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The study of dynamical large deviations allows for a characterization of stationary states of lattice gas
models out of equilibrium conditioned on averages of dynamical observables. The application of this framework
to the two-dimensional random walk conditioned on partial currents reveals the existence of a dynamical
phase transition between delocalized band dynamics and localized vortex dynamics. We present a numerical
microscopic characterization of the phases involved and provide analytical insight based on the macroscopic
fluctuation theory. A spectral analysis of the microscopic generator shows that the continuous phase transition
is accompanied by spontaneous Z2-symmetry breaking whereby the stationary solution loses the reflection
symmetry of the generator. Dynamical phase transitions similar to this one, which do not rely on exclusion
effects or interactions, are likely to be observed in more complex nonequilibrium physics models.
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I. INTRODUCTION

The study of large fluctuations of dynamical observables in
lattice gas models has greatly improved our understanding of
nonequilibrium statistical mechanics, as it has shed light on
rare events in transport phenomena [1–3], has unveiled fluc-
tuation relations of wide applicability [4–9], and has clarified
the origin of many-body effects in classical [10,11] and quan-
tum systems [12–14]. These microscopic analyses have been
complemented with approaches based on the macroscopic
fluctuation theory, where similar phenomena are studied at a
coarse-grained level [15]. Both frameworks rely on statistical
ensembles of trajectories [16,17], for which large deviation
functions play an analogous role to that of thermodynamic
potentials in equilibrium statistical mechanics [18].

Dynamical phase transitions (DPTs), characterized by sud-
den changes in the structure of trajectories that are reflected
in the statistics of dynamical observables, are among the
most interesting phenomena that have been unveiled by these
approaches. DPTs manifest themselves as nonanalyticities in
the large deviation functions and occur not only in systems
driven far from equilibrium but also in equilibrium settings,
even in situations where the statistics of (static) configurations
is trivial [11]. In recent years, the study of DPTs has been
enriched by the application of the generalized Doob trans-
form, which provides the subset of trajectories sustaining a
given rare fluctuation [19–23], allowing for characterization
of dynamical phases.

The study of DPTs is frequently accomplished in one-
dimensional systems [24–38], where the computation of large
deviations for large systems is analytically tractable. Analyses
of higher dimensional settings are challenging, since they
rely on variational procedures and diagonalization problems
whose complexity increases with the spatial dimension. Yet

the statistics of total currents (quantifying the net number of
particles crossing a section that spans the whole system) or
dynamical activities (counting configuration changes in a tra-
jectory) have been studied in two dimensions, where a myriad
of phenomena, including DPTs, have been reported [39–44].
In the case of a two-dimensional random walk on a lattice, the
Doob-transformed dynamics that sustains a given fluctuation
of the total current amounts to the inclusion of a uniform driv-
ing field. This implies that large fluctuations are achieved by
flat, i.e., lacking spatial structure, density, and current fields,
giving rise to current distributions that are trivially Gaussian.
The fluctuations of so-called partial currents, i.e., currents of
particles that move across some “wall” or “slit” that does not
span the whole system, are strikingly different, however, as
we shall show.

In this paper, we consider the statistics of partial currents
across a finite slit of random walks on a square lattice, as well
as its continuum hydrodynamic limit. We find that, despite
the simplicity of the model, there is a DPT underpinning rare
fluctuations of such partial currents, which is continuous and
characterized by a spontaneous breaking of the Z2 reflection
symmetry in the direction of the slit. While small fluctuations
are characterized by the formation of bands, rare fluctua-
tions condense into localized vortices. This highlights how
large fluctuations of partial currents, which are more relevant
than total currents in experimental settings, are created by
nontrivial emerging structures associated with a DPT. Given
the simplicity and generality of the model, similar DPTs are
likely to be found in other systems with exclusion effects
and interactions, and might shed light on intriguing results
previously reported for the two-dimensional simple exclusion
process [45]. Regarding the observability of the DPT under
consideration, it seems realistic that it may be observed in
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experiments such as those devised to study global current
fluctuations in diffusive systems [46,47]. In fact, experimental
work designed to measure the statistics of other local observ-
ables has been successfully carried out in different settings;
see, e.g., Refs. [48,49].

