for the adjacent lattice blocks r = 1
are larger than those for the disjoint lattice blocks for r = 2
and r = 3. This shows that as the lattice distance increases,
the value of the block-block mutual information decreases.
Note that all the block-block mutual information of the ad-
jacent blocks exhibit similar singular behaviors to those of the
disjoint blocks for various sizes of lattice blocks � at the phase
transition points λc = 1. Regardless of whether the adjacent
or the disjoint lattice blocks, as a result, it is shown that the
block-block mutual information can capture quantum phase
transitions for the spontaneous symmetry breaking.
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III. CENTRAL CHARGES AND QUANTUM
MUTUAL INFORMATION

As was discussed in the previous section, the critical quan-
tum Potts chains with q = 2, 3, and 4 for λ = λc can be
detected by using the mutual information Iq(λ) between two
lattice blocks. The universality classes of the critical quan-
tum Potts chains can be identified by calculating the central
charge c that is the main feature of conformal field theory.
Actually, the von Neumann entanglement entropy of a block
provides an accurate way of detecting the value of the central
charge because the entropy turns out to be proportional to
the logarithm of the size of block � and the proportional
coefficient, being generally universal, gives the central charge
in conformal systems [25,52–59]:

S(�) = c

3
log2 � + c′, (5)

where c′ is a nonuniversal constant. To show that our iMPS
approach is reliable, we presents the von Neumann entropy in
Appendix B. Our numerical result shows such a logarithmic
scaling of the von Neumann entropy for single lattice blocks
in the one-dimensional q-state quantum Potts model and the
estimates of the central charges are in excellent agreement
with the exact values at the critical points (see Fig. 11 in
Appendix B).

In contrast to the von Neumann entanglement entropy for
single lattice blocks in Eq. (5), as was discussed in the In-
troduction, the von Neumann entanglement entropy for two
lattice blocks was predicted to consist of the two contribu-
tions in Eqs. (2a) and (2b). One is proportional to the central
charge predicted by Calabrese and Cardy [25]. The other is the
characteristic function Fn that contains detailed information of
conformal field theory beyond the central charge [22–24,26].
Thus, the explicit expression of the von Neumann entangle-
ment entropy for two lattice blocks is unknown, so neither
does the block-block mutual information know its explicit
expression.

A. Mutual information of two adjacent blocks

To compare with the case of the disjoint blocks (r > 1) in
Fig. 1(b) in our iMPS approach, let us first consider the mutual
information I (�) of the adjacent blocks in Fig. 1(a), i.e., the
r = 1 case of the disjoint blocks in Fig. 1(b), on varying the
sizes of lattice blocks �. The mutual information I (�) between
the adjacent blocks is plotted as a function of the size of lattice
blocks � in Fig. 3 at the critical points. Similar to the von
Neumann entanglement entropy in Eq. (5), the von Neumann
mutual information I (�) exhibits a logarithmic increment as
the size of lattice block � increases. For the Shannon mutual
information with two blocks A and B of sizes � and L − �,
the similar logarithmic scaling behavior has been conjectured
for periodic chains in the ground state in Refs. [17–19], i.e.,
Ish(�, L) = c/4 ln[L/π sin(π�/L)] + γI based on the Shanon
entropy in the scaling regime (�, L � 1), where L is the sys-
tem size and � is the subsystem size, and γI is the nonuniversal
constant. To clarify the logarithmic behaviors of our mutual
information I (A : B), thus we perform a numerical best fit

FIG. 3. Mutual information I (�) for the lattice distance r = 1, 2,
and 3 as a function of the size of lattice block �A = �B = � at the
critical point λ = λc for the quantum Potts chains with (a) q = 2,
(b) q = 3, and (c) q = 4. The lines are the numerical fitting functions
Iq(�) = aq log2 � + bq with the numerical coefficients aq and bq. The
detailed discussions are in the text.

with the fitting function

Iq(�) = aq log2 � + bq, (6)

where aq and bq are numerical coefficients. The numerical
fitting coefficients with the fitting errors [60] are given as
(i) a2 = 0.1676(7) and b2 = 0.521(1) for q = 2, (ii) a3 =
0.269(1) and b3 = 0.823(2) for q = 3, and (iii) a4 = 0.34(2)
and b4 = 1.03(3) for q = 4. Actually, the coefficient of the
logarithm in the entanglement entropy in Eq. (5) is dependent
on the central charge c. For comparison with the entanglement
entropy in Eq. (5), we then consider the coefficients 3aq, i.e.,
(i) 3a2 = 0.503(2) for q = 2, (ii) 3a3 = 0.808(4) for q = 3,
and (iii) 3a4 = 1.01(6) for q = 4. One can notice that if one
assumes that similar to the entanglement entropy in Eq. (5),
the proportional coefficient aq corresponds to a central charge
via cq = 3aq, then our results of the central charges cq ob-
tained from the mutual information I (�) of the two adjacent
blocks are very close to the exact results c = 1/2, c = 4/5,

and c = 1 for q = 2, 3, and 4, respectively.
In Table I, the estimates of central charges c obtained

from the mutual information I (A : B) of the two adjacent
blocks are summarized in comparison with those values from
the von Neumann block entropy (Appendix B). This result
shows that for two adjacent lattice blocks of critical one-

TABLE I. Numerical central charges c estimated from the quan-
tum mutual information (MI) of the two adjacent blocks and the von
Neumann entanglement entropy (EE) (Appdenix B) at the critical
point λ = λc for q-state quantum Potts chains.

q = 2 q = 3 q = 4
c 1/2 4/5 1

c (EE) 0.5007(3) 0.800(2) 1.00(4)
c (MI) 0.503(2) 0.808(4) 1.01(6)
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TABLE II. Coefficients aq and bq fitted from the quantum mutual
information (MI) of two disjoint blocks for r = 2 and r = 3 at the
critical point λ = λc for q-state quantum Potts chains with the fitting
function Iq(�) = aq log2(�) + bq.

