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Thermal rectification in three-dimensional mass-graded anharmonic oscillator lattices
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In this work we study the thermal rectification efficiency, i.e., asymmetric heat flow, of a three-dimensional
mass-graded anharmonic lattice of length N and width W by means of nonequilibrium molecular dynamics
simulations. The obtained rectification, which is of the same order of magnitude as that of the corresponding
one-dimensional lattice, saturates at low values of the aspect ratio W/N , consistent with the already known
behavior of the corresponding heat fluxes of the homogeneous system under analogous conditions. The max-
imum rectification is obtained in the temperature range wherein no rectification could be obtained in other
one-dimensional systems, as well as in the corresponding one-dimensional instance of the model studied herein.
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I. INTRODUCTION

Thermal rectification, i.e., asymmetrical heat flux, is a phe-
nomenon that, although discovered a long time ago [1], only
recently became an interesting research topic, mainly because
of the results obtained by numerical simulations in one-
dimensional (1D) systems of anharmonic oscillators [2–4].
The first theoretical proposal of a thermal device which could
rectify the heat current when the temperature gradient was
reversed consisted of a three-segment nonlinear lattice with
a Morse on-site potential with different parameters in each
segment [5]. However, its gain, defined as the ratio of thermal
fluxes in two opposite directions, was found to be only a factor
of about 2. A later modification of the original model, consist-
ing of a two-segment lattice with a Frenkel-Kontorova (FK)
on-site potential with different parameters and connected with
a harmonic spring, achieved an increase in the gain to a factor
of about 100–200 [6], and when one of the segments was
substituted with a Fermi-Pasta-Ulam (FPU) lattice, a factor of
2000 was achieved [7]. Following this idea of coupled systems
with asymmetric properties there have been recent proposals
of a solid-state device consisting of two juxtaposing materials
with nonuniform thermal conductivities [8] and a model of
an asymmetric network structure composed of two parts with
different topologies [9] to obtain thermal rectification. An-
other theoretically proposed lattice model for controlling heat
current consists of a FPU lattice with a linear mass gradient
along its length [10]. Although this model has a low rectifi-
cation efficiency compared to the aforementioned ones, it has
the advantage of being inspired by the first nanoscopic-sized
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experimental implementation of a thermal rectifying device
constructed from a mass-loaded carbon nanotube reported to
date [11]. Furthermore, since the mass-graded FPU lattice is
a single-segment system, it is easier to implement and avoids
altogether the problem of properly controlling the interfacial
properties, which has been shown to hinder the rectification
efficiency of the aforementioned two- and three-segment 1D
models in the large-system-size limit [12,13]. The idea of em-
ploying a graded property has been further applied to a closed
billiard model with a graded magnetic field along its length
[14], to a chain of elastically colliding, asymmetrically shaped
mass-graded particles [15], and to a graded harmonic lattice
with a quartic on-site anharmonic potential, self-consistent
heat reservoirs, and weak particle interactions [16].

The above works demonstrate the possibility of manipu-
lating heat flow by changing the structure and/or parameters
of a given anharmonic lattice. However, these studies, among
others, are focused on 1D systems. On the other hand, thermal
rectification in three-dimensional (3D) systems has not been
studied to the same extent as in 1D systems, although the
former are closer to both experimental implementations and
practical applications. Along this line a 3D extension of the
aforementioned coupled FK and FPU lattice system has been
performed in both two [17] and three [18] dimensions, with
high rectification efficiencies as in the corresponding 1D case
[7]. Nevertheless, this system works properly as a rectifier
only at low temperatures, and the results so far obtained corre-
spond to very small system sizes. Furthermore, the parameter
optimization needed to obtain high rectification values in the
3D case is not easy due to the large number of parameters
involved.