II. MODEL

We consider N random walkers on a two-dimensional
square lattice comprising L × L sites with periodic bound-
ary conditions in the presence of a driving field E =
(Ex, Ey), which induces asymmetric jump rates between
neighboring sites. The stochastic dynamics of each particle
is governed by the master equation ∂t p(n, t ) = −p(n, t ) +∑

m∈νn
�n←m p(m, t ), where p(n, t ) is the probability of

occupation of site n ∈ {1, 2, . . . , L2} at time t , and νn con-
tains its (four) nearest neighbors. Written in operatorial
form, dp(t )/dt = Wp(t ), with the column vector p(t ) =
(p(1, t ), p(2, t ), . . . , p(L2, t ))T (T denotes transposition), and
the entries of the generator Wnn′ = −δnn′ + �n←n′ (�n←n′ = 0
if n′ /∈ νn). The transition rates are

�n←m = e
E·(rn−rm )

L /
(
e

Ex
L + e− Ex

L + e
Ey
L + e− Ey

L
)
, (1)

so that
∑

n �n←m = 1, where rn is the position vector of site
n taking the lattice constant as spatial unit. The observable
of interest is the partial current J across a vertical slit of
length hL (0 < h < 1) placed in the center of the lattice, which
we take as the origin of (Cartesian) coordinates. J quantifies
the number of particles that traverse the slit in the rightward
direction minus those that do in the leftward direction per unit
of time.

III. MICROSCOPIC LARGE-DEVIATION METHODS

The current J follows a probability distribution that adopts
a large deviation form for long times, P(J ) ∼ e−tϕ(J ), with
rate function ϕ(J ), which is non-negative and equal to zero
only for the average current J = 〈J〉 [16]. For simplicity,
in the following we will consider a horizontal field E =
(E , 0) giving rise [cf. (1)] to an average partial current 〈J〉 =
ρ0hL tanh[E/2L], which in the limit of large L becomes 〈J〉 =
ρ0Eh/2. To investigate the fluctuations of J , one would like to
find the rate function ϕ(J ), but this is in general a difficult task,
as we are dealing with events that are exponentially unlikely
in time. Instead, we bias the probability distribution with a pa-
rameter s, obtaining a new distribution Ps(J ) = e−stJP(J )/Zs,
where the dynamical partition function Zs acquires for long
times the following large deviation form,

Zs =
∫

dJ e−stJP(J ) ∼ etθ (s). (2)

The scaled cumulant-generating function (SCGF) θ (s) is re-
lated to the rate function by a Legendre-Fenchel transform,
θ (s) = −minJ [sJ + ϕ(J )] [16]. By choosing the appropri-
ate value of s, we find the fluctuation of interest, J =
〈J〉s (where 〈·〉s is the average over Ps(J )), which in turn
corresponds to (minus) the first derivative of the SCGF,
〈J〉s = −θ ′(s). In general, the pth derivative of the SCGF
yields the partial-current cumulant of the corresponding order
〈〈J p〉〉s: limt→∞ t p−1〈〈J p〉〉s = (−1)p d pθ (s)

dsp [11].

The SCGF can be obtained as the largest eigenvalue of the
so-called tilted generator Ws, whose entries are [16]

Ws
nn′ =

⎧⎪⎨
⎪⎩

e−sWnn′ n ∈ nr and n′ ∈ nl ,

es Wnn′ n ∈ nl and n′ ∈ nr,

Wnn′ otherwise,

(3)

where nr contains all sites that are immediately to the right of
the slit, and nl those that are immediately to the left. Notice
that in Eq. (3), s = 0 corresponds to the original dynamics,
while s < 0 enhances current fluctuations larger than the av-
erage, and the opposite occurs for s > 0. Since Ws is not
symmetric, it has different left and right eigenvectors, which
satisfy lT

s,iW
s = λi(s)lT

s,i and Wsrs,i = λi(s)rs,i, respectively,
where i = 0, 1, . . . , L2 − 1. The eigenvalues λi(s) are ordered
in decreasing magnitude of the real part, and λ0(s) = θ (s).
While it might appear natural that the tilted dynamics gener-
ated by (3) must be a biased random walk, it turns out that such
dynamics is not physical, as Ws does not conserve probability,∑

n Ws
nn′ 
= 0. To recover the physical dynamics sustaining

the fluctuation associated with a given s a transformation is
needed, namely the generalized Doob transform [19–23],

Ws
Doob = LsW

sL−1
s − θ (s)1. (4)