q = 2 q = 3 q = 4

3aq(r = 2) 0.317(1) 0.5103(9) 0.625(8)
3aq(r = 3) 0.292(3) 0.462(4) 0.5574(3)
bq(r = 2) 0.3580(7) 0.5644(4) 0.699(4)
bq(r = 3) 0.276(2) 0.436(2) 0.5349(1)

dimensional infinite lattice systems shown in Fig. 1(a), the
mutual information I (�) has a universal scaling behavior such
as I (�) ∼ c

3 log2 �. Actually, it is the inevitable consequence
of that the reduced density matrix �A∪B for S(A ∪ B) of two
adjacent blocks is the same with the reduced density ma-
trix of lattice block of 2� contiguous sites, i.e., �A∪B = �2�,
and thus S(A ∪ B) = S(2�), which implies that according to
Eq. (5), the block-block mutual information of two adjacent
blocks I (� : �) = 2S(�) − S(2�) ∝ c

3 log2 �. Furthermore, one
can easily notice that SCC

A∪B ∝ c
3 log2 � for very large �(� r).

These facts can be interpreted that the second term of Fn in
Eq. (2a) does not contribute much to the mutual information
of two adjacent blocks. As a result, the mutual information of
two adjacent blocks follows the universal scaling behavior of
the von Neunmann entanglement entropy of single blocks in
Eq. (5).

B. Mutual information of two disjoint blocks

Next, let us consider disjoint blocks for r > 1. The mutual
information I (�) for the disjoint blocks with r = 2 and r = 3
are plotted together in Fig. 3. As was noticed in Sec. IV B,
for a given size of two blocks, the value of the block-block
mutual information decreases as the lattice distance increases.
In contrast to the two adjacent blocks, the reduced density
matrix of two disjoint blocks with r �= 1 in Fig. 1(b) is not the
same with the reduced density matrix of lattice block of 2�

contiguous sites, i.e., �A∪B �= �2� and thus S(A ∪ B) �= S(2�).
Compared to the cases of the two adjacent blocks, one may
expect that the second term of Fn for the disjoint blocks in
Eq. (2a) would contribute much to the block-block mutual
information. Similar to the cases of the adjacent blocks for
all q = 2, 3, and 4, the mutual information with r = 2 and
r = 3 increase as the size of the lattice blocks � increases.
Interestingly, the mutual information for the disjoint blocks
seem to exhibit the logarithmic increasing behaviors with the
size of the lattice blocks �. For a comparison to the cases
of adjacent blocks, we perform a numerical best fit with the
fitting function Iq(�) = aq log2 � + bq. The numerical fitting
coefficients aq and bq are summarized in Table II. Noticeably,
the values of the coefficients 3aq for r = 2 and r = 3 are
very different from the values of the central charges, respec-
tively. The numerical fitting coefficients 3aq show a common
feature, that is, similar to the central charges, the values of
the coefficients 3aq seem to be distinguishable each other
for different q. For the larger distance r, the coefficient 3aq

becomes smaller. The coefficient aq(r) has a largest value

corresponding to aq(r = 1), i.e., the central charge shown in
Tables I and II.

IV. SCALING BEHAVIOR OF BLOCK-BLOCK
MUTUAL INFORMATION

For strongly correlated systems, characteristic scaling be-
haviors of conventional (two-point) spatial correlations can
quantify their property. Similarly, the mutual information, as
the total amount of correlations including classical and quan-
tum correlations, can characterize strongly correlated systems.
The scaling behavior of two-point (site) spatial mutual infor-
mation has been studied and discussed its universality [21]
in one-dimensional critical systems. Thus, in this section we
study how the block-block mutual information I (A : B) be-
tween the two lattice blocks with �A = �B = � at the critical
point changes as the lattice distance r increases. The effects of
the lattice-block size on the behaviors of mutual information
will be investigated. We will then consider various sizes of
lattice blocks in investigating scaling behaviors of block-block
mutual information. The detailed behaviors of mutual infor-
mation will be discussed for quantum q-state Potts model in
Sec. IV A. For the transverse-field spin-1/2 XY model, we
will present a summary of scaling of mutual information in
Sec. IV B and the detailed discussion in Appendix C.

A. Block-block mutual information critical exponent ηI for
quantum q-state Potts model

Let us first consider the one-dimensional quantum q-state
Potts model. For q = 2 (Ising chain), we plot the mutual
information I (r) as a function of the lattice distance r in the
left of Fig. 4. For a given truncation dimension, the plot shows
that the mutual information decreases as the lattice distance
r increases. With the bigger truncation dimension, the linear
region of the log-log plot gets wider and the slope of the
linear region seems to be readily saturated for the truncation
dimension χ = 150 in the left of Fig. 4. This tendency implies
that similar to the power-law behavior of the von Neumann
entropy in Refs. [31,41], the mutual information undergoes
a power-law decay to zero if the truncation dimension χ

increases to the thermodynamic limit. Then the mutual in-
formation seems to decay linearly to zero, i.e., I (A : B) → 0
as r → ∞. This shows that for very large separation of the
two lattice blocks, S(A ∪ B) � SA + SB. Such behaviors of the
mutual information I (A : B) reveal with the lattice distance r
for all the sizes of lattice blocks, i.e., in Figs. 4(a) � = 2, 4(b)
� = 3, and 4(c) � = 4.

To confirm the power-law decay of mutual information
I (r), we perform a numerical fit for the linear region of
mutual information I (r) with the fitting function, log2 I (r) =
−ηI log2 r + a0, where ηI corresponds to an exponent of
power-law decay and a0 is a fitting constant. In the right of
Fig. 4, we plot the slopes ηI (χ ) of the linear regions as a
function of the truncation dimension χ with the fitting error
bars [60]. The ηI (χ ) decreases monotonically to a saturated
value as the truncation dimension χ increases. To obtain the
exponent ηI

∞ of mutual information in the thermodynamic
limit χ → ∞, we extrapolate the exponents for various trun-
cation dimensions in the right of Fig. 4. The extrapolation
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FIG. 4. Mutual information I (r) as a function of the lattice dis-
tance r = |i − j| for various truncation dimensions (left) and mutual
information exponent ηI (χ ) as a function of truncation dimension χ

(right) with the block lengths �A = �B = �, i.e., (a) � = 2, (b) � = 3,
and (c) � = 4 for Ising chain (q = 2). Mutual information expo-
nent ηI (χ ) (right) is extracted from the numerical fitting of the
mutual information I (χ ) (left) with the fitting function log2 I (r) =
−ηI log2 r + a0 for the power-law decaying part. The detailed dis-
cussions are in the text.

functions are employed as a form of ηI (χ ) = ηI
0χ

α + ηI
∞.