In this work we perform a 3D extension of the mass-
graded FPU lattice studied previously [10,19,20] inspired by
the scalar 3D implementation of the FPU lattice wherein

2470-0045/2021/104(4)/044135(6) 044135-1 ©2021 American Physical Society

https://orcid.org/0000-0002-9342-7729
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.044135&domain=pdf&date_stamp=2021-10-27
https://doi.org/10.1103/PhysRevE.104.044135


ROMERO-BASTIDA AND LINDERO-HERNÁNDEZ PHYSICAL REVIEW E 104, 044135 (2021)

the validity of Fourier’s law was first verified by means of
nonequilibrium simulations in a 3D system without an on-site
potential [21] and later verified by an equilibrium compu-
tation of the heat current autocorrelation function [22]. The
geometrical simplicity of the employed model allows us to
explore the behavior of thermal rectification in system sizes
comparable to those studied in the latter reference. Consider-
ing sufficiently large system sizes is an important factor to be
taken into account because a divergent thermal conductivity
was observed in previous studies of the 3D FPU lattice when
both small anharmonicity values and small system sizes were
considered [23,24].

The paper is organized as follows: In Sec. II we present
the model system as well as the employed methodology. In
Sec. III we report our results for the rectification of the 3D
FPU lattice and its dependence on various structural parame-
ters. A discussion of the results, as well as our conclusions, is
presented in Sec. IV.

II. MODEL AND METHODOLOGY

We consider a parallelepiped 3D lattice with a scalar dis-
placement field qn defined at each lattice site n = (n1, n2, n3),
where n1 = n2 = 1, . . . ,W and n3 = 1, . . . , N . The mass at
a lattice site n of the system obeys the linear distribution
mn = Mmax − (n3 − 1)(Mmax − Mmin)/(N − 1), where Mmax

(Mmin) is the mass of any oscillator in the leftmost (rightmost)
layer of our system with the condition Mmax �= Mmin; there-
fore, there is a mass gradient along the n3 spatial direction
of the lattice. The value Mmin = 1 is considered hereafter;
if Mmax = Mmin = 1 is taken, then the homogeneous lattice
studied in Ref. [21] is recovered. Two system layers, namely,
those at n3 = 1 and N , are connected to Langevin heat baths;
therefore, the equations of motion for a given oscillator within
the lattice can be written, in terms of dimensionless variables,
as q̇n = pn/mn and

ṗn =
∑

ê

[(qn+ê − qn) + β(qn+ê − qn)3]

+
nL∑

ñ3=1

(
ξ L

n − λL pn
)
δn,ñ

+
N∑

ñ3=N−nR +1

(
ξ R

n − λR pn
)
δn,ñ, (1)

where ñ = (n1, n2, ñ3), ê are the unitary vectors in each of the
three spatial directions, qn are the scalar displacements, and
pn are the conjugate scalar momenta. Since the contribution
of the anharmonic term depends on the average tempera-
ture (see below) of the system [7], it is sufficient to take a
single value in all computations of the anharmonicity param-
eter hereafter reported, and so we chose that employed in
Ref. [21], β = 2. The random force ξ L,R

n at a thermostated site
n obeys the fluctuation-dissipation relation 〈ξ L,R

n (t )ξ L,R
n (t ′)〉 =

2λL,R TL,R mnδ(t − t ′), where TL and TR are the temperatures
of the left and right reservoirs, respectively, with λL,R = 1
being the coupling strength that quantifies the interaction of
the thermostated oscillator with the corresponding reservoir.
Periodic boundary conditions were imposed in the first two
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FIG. 1. Thermal rectification r vs system width W for lateral
lengths of N = 16 (circles), 32 (triangles), 64 (diamonds), and 128
(squares) with Mmax = 10. Open symbols correspond to T0 = 0.1 and
�T = 0.16; filled symbols, to T0 = 5 and �T = 9. Solid lines are a
guide for the eye.

spatial directions and fixed in the last one. The temperatures
of the left and right reservoirs, in terms of the temperature
difference �T = TL − TR and the average temperature of the
system T0 = (TL + TR )/2, were taken as TL,R = T0 ± �T/2.
For TL > TR , i.e., when the hot reservoir is connected to the
heavy end of the lattice, the above equations of motion, (1),
were integrated with a stochastic velocity Verlet algorithm,
and after a transient time of 104-107 dimensionless time units,
the desired temporal averages were computed in the nonequi-
librium steady state of the lattice for a time interval of 107-108

with a time step of 10−2 using an in-house Fortran code run-
ning in an Intel Xeon server. The heat flux Jn from site n to site
n + ê3, where ê3 = (0, 0, 1), is given by Jn = 〈q̇n+ê3 Fn,n+ê3〉,
where Fn,n+ê3 is the force on oscillator n + ê3 due to the
oscillator at site n and 〈· · · 〉 the temporal average. The average
current per bond for �T > 0 is given by

J = 1

W 2N

N−nR −1∑

n3=nL +1

W∑

n1,n2=1

Jn, (2)

which in the above-mentioned configuration of the heat reser-
voirs is denoted J+. The process was then repeated with TL <

TR (�T < 0), i.e., with the heat reservoirs at the two ends
swapped, and likewise the heat flux computed, now denoted
J−. Then the ratio r = J+/|J−| quantifies the rectification
power of the system; r → 1 indicates no rectification, whereas
r → ∞ indicates perfect rectification.

III. RESULTS

A. Rectification dependence on the system’s geometry

In Fig. 1 we plot the rectification efficiency r vs the sys-
tem width W for various lateral system lengths N and two
values of the average temperature T0 . For both temperatures
it is clear that, for any fixed lateral length N , the value
of r increases as we increase W but saturates quickly af-
ter a crossover width value Wc ∼ 16. This behavior is fully
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FIG. 2. (a) Temperature profiles of a 3D mass-graded lattice with
W = 16, T0 = 0.1, and �T = 0.16; the Mmax value is the same as
in Fig. 1. Results for TL > TR (circles) and TL < TR (triangles) are
shown. Solid, dashed, and dotted lines correspond to N = 32, 64,
and 128, respectively. (b) Same as (a), but for T0 = 5 and �T = 9. In
both instances the dashed horizontal lines represent the correspond-
ing T0 values.

consistent with the already known numerical results of the
heat flux J in a homogeneous 3D lattice—which decreases
as W increases but then rapidly saturates to the 3D value for
a very similar Wc—for a homogeneous 3D FPU lattice with
T0 = 1.5 [21]. Now, since we have explored a wider tem-
perature range—unlike the aforementioned reference, which
employed a single average temperature value—from our re-
sults we can infer that, for our mass-graded lattice, the
saturation value of r is strongly dependent on the aver-
age temperature of the system. For T0 = 0.1 rectification is
insignificant, i.e., r ∼ 1.5, whereas for T0 = 5 rectification
saturates at higher values, which nevertheless rapidly decrease
as N increases.

The low r value obtained in the T0 = 0.1 case can be
inferred from the behavior of the temperature profiles for the
forward- and reverse-bias configurations reported in Fig. 2 for
W = 16 and some representative N values employed in Fig. 1.
For the T0 = 0.1 case reported in Fig. 2(a) it is clear that, even
though the spatial symmetry has been broken by the imposed
mass gradient (especially at the left end of the system), the
reflection symmetry with respect to T0 still holds to a large
extent and largely persists for all considered N values; this
behavior is incompatible with a significant rectification fig-
ure. The corresponding profiles for T0 = 5 are presented in
Fig. 2(b). It is now clear that both the spatial and the reflection
(around T0 ) symmetries have been to a large extent reduced,
leading to the higher rectification figures reported in Fig. 1.

Next we explore the relative contribution of low- and high-
frequency phonons to the rectification effect under the same
conditions as in Fig. 2(a). In Fig. 3 we plot the phonon
spectra |τ−1

∫ τ

0
dt q̇i(t ) exp(−iωt )|2 of two oscillators close to
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FIG. 3. (a) Power spectra for an oscillator on the left side, i = 4
(red), and one on the right side, i = 60 (blue), for W = 16 with N =
64, Mmax = 10, T0 = 0.1, �T = 0.16, and TL > TR . (b) Same as (a),
but for TL < TR .