The numerical estimates of the critical exponent ηI
∞ of mu-

tual information in the thermodynamic limit are given as (a)
ηI

0 = 1.2(2), α = −1.26(9) and ηI
∞ = 0.503(1) for � = 2, (b)

ηI
0 = 3.5(9), α = −1.7(1) and ηI

∞ = 0.485(1) for � = 3, and
(c) ηI

0 = 2.4(8), α = −1.6(1) and ηI
∞ = 0.461(2) for � = 4.

For the bigger size of lattice block, the critical exponent ηI
∞

becomes smaller. This means that the larger the lattice block,
the slower the decaying rate of block-block information as the
lattice distance r increases. In contrast to the mutual infor-
mation, the von Neumann entropy was shown to be scaled as
SAB ∼ r−1/2 independent on the block sizes in Refs. [31,41].

For three-state Potts model (q = 3), in the left of Fig. 5, we
display the block-block mutual information I (r) as a function
of the lattice distance r for various truncation dimensions
χ . In Figs. 5(a)–5(c), the sizes of lattice blocks are cho-
sen respectively as (a) � = 2, (b) � = 3, and (c) � = 4. For
given truncation dimensions, the plots show that the mutual
information decreases monotonically as the lattice distance r
between the two lattice blocks increases. Similar to the case
of q = 2, as the truncation dimension χ increases, the linear
region of the plot becomes wider. For χ = 150 in the left
of Fig. 5, the log-log plot seems to be almost straight in the
range of the plot. Regardless of the size of lattice block �,

FIG. 5. Mutual information I (r) as a function of the lattice dis-
tance r = |i − j| for various truncation dimensions (left) and mutual
information exponent ηI (χ ) as a function of truncation dimension χ

(right) with the block lengths �A = �B = �, i.e., (a) � = 2, (b) � = 3,
and (c) � = 4 for three-state Potts chain (q = 3). Mutual information
exponent ηI (χ ) (right) is extracted from the numerical fitting of the
mutual information I (χ ) (left) with the fitting function log2 I (r) =
−ηI log2 r + a0 for the power-law decaying part. The detailed dis-
cussions are in the text.

such similar straight behaviors of mutual information I (r)
are noticeable. To analyze a characteristic behavior of the
mutual information, we adapt the approach for q = 2. Using
the fitting function, log2 I (r) = −ηI log2 r + a0, we perform
the numerical fit for the linear region of mutual information
I (r) in the right of Fig. 5. The slopes ηI (χ ) of the linear
regions are plotted as a function of the truncation dimension
χ with the fitting error bars, which shows the monotonic
decrement of ηI with the increment of truncation dimension χ .
The extrapolation of the exponents is performed with the func-
tion, ηI (χ ) = ηI

0χ
α + ηI

∞. We estimate the critical exponent
ηI

∞ of the mutual information in the thermodynamic limit as
(a) ηI

0 = 3.5(4), α = −1.07(5) and ηI
∞ = 0.525(4) for � = 2,

(b) ηI
0 = 4.7(9), α = −1.16(8) and ηI

∞ = 0.496(6) for � = 3,
and (c) ηI

0 = 4.7(5), α = −1.19(5) and ηI
∞ = 0.472(3) for

� = 4. For q = 3, the estimates of the critical exponent ηI
∞(�)

show that the bigger the size of lattice block �, the smaller the
ηI

∞(�). Consequently, it is shown that similar to the Ising chain
for q = 2, the mutual information I (r) for q = 3 follows an
asymptotic power-law scaling, but the scaling exponent differs
from that for the Ising chain.

The critical exponents for q = 2 and q = 3 seem to be dis-
tinguishable each other for a given lattice-block size. Then let
us consider the critical point of the four-state quantum Potts
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FIG. 6. Mutual information I (r) as a function of the lattice dis-
tance r = |i − j| for various truncation dimensions (left) and mutual
information exponent ηI (χ ) as a function of truncation dimension χ

(right) with the block lengths �A = �B = �, i.e., (a) � = 2, (b) � = 3,

and (c) � = 4 for four-state Potts chain (q = 4). Mutual information
exponent ηI (χ ) (right) is extracted from the numerical fitting of the
mutual information I (χ ) (left) with the fitting function log2 I (r) =
−ηI log2 r + a0 for the power-law decaying part. The detailed dis-
cussions are in the text.

model (q = 4) belonging to another universality class. We cal-
culate the mutual information I (r) for the four-state quantum
Potts model (q = 4). Figure 6 shows the mutual information
I (r) as a function of the lattice-distance r for the sizes of
lattice blocks (a) � = 2, (b) � = 3, and (c) � = 4. Similar to
the cases of q = 2 and q = 3, the mutual information I (r)
for q = 4 exhibit a power-law decaying tendency as the trun-
cation dimension χ increases. By using the same numerical
method for q = 2 and q = 3, we estimate the critical expo-
nents of the mutual information I (r) for the block lengths � =
2, � = 3, and � = 4 in the right of Fig. 6. Performing the ex-
trapolation with the fitting function ηI (χ ) = ηI

0χ
α + ηI

∞, we
get the fitting results as (a) ηI

0 = 115(73), α = −1.8(3) and
ηI

∞ = 0.63(4) for � = 2, (b) ηI
0 = 118(43), α = −1.8(1) and

ηI
∞ = 0.61(3) for � = 3, and (c) ηI

0 = 166(54), α = −1.9(1)
and ηI

∞ = 0.58(3) for � = 4. As expected from the cases
of q = 2 and q = 3, the exponent ηI

∞ is smaller for � = 3
than for � = 2. Undeniably, the exponent ηI

∞ is smaller for
� = 4 than for � = 3. For a given lattice-block size, then the
exponent ηI

∞ has a distinguishable value from those of q = 2
and q = 3.

For comparison, we summarize our numerical estimates
of critical exponents ηI

∞ at the critical points for one-
dimensional quantum q-state Potts model in Table III. It

TABLE III. Critical exponents ηI
∞(q, �) of block-block mutual

information I (A : B) for various lattice-block sizes �A = �B = � at
the critical points for one-dimensional quantum q-state Potts model.

ηI
∞(q, �) � = 2 � = 3 � = 4

q = 2 0.503(1) 0.485(1) 0.461(2)
q = 3 0.525(4) 0.496(6) 0.472(3)
q = 4 0.63(4) 0.61(3) 0.58(3)

is shown that for all of q = 2, 3, and 4, the block-block
mutual information I (r) undergo an asymptotic power-law
scaling behavior at the critical points and the critical expo-
nents become smaller for bigger lattice blocks. These can be a
characteristic feature of block-block mutual information for
one-dimensional critical systems. Depending on q, i.e., the
universality class, the critical exponents ηI (q, �) seem to be
given different values each other.

B. Block-block mutual information critical exponent ηI for
transverse field spin-1/2 XY model

To clarify more about universal feature of the algebraic
decay of block-block mutual information in one-dimensional
critical systems, we consider the transverse-field spin-1/2 XY
model [61–66] described by the Hamiltonian

HXY = −
∞∑

i=−∞

(
γ+ σ x

i σ x
i+1 + γ− σ

y
i σ

y
i+1 + h σ z

i

)
, (7)

where σ x,y,z are the Pauli spin operators and γ± = (1 ± γ )/2.
This model has two parameters, i.e., the anisotropy interaction
parameter γ and the transverse magnetic field h.

As is known, the transverse-field spin-1/2 XY model has
two critical lines, i.e., (i) the Ising transition lines with the
central charge c = 1/2 for γ �= 0 and h = ±1, and (ii) the
anisotropy transition line with the central charge c = 1 for
γ = 0 and −1 < h < 1.

For γ = 1, the XY model reduces to the Ising Hamiltonian
for q = 2 in Eq. (3). Thus, in terms of the two parameters,
(γ , h) = (1.0, 1.0) corresponds to the critical point of the
Ising Hamiltonian. The block-block mutual information at
(γ , h) = (1.0, 1.0) has been studied in Fig. 4 in Sec. IV A.
For comparison with (γ , h) = (1.0, 1.0), we choose (γ , h) =
(0.5, 1.0) on the Ising transition line belonging to the same
university class, i.e., the Ising universality class. Also another
two parameter sets (γ , h) = (0.0, 0.0) and (0.0, 0.5) are cho-
sen on the anisotropy transition line belonging to the Gaussian
university class.

For the three parameter sets, we calculate the mutual in-
formation I (A : B) with the lattice blocks �A = �B = � = 2,
3, and 4. Similar to the one-dimensional q-state Potts model,
the block-block mutual information exhibit similar power-law
decaying behaviors (see the details in Appendix C). In Ta-
ble IV, their critical exponents are estimated and summarized
with the case of the Ising critical point (q = 2). Table IV
shows clearly that the critical exponent ηI

∞(γ , h) decreases
as the size of lattice block � increases. For each given lattice
block �, the two critical exponents ηI (γ , h) of the mutual
information I (r) at (γ , h) = (1.0, 1.0) and (0.5, 1.0) display
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TABLE IV. Critical exponents ηI
∞(γ , h, �) of block-block mu-

tual information I (A : B) for various lattice-block sizes �A = �B = �

on the two critical lines of one-dimensional quantum transverse-field
spin-1/2 XY model. For comparison, the estimates for Ising model
are from Table III for q = 2.

ηI
∞(γ , h) � = 2 � = 3 � = 4

XY (γ = 0.0, h = 0.0) 0.999(4) 0.970(8) 0.926(5)
XY (γ = 0.0, h = 0.5) 1.008(4) 0.972(4) 0.922(6)
XY (γ = 0.5, h = 1.0) 0.501(6) 0.483(3) 0.452(6)
Ising (q = 2) (γ = 1.0, h = 1.0) 0.503(1) 0.485(1) 0.461(2)

a very close value each other. The two critical exponents at
(γ , h) = (0.0, 0.0) and (0.0, 0.5) also have a very close value
each other. Moreover, it is shown that in accordance with the
Ising universality class or the Gaussian universality class, the
values of the critical exponents can be distinguishable each
other for a given size of lattice block.

V. BLOCK-BLOCK CORRELATION AND
THE UPPER BOUND

As usual two-point correlation functions, the block-block
correlation function for the two blocks A and B can be defined
as

CαAαB (A : B) = 〈
OαA

A ⊗ OαB
B

〉
g − 〈

OαA
A

〉
g

〈
OαB

B

〉
g, (8)

where 〈· · · 〉g indicate the expectation values of the observ-
ables with the ground-state wave function |ψg〉 and the local
observables for the two blocks are OαA

A = Oα1
i ⊗ Oαi+1

i+1 ⊗
... ⊗ Oα�A

�A
and OαB

B = Oα j

j ⊗ Oα j+1

j+1 ⊗ ... ⊗ Oα�B
�B

. Here αis de-
note the local observables at site i and αA/B indicate a set
of local observables for the blocks A and B, for instance,
αA = αA(αi, αi+1, . . . , α�A ) and αB = αB(αi, αi+1, . . . , α�B ).
In terms of the reduced density matrices, the block-block
correlation can be written with OαAαB ≡ OαA

A ⊗ OαB
B as

CαAαB (A : B) = Tr[OαAαBρ(A : B)], (9a)

ρ(A : B) = ρA∪B − ρA ⊗ ρB, (9b)

where ρ(A : B) can be called correlation density matrix
[67,68] and ρ(A : B) = 0(ρA∪B = ρA ⊗ ρB) if there is no cor-
relation between the two blocks A and B. If the local Hilbert
space per site is q, then the ρ(A : B) can be represented as a
q�A+�B × q�A+�B matrix with q2(�A+�B ) elements with the sizes
of the the blocks �A and �B.