the left (heavy) and right (light) ends of the system in the
low-temperature instance with T0 = 0.1. For the J+ config-
uration depicted in Fig. 3(a) the spectrum of the oscillator
on the left side lies within the low-frequency region. On the
other hand, the right-side spectrum is predominantly con-
centrated in the high-frequency region but, nevertheless, has
an active low-frequency band that increases the frequency
range wherein both spectra overlap, thus favoring the heat
flux in the left-right direction. In both instances the dis-
tinctly discrete structure characteristic of the FPU lattice at
a low temperature/energy is clearly visible. Next, for the J−
configuration depicted in Fig. 3(b) the contribution of the
left-side spectrum is greatly diminished, whereas that of the
right-side spectrum is characterized by a strong activation of
high-frequency phonons. Therefore, the overlap with the left
spectrum is almost suppressed, which in turn leads to the
moderate decrease of ∼30% in J− and the low rectification
figure reported in Fig. 1.

The corresponding phonon spectra for the high-
temperature regime defined by T0 = 5 are presented in
Fig. 4. As can be readily appreciated there are significant
differences worth noting. For the forward-bias instance
plotted in Fig. 4(a) the left-side spectrum is shifted to higher
frequencies. The contribution of the high-frequency phonons
to the right-side spectrum is greatly increased with respect to
the corresponding low-temperature case reported in Fig. 3(a);
furthermore, the power spectrum increases as the frequency
value does so in the whole value range. The overlap of these
spectra is greater than of those presented in Fig. 3, and
therefore there is an appreciable heat flow along the system.
In the reverse-bias configuration [Fig. 4(b)] the right-side
spectrum is more concentrated around high frequencies and
the contribution of each frequency in the considered value
range is greater compared to the corresponding spectrum for

044135-3



ROMERO-BASTIDA AND LINDERO-HERNÁNDEZ PHYSICAL REVIEW E 104, 044135 (2021)

0

1

2

3

4

left  i=4
right i=60

0 0.1 0.2 0.3 0.4 0.5

����
0

5

10

(a)

(b)P
o
w

er
 (

ar
b
. 
u
n
it

s)

J+= 9.5��	
�

J_=-2.8��	
�

FIG. 4. Same as described in the caption to Fig. 3, but for T0 = 5
and �T = 9. (a) TL > TR and (b) TL < TR .

T0 = 0.1; the left spectrum has a much smaller contribution
than the corresponding one in the forward-bias configuration.
These features render the overlap of both spectra insignificant,
which in turn leads to the appreciable decrease of ∼70% in
J− and a higher rectification figure than that obtained in the
low-temperature case.

B. Rectification dependence on model parameters
and system size

In the following we analyze the dependence of the rec-
tification efficiency on other parameters that determine the
behavior of the system. In Fig. 5 we plot r as a function of
the temperature difference �T for the low and high average
temperature values so far employed, two lateral lengths, and
Mmax = 10. An increase in rectification is evident in both in-
stances, independently of the considered average temperature
value. In Fig. 6 we plot r as a function of Mmax for low and
high average temperature values. In both instances it is clear
that by increasing the asymmetry of the system we obtain
an increase in rectification. However, in the former case this
increment is marginal, whereas in the latter it is significant;
it can also be inferred that the rectification tends to saturate
as the asymmetry increases, and thus, at some point, further
increments in Mmax will not result in a significant increment
in r.

As for the dependence of r on the lateral system size N ,
in Fig. 7 we report our results for both high and low average
temperature values. In the former case the decrease in rectifi-
cation is significant for N > 256, but in the latter r remains
almost constant with a very small N dependence over the
studied value range. These results suggest that much longer
simulation times would be needed to observe an appreciable
decrease in rectification akin to that observed in the former
case for larger N values, although such large simulation times
would make it very difficult to study the rectification in sys-
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FIG. 5. (a) Dependence of thermal rectification r on temperature
difference �T for two lateral lengths N , 32 (circles) and 64 (trian-
gles), both with W = 16, Mmax = 10, and T0 = 0.1. (b) Same as (a),
but for T0 = 5. Solid lines are a guide for the eye.