For block-block correlation functions, the number of sets
of the local observables for the block A and B is determined
with the possible combinations of the local observables, i.e.,
m�A+�B , where m is the number of local observable at each site
i. As the sizes of the blocks A and B increase, the number
of block-block correlation functions increases significantly. It
could be a highly nontrivial challenge to extract useful infor-
mation from calculating directly the number of block-block
correlation functions. Recently, it was shown in Ref. [68] that
the Schatten one-norm of the correlation density matrix ρ(A :
B) yields an upper bound for the block-block correlations as

TABLE V. Critical exponents ηχ=150(q, �) of the upper bound of
block-block correlation C(A : B) for various lattice-block sizes �A =
�B = � at the critical points λc = 1 for one-dimensional quantum q-
state Potts model. The truncation dimension is χ = 150.

ηχ=150(q, �) � = 2 � = 3 � = 4

q = 2 0.238(1) 0.224(2) 0.212(2)
q = 3 0.269(2) 0.247(3) 0.240(3)
q = 4 0.299(4) 0.289(6) —

follows:

|CαAαB | � ‖ρ(A : B)‖1 =
q�A+�B∑
μ=1

∣∣pμ
AB

∣∣, (10)

where pμ
AB are the eigenvalues of ρ(A : B). This upper bound

of block-block correlations can give a common feature of
block-block correlations. Thus, in our study, we consider the
upper bound of block-block correlations C in Eq. (10) for the
truncation dimension χ = 150.

Using the iMPS ground-state wave function for χ = 150,
we calculate the upper bound of block-block correlations at
the critical points of the quantum q-state model and at the
chosen critical points of the quantum transverse field spin-
1/2 XY model. We plot the upper bound C as a function
of the lattice distance r = |i − j| in Fig. 7 for the quantum
q-state model and in Fig. 8 for the quantum transverse field
spin-1/2 XY model. We can notice that similar to the linear
regions of the mutual information I (r) for χ = 150, all of
the upper bounds of block-block correlations decay to zero
and have linear regions. To estimate the exponents of the
power-law decaying parts, we perform the numerical fitting
with the fitting function log2(C) = −η log2 |i − j| + a0. The
critical exponents for χ = 150 are displayed in Tables V and
VI for the quantum q-state model and the quantum trans-
verse field spin-1/2 XY model, respectively. Similar to the
mutual information, as the size of lattice block � becomes
bigger, the ηχ=150(�) becomes smaller. For the quantum q-
state Potts model, the critical exponents ηχ=150(q, �) seem to
be different each other, depending on q, i.e., the universality
class in Table V. However, compared to the exponents of
the mutual information, the difference between the exponents
seems not to be very big for a given size of the block. For
the transverse-field spin-1/2 XY model, according to the Ising

TABLE VI. Critical exponents ηχ=150(γ , h, �) of the upper
bound of block-block correlation C(A : B) for various lattice-block
sizes �A = �B = � on the two critical lines of one-dimensional quan-
tum transverse-field spin-1/2 XY model. The truncation dimension
is χ = 150. For comparison, the estimates for Ising model are from
Table IV for q = 2.

ηχ=150(γ , h, �) � = 2 � = 3 � = 4

XY (γ = 0.0, h = 0.0) 0.519(7) 0.48(1) 0.45(1)
XY (γ = 0.0, h = 0.5) 0.521(5) 0.491(8) 0.45(1)
XY (γ = 0.5, h = 1.0) 0.238(2) 0.229(2) 0.219(3)
Ising (q = 2) (γ = 1.0, h = 1.0) 0.238(1) 0.224(2) 0.212(2)
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FIG. 7. Block-block correlation as a function of the lattice dis-
tance r = |i − j| for quantum q-state Potts model for various block
sizes �A = �B = � with the truncation dimension χ = 150 at the
critical point λc = 1. We consider the block sizes � = 2, 3, and 4
for (a) q = 2 and (b) q = 3. For (c) q = 4, the block sizes � = 2 and
3 are considered.

universality class or the Gaussian universality class, the values
of the critical exponents ηχ=150(γ , h) seem to be distinguish-
able each other for a given size of lattice block in Table VI.
Consequently, we find that the upper bounds of block-block
correlations show a very similar tendency to the block-block
mutual information. The exponents of their linear regions
depend on the lattice-block size. The bigger the lattice block,
the smaller the critical exponent.

The block-size dependence of the exponents follows
the block-size dependence of the exponents of the mutual
information. To compare with the exponents of the mutual in-
formation in Sec. IV, we list the estimate critical exponents of
the mutual information for the truncation dimension χ = 150
in Table VII. The ratios K = ηI

χ=150/ηχ=150 are also listed

FIG. 8. Block-block correlation as a function of the lattice dis-
tance r = |i − j| for quantum XY model for various block sizes �A =
�B = � with the truncation dimension χ = 150 at points (a) (γ , h) =
(0.0, 0.0), (b) (γ , h) = (0.0, 0.5), and (c) (γ , h) = (0.5, 1.0), re-
spectively. The block lengths � = 2, 3, and 4 are considered.

in Table VII. Table VII shows that the ratios K have values
quite close to 2. It seems that regardless of the universality
classes and the size of the blocks, the critical exponents of the
mutual information have about twice the value of the critical
exponents of the upper bound of the block-block correlations,
i.e., ηI

χ=150/ηχ=150 ∼ 2.

VI. SUMMARY

The block-block mutual information defined by the von
Neumann entropies has been numerically investigated in
the one-dimensional q-state quantum Potts model and the
transverse-field spin-1/2 XY model. To calculate the reduced
density matrices for the mutual information, the ground-state
wave function of the infinite-size lattice chain is obtained by
using the iTEBD algorithm in the iMPS representation. We
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TABLE VII. Critical exponents ηI
χ=150 of the block-block mutual

information I (A : B) and the ratio K = ηI
χ=150/ηχ=150 for various

lattice-block sizes �A = �B = � for the quantum q-state Potts model
and the quantum transverse-field spin-1/2 XY model.

ηI
χ=150 � = 2 � = 3 � = 4

XY (γ = 0.0, h = 0.0) 1.029(8) 1.00(1) 0.96(1)
XY (γ = 0.0, h = 0.5) 1.041(7) 0.996(9) 0.95(1)
XY (γ = 0.5, h = 1.0) 0.5109(7) 0.488(3) 0.460(4)
Ising or q = 2 (γ = 1.0, h = 1.0) 0.5065(6) 0.486(2) 0.463(4)
q = 3 0.543(3) 0.509(5) 0.488(6)
q = 4 0.626(8) 0.606(9) 0.58(1)
K = ηI

χ=150/ηχ=150 � = 2 � = 3 � = 4

XY (γ = 0.0, h = 0.0) 1.98(4) 2.08(7) 2.11(9)
XY (γ = 0.0, h = 0.5) 2.00(3) 2.03(5) 2.10(9)
XY (γ = 0.5, h = 1.0) 2.13(2) 2.13(3) 2.10(5)
Ising or q = 2 (γ = 1.0, h = 1.0) 2.12(1) 2.17(3) 2.18(4)
q = 3 2.02(3) 2.06(5) 2.03(5)
q = 4 2.09(5) 2.10(7) —

first considered the block-block mutual information Iq(A : B)
between the two blocks for �A = �B = �. For the spontaneous
symmetry breaking in one-dimensional q-state quantum Potts
model, we found that all q degenerate ground states give the
same block-block mutual information. As the transverse-field
λ varies, for both the two adjacent and disjoint blocks, the
block-block mutual information Iq(�) exhibit a singular be-
havior at the critical point, which indicates that the quantum
phase transition occurs at the singular point and thus can be
detected by using the block-block mutual information. For
a given lattice distance, the critical mutual information Iq(�)
seems to show a logarithmic leading behavior, i.e., Iq(�) ∼
aq log2 � + bq for both the two adjacent and disjoint blocks.
For the case of two adjacent blocks (r = 1), the numerical
coefficients of the logarithm term are shown to be a close
value of the central charge cq in Table I in our iMPS approach,
as they should be. While for the two disjoint blocks with r = 2
and r = 3, the coefficients of the logarithmic terms, not giving
a close value of the central charges, depend on the lattice
distance r, as shown in Table II.

Next, we have studied the block-block mutual information
with respect to the lattice distance. In both the ordered and the
disordered phases, as the distance r between two lattice blocks
increases, the block-block mutual information exponentially
decay to zero. For each q, the mutual information correlation
length ξM is dependent of the lattice-block size, i.e., the larger
the size of the lattice blocks, the longer the correlation length
ξM . For the ordered and the disordered phases, the detailed
discussion on the block-block mutual information is given in
Appendix D. Whereas, regardless of the size of lattice block
�, the mutual information I (�) seems to undergo a power-law
decay at the critical points.

By using the extrapolation of the exponents of I (�) for
finite truncation dimensions, the critical exponents ηI

∞ were
estimated in the thermodynamic limit. To see clearly the
change of critical exponent for various sizes of lattice blocks
�, we plot the critical exponent ηI

∞ as a function of � in
Fig. 9 based on Table III for the q-state quantum Potts model
and Table IV for the transverse-field spin-1/2 XY model. It

FIG. 9. Block-block mutual information exponent ηI
∞(�) as a

function of the lattice-block size � for one-dimensional q-state quan-
tum Potts model in Table III and the transverse-field spin-1/2 XY
model in Table IV.

is shown clearly that the larger the lattice-block size �, the
smaller the critical exponent ηI

∞. The decreasing tendencies of
the mutual information I (�) are similar each other in all cases
as the size of lattice block � increases. For a given lattice-block
size �, the critical exponents of I (�) for the same universality
class seem to have very close values each other in Table IV
in Sec. IV B. Whereas for different universality classes, the
values of critical exponents are different distinguishably.

We have also investigated the upper bound of block-block
correlations that is given as the Shatten-one norm of the
correlation density matrix. The Shatten-one norm show a
power-law decay to zero at the critical systems for the both
quantum q-state Potts model and transverse-field spin-1/2 XY
model. Similar to the critical exponents of the mutual informa-
tion, the larger the lattice-block size �, the smaller the critical
exponent ηχ=150. The exponents of the upper bounds with
the truncation dimension χ = 150 for the same universality
class seem to have very close values each other, as shown in
Tables V and VI. Regardless of the universality classes and
the size of the blocks, the critical exponent of the mutual
information was shown to have an interesting relation with
the exponent of Shatten-one norm for the upper bound of the
block-block correlation, i.e., ηI

χ=150 ∼ 2ηχ=150.
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APPENDIX A: MUTUAL INFORMATION WITH
TWO ADJACENT BLOCKS

In Sec. IV B we discussed the characteristic behaviors
of the block-block mutual information for the two disjoint
blocks, shown in Fig. 1(b), as a function of the transverse-field
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FIG. 10. Mutual information Iq(λ) of two adjacent lattice blocks
with (a) q = 2, (b) q = 3, (c) q = 4, and (d) q = 5 as a function of the
transverse field λ for one-dimensional q-state quantum Potts model
with various sizes of lattice blocks �.

λ. In this Appendix, for comparison, we present the mutual
information for the two adjacent blocks shown in Fig. 1(a).
We plot the mutual information as a function of the transverse
field λ in Fig. 10. As the size of lattice blocks � increases, the
value of the block-block mutual information increases for all
q. At the critical points λ = 1, one can notice the predominant
singular behaviors of the mutual information. With the discus-
sion in Sec. IV B, this implies that quantum phase transition
can be captured by using block-block mutual information for
both cases of two adjacent and disjoint blocks.