tems larger than those depicted in Fig. 7. Nevertheless, with
the available data it is clear that the rectification efficiency for
both sets of conditions is comparable for N < 500.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have proposed a thermal rectifier based
on a 3D mass-graded FPU lattice formerly employed to verify
the validity of Fourier’s law in a system without an on-site
potential [21]. Our first results seem to indicate that the
behavior is very similar to that of the corresponding 1D lat-
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FIG. 6. (a) Thermal rectification r as a function of the largest
mass Mmax for N = 32 (circles) and N = 64 (triangles), both with
W = 16. Open symbols correspond to T0 = 0.1 and �T = 0.16,
whereas filled ones correspond to T0 = 5 and �T = 9. Solid lines
are a guide for the eye.
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FIG. 7. Thermal rectification r as a function of the lateral length
N for W = 16 and Mmax = 10. Circles correspond to T0 = 0.1 and
�T = 0.16; triangles, to T0 = 5 and �T = 9. Solid lines are a guide
for the eye.

tice, especially in the fact that the obtained rectification is
very small [25]. It is worth noting some interesting features
of the shape of the temperature profiles depicted in Fig. 2:
For T0 = 0.1 the forward-bias profile is concave downwards
along the entire length of the sample, whereas the profile
corresponding to backward bias is concave downwards in the
half in contact with the hot reservoir and concave upwards
in the other half; this behavior indicates that the tempera-
ture gradient is nonmonotonic as a function of the position
along the sample. Strong temperature jumps can be appre-
ciated in the heavy-loaded extremes of these temperature
profiles. Now, for T0 = 5 the temperature profile for the J+
configuration is monotonic—almost linear—along the bulk
for the smallest system size but becomes concave upward
for the larger ones. The same behavior is also observed in
the J− configuration, except that now the temperature profile
becomes concave downward as the system size is increased.
Now, these results stand in sharp contrast to those previously
obtained with a homogeneous 3D lattice in the forward-bias
configuration, which indicate that, for N 	 1, the profile is
indeed monotonic along the entire length of the system as
in our case but becomes increasingly linear upon decreasing
�T [21]. Our results seem to indicate that the latter features
of the homogeneous lattice are rather fragile under the struc-
tural modifications and boundary conditions herein employed,
which could have implications for the validity of Fourier’s law

for this system under the aforementioned conditions, although
such verification is beyond the scope of the present work.

It is important to recall that the best rectification values
reported in Fig. 1 occur at an average temperature value
T0 = 5, where no rectification is obtained in the 1D case
[10]. An immediate consequence is that our system, despite
its low rectification power, is more robust against a deteri-
oration of the r value over a wider temperature range than
its 1D counterpart, making it suitable for a larger class of
possible applications [4]. This result is also an advance with
respect to those previously obtained with the 3D coupled FK
and FPU lattice system [18], which presents no rectification
whatsoever for temperatures above T0 = 0.12. Nevertheless,
a readily available possibility for increasing the rectification
efficiency of the 3D mass-graded lattice, especially in the
low-temperature regime, could be to implement the recently
proposed nonlinear system-reservoir coupling [26], which has
already been shown to increase the rectification efficiency of
the 1D mass-graded anharmonic FPU lattice [27].

The results in Fig. 1 seem to indicate that there is no reduc-
tion in rectifying efficiency at large W values for the lateral
system sizes N so far considered. This behavior, derived from
the fact that the heat flux attains its 3D behavior for very low
W/N values, is radically different from that of the 3D system
composed of coupled FK and FPU lattices already studied,
wherein high rectification values are obtained, but they slowly
deteriorate as the perpendicular dimensions of the heat flux
increase [18]. From the results so far obtained it would be rea-
sonable to assume that the system will present a nonvanishing
rectification for W/N ∼ 1 values in the thermodynamic limit
N 	 1; however, due to the results in Fig. 7, it could also be
inferred that such rectification would be exceedingly small.
This reduction in r with increasing system size is a recurring
problem for these types of system. However, recently there
have been proposals that address this problem, such as the in-
corporation of next-nearest-neighbor interactions [25] as well
as the inclusion of a ballistic channel placed between two seg-
ments (leads) defined by an on-site potential [28,29], which
could be easily incorporated in the model considered herein
to assess their performance in reducing the aforementioned
problem.
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