APPENDIX B: CENTRAL CHARGES AND BLOCK
ENTANGLEMENT ENTROPY

In this Appendix, to demonstrate the reliability of our
iMPS approach, we estimate the central charges from our
iMPS ground states. To do this, we calculate the von Neumann
entropy for various lattice block of � contiguous sites in our
iMPS ground states. In Fig. 11, we plot the block entangle-
ment entropy as a function of the lattice-block size � for the
one-dimensional (a) q = 2, (b) q = 3, and (c) q = 4 state
Potts models. As were predicted in Eq. (5), the entanglement
entropies in Fig. 11 exhibit a logarithmic scaling behavior.
This fact can be manifested by performing the numerical fits
to extract the central charges with the fitting function Sq(�) =
fq log2 � + gq. The numerical fitting coefficients fq and gq are
given as (a) f2 = 0.1669(1) and g2 = 0.6892(4) for q = 2,
(b) f3 = 0.266(8) and g3 = 1.094(2) for q = 3, and (c) f4 =
0.3334(13) and g4 = 1.363(3) for q = 4. From the fitting
coefficients, the central charges can be estimated as 3 fq = cq,
i.e., (a) 3 f2 = 0.5007(3) for q = 2, (b) 3 f3 = 0.800(2) for
q = 3, and (c) 3 f4 = 1.00(4) for q = 4. Our estimates of the
central charges cq obtained from the von Neumann entropy
Sq(�) are in excellent agreement with the exact values as was
shown in Table I. This shows that the iMPS approach gives a
reliable numerical result for the central charges.

FIG. 11. Von Neumann entropy S(�) as a function of the block
length � at the critical point λ = λc for quantum Potts chains with
(a) q = 2, (b) q = 3, and (c) q = 4. The lines are the numerical fitting
functions Sq(�) = fq log2 � + gq with the numerical coefficients fq

and gq. The detailed discussions are in the text.

APPENDIX C: BLOCK-BLOCK MUTUAL INFORMATION
FOR TRANSVERSE FIELD SPIN-1/2 XY MODEL

In this Appendix, we present the criticality of block-block
mutual information I (A : B) for the transverse field spin-1/2
XY model in Eq. (7). In the γ -h parameter space of the Hamil-
tonian, the four parameters are chosen on the two critical
lines such as (i) (γ , h) = (1.0, 1.0) and (0.5, 1.0) on the Ising
transition line and (ii) (γ , h) = (0.0, 0.0) and (0.0, 0.5) on
the anisotropy transition line. In the case of the parameters
(γ , h) = (1.0, 1.0) corresponding to the Ising model (q = 2)
in Eq. (3), the critical exponents of mutual information have
been displayed in Fig. 4. The numerical results for the other
parameters will then be presented in this Appendix.

Given the size of the blocks for (γ , h) = (0.5, 1.0) on the
Ising transition line, Fig. 12 displays the mutual information
as a function of the lattice distance r and the numerically fitted
exponents of the linear regions as a function of the truncation
dimension χ . Overall behaviors of the mutual information in
the left of Fig. 12 for (γ , h) = (0.5, 1.0) can be noticed to be
similar with those in the left of Fig. 4 for (γ , h) = (1.0, 1.0),
i.e., the block-block mutual information I (r) decays to zero al-
gebraically as the distance r between the two blocks increases.
In the right of Fig. 12, we plot the exponents η(χ ) of the
block-block mutual information as a function of the truncation
dimension χ for various sizes of lattice blocks �. To get the
critical exponents η∞ in the thermodynamic limit, the ex-
trapolations are performed with the fitting function, ηI (χ ) =
ηI

0χ
α + ηI

∞ as follows: (a) ηI
0 = 0.21(6), α = −0.6(2) and

ηI
∞ = 0.501(6) for � = 2, (b) ηI

0 = 0.4(1), α = −1.0(2) and
ηI

∞ = 0.483(3) for � = 3, and (c) ηI
0 = 0.4(2), α = −0.8(2)

and ηI
∞ = 0.452(6) for � = 4. One can notice that the critical

exponents ηI
∞ for (γ , h) = (0.5, 1.0) are very close values for

(γ , h) = (1.0, 1.0) in Fig. 4. Note that the two parameters are
in the same universality class, i.e., the Ising universality class
with c = 1/2.
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FIG. 12. Mutual information I (r) as a function of the lattice dis-
tance r = |i − j| for various truncation dimensions (left) and mutual
information exponent ηI (χ ) as a function of truncation dimension χ

(right) with the block lengths �A = �B = �, i.e., (a) � = 2, (b) � =
3, and (c) � = 4 for the transverse-field spin-1/2 XY model with
(γ , h) = (0.5, 1.0). Mutual information exponent ηI (χ ) (right) is
extracted from the numerical fitting of the mutual information I (χ )
(left) with the fitting function log2 I (r) = −ηI log2 r + a0 for the
power-law decaying part.

Next, we calculate the block-block mutual information for
the other two parameters (γ , h) = (0.0, 0.0) and (γ , h) =
(0.0, 0.5) on the anisotropy transition line belonging to the
Gaussian universality class with c = 1. In Figs. 13 and 14,
the block-block mutual information and their exponents are
displayed for (γ , h) = (0.0, 0.0) and (γ , h) = (0.0, 0.5), re-
spectively. For the sizes of lattice blocks (a) � = 2, (b) � = 3,
and (c) � = 4, as the distance between two blocks increases,
a noticeable common behavior is an algebraic decay of the
block-block mutual information I (r) to zero. For given trun-
cation dimensions χ , we plot the exponents ηI (χ ) of the
mutual information from the fitting function log2[I (r)] =
−ηI log2(r) + a0. As shown in the right of Figs. 13 and
14, the extrapolations are performed for the critical expo-
nents η∞ with the function ηI (χ ) = ηI

0χ
α + ηI

∞. For (γ , h) =
(0.0, 0.0), the numerical constants in Fig. 13 are given as
(a) ηI

0 = 3.3(2), α = −0.93(3) and ηI
∞ = 0.999(4) for � = 2,

(b) ηI
0 = 4.3(5), α = −1.00(5) and ηI

∞ = 0.970(8) for � = 3,
and (c) ηI

0 = 5.4(4), α = −1.03(3) and ηI
∞ = 0.926(5) for

� = 4. For (γ , h) = (0.0, 0.5), the fitting constants in Fig. 14
are determined as (a) ηI

0 = 3.3(2), α = −0.92(3) and ηI
∞ =

1.008(4) for � = 2, (b) ηI
0 = 4.7(3), α = −1.06(3) and ηI

∞ =
0.972(4) for � = 3, and (c) ηI

0 = 4.4(3), α = −0.99(4) and
ηI

∞ = 0.922(6) for � = 4. These estimates show that for a
given size of lattice block �, the critical exponents for (γ , h) =

FIG. 13. Mutual information I (r) as a function of the lattice dis-
tance r = |i − j| for various truncation dimensions (left) and mutual
information exponent ηI (χ ) as a function of truncation dimension χ

(right) with the block lengths �A = �B = �, i.e., (a) � = 2, (b) � =
3, and (c) � = 4 for the transverse-field spin-1/2 XY model with
(γ , h) = (0.0, 0.0). Mutual information exponent ηI (χ ) (right) is
extracted from the numerical fitting of the mutual information I (χ )
(left) with the fitting function log2 I (r) = −ηI log2 r + a0 for the
power-law decaying part.

(0.0, 0.0) and (γ , h) = (0.0, 0.5) are very close values each
other. However, it should be noted that the estimate values for
(γ , h) = (1.0, 1.0) and (γ , h) = (0.5, 1.0) belonging to the
Ising universality class are noticeably different from those for
(γ , h) = (0.0, 0.0) and (γ , h) = (0.0, 0.5) belonging to the
Gaussian universality class.

APPENDIX D: BLOCK-BLOCK MUTUAL INFORMATION
IN THE ORDERED AND DISORDERED PHASES FOR THE

QUANTUM q-STATE POTTS MODEL

In Sec. IV B, it has shown that the block-block mutual in-
formation can detect the phase transition field strength λc = 1
for the one-dimensional q-state quantum Potts model. For
the field strength λ < 1(λ > 1), as is well-known, the one-
dimensional q-state Potts model is in the ordered (disordered)
phase. In the main text, we have discussed about the critical
behaviors of the block-block mutual information at the critical
point. In this Appendix, we will discuss the behaviors of
block-block mutual information in the ordered and disordered
phases.

To do this, we choose the two field strengths λ = 0.9 in
the ordered phase and λ = 1.1 in the disordered phase. We
calculate the block-block mutual information I (r) from the
ground-state wave functions with the truncation dimension
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FIG. 14. Mutual information I (r) as a function of the lattice dis-
tance r = |i − j| for various truncation dimensions (left) and mutual
information exponent ηI (χ ) as a function of truncation dimension χ

(right) with the block lengths �A = �B = �, i.e., (a) � = 2, (b) � =
3, and (c) � = 4 for the transverse-field spin-1/2 XY model with
(γ , h) = (0.0, 0.5). Mutual information exponent ηI (χ ) (right) is
extracted from the numerical fitting of the mutual information I (χ )
(left) with the fitting function log2 I (r) = −ηI log2 r + a0 for the
power-law decaying part.

χ = 150 for λ = 0.9 and λ = 1.1. In Fig. 15, we plot the
block-block mutual information I (r) as a function of the
lattice distance r = |i − j| for (a) q = 2, (b) q = 3, and (c)
q = 4. For the two disjoint blocks, the three sizes of the
blocks are chosen such as �A = �B = � = 2, 3, and 4. It can
be easily noticed that for the chosen system parameter, the
block-block mutual information decays exponentially with the
distance. For other truncation dimensions, we have observed
similar exponential-decaying behaviors of block-block mutual
information.

Such exponential-decaying behaviors of the block-block
mutual information in the ordered and disordered phases can
be quantified by defining a characteristic decaying length, i.e.,
so-called mutual information correlation length ξM . Thus, we
perform the numerical fitting to extract the mutual information
correlation length ξM . The fitting function I (r) = c0e−r/ξM is
employed with the numerical fitting coefficients c0 and ξM .
For λ = 0.9 in the order phase and λ = 1.1 in the disor-
dered phase, the fitting results give the c0s and ξMs listed in
Table VIII. In the order phase of the field strength λ = 0.9,
it is shown that as the size of the two disjoint blocks � in-
creases, the mutual information correlation length ξM seems
to increase for each q. For a given size of the disjoint blocks
�, the bigger q-state Potts system has the shorter ξM . Similar
to the order phase at the field strength λ = 0.9, the disordered

FIG. 15. Mutual information I (r) for the two disjoint blocks
�A = �B = � = 2, 3, and 4 as a function of the lattice distance
r = |i − j| at the field strengths λ = 0.9 (left) and λ = 1.1 (right)
with truncation dimension χ = 150. The exponential decaying of the
block-block mutual information can be characterized by defining the
decaying length ξM . The block-block mutual information correlation
length ξM is extracted from the numerical fitting of the mutual infor-
mation I (r) with the fitting function I (r) = c0e−r/ξM .

phase at the field strength λ = 1.1 shows that regardless of q,
the block-block mutual correlation length ξM increases as the
size of the disjoint blocks increases, and also, for a given size
of the disjoint blocks �, the bigger q-state Potts system has
the shorter ξM . We have observed that for other parameters
in the ordered or disordered phases, the behaviors of the
block-block mutual information are shown to be very similar
to those of the block-block mutual information for the chosen
parameters.

TABLE VIII. Mutual information correlation length ξM at the
field strengths λ = 0.9 and λ = 1.1 for quantum q-state Potts model
with truncation dimension χ = 150.

ξM (q, �) at λ = 0.9 � = 2 � = 3 � = 4

q = 2 1.69(4) 1.77(4) 1.84(4)
q = 3 1.07(1) 1.118(5) 1.155(3)
q = 4 0.82(2) 0.87(3) 0.89(3)

ξM (q, �) at λ = 1.1 � = 2 � = 3 � = 4
q = 2 3.64(6) 3.68(6) 3.72(6)
q = 3 2.24(2) 2.26(2) 2.29(2)
q = 4 1.617(7) 1.636(7) 1.661(6)
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