Here Ls is the diagonal matrix whose entries are the com-
ponents of the leading left eigenvector, ls,0, and 1 is the
L × L identity matrix. The Doob generator Ws

Doob is a proper
stochastic (probability conserving) generator,

∑
n Ws

Doob,nn′ =
0. Its eigenvalues are λD

i (s) = λi(s) − θ (s), with left eigen-
vectors lD

s,i = L−1
s ls,i and right eigenvectors rD

s,i = Lsrs,i. The
largest (zero) eigenvalue is associated with the stationary state
ps

stat = rD
s,0, Ws

Doobps
stat = 0 [50]. The Doob generator (4) pro-

vides the stochastic process whose long-time statistics of J is
given by Ps(J ).

For one random walk sustaining the fluctuation J , the
density and current fields are thus given by ps

stat(n) (which
are the entries of ps

stat) and js(n) = ( js
x(n), js

y(n)). The latter
satisfies

∑
n∈nl

js
x(n) = J and can be obtained from the dif-

ference between the probability fluxes of two adjacent sites,
js
α (n) = ps

stat(n)Ws
Doob,mn − ps

stat(m)Ws
Doob,nm, where m is the

right (upper) neighbor of n for α = x (α = y). For N particles,
the density field, namely the average number of particles per
site, is just ρs(n) = N ps

stat(n), and the current field is js(n) =
Njs(n). The SCGF must also be multiplied by N , as can be
seen from the stochastic independence of different random
walks, which yields ZN

s as the dynamical partition function,
Zs being the one-particle partition function (2).

IV. MICROSCOPIC ANALYSIS OF DYNAMICAL REGIMES

In Figs. 1(a) and 1(b), we provide a first glimpse of the
fluctuations of the partial current J in a system of linear size
L = 32 with a slit of relative length h = 1/2 under a field
of strength E = 5. In the main panel of Fig. 1(a), we show
the (rescaled) SCGF L2θ (s) and the corresponding current
fluctuation, L2〈J〉s for different values of the biasing field s.
Since N = ρ0L2, where ρ0 is the total density, we represent
θ (s) and derived quantities multiplied by L2, which corre-
sponds to fixing the density to ρ0 = 1, and will be useful in
the comparison of results for different size L later. When a
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FIG. 1. Microscopic and macroscopic large-deviation analysis of the partial current statistics in the two-dimensional random walk.
(a) (Main) Rescaled SCGF L2θ (s) (green circles) and average partial current L2〈J〉s (magenta squares) for linear size L = 32, relative slit
length h = 1/2 and field strength E = 5. (Inset) Density field ρs(n) (gray color map, darker color indicates a larger number of particles) and
current field js(n) (blue arrows) for s = 0 (natural dynamics). The slit is highlighted in red. (b) Density field ρs(n) and current field js(n) for
s = −1 (corresponding to L2〈J〉s = 2.42), s = −3 (L2〈J〉s = 13.09), s = 1 (L2〈J〉s = 0.23), and s = 3 (L2〈J〉s = −20.33), with format as in
the inset of panel (a). (c) Macroscopic fluctuation theory functional for the flat solution Gflat(J ), the inner-band solution Gi.b.(J ), the outer-band
solution Go.b.(J ), and the vortex solution Gvort. (J ). The minimum value among them corresponding to each J , denoted Gmin.(J ), is also shown,
as well as its convex envelope GMaxw.(J ). See text for definitions and the Appendices for details.

comparison is made for a fixed number of particles N instead,
we shall focus on one-particle quantities (N = 1), but then of
course the density will vary as ρ0 = 1/L2.

For s = 0, the density and the current fields are uniform,
see inset of Fig. 1(a), and the partial current is L2〈J〉s=0 =
〈J〉 = 1.25, which corresponds to the expression given above
for ρ0 = 1. For s > 0, L2〈J〉s decreases monotonically slowly
up to s ≈ 2, and then more rapidly, while a similar but oppo-
site behavior is found for s < 0. The density and current fields
{ρs(n), js(n)} for s 
= 0 are displayed in Fig. 1(b).

For negative tiltings, s < 0, the density becomes higher in
the horizontal band crossing the slit, i.e., y ∈ (−hL/2, hL/2),
as illustrated for s = −1. This regime, which will be referred
to as the inner band, persists for a range of negative values
of s, with a spatial decay for |y| > hL/2 that becomes more
abrupt as the absolute value of s increases. The band is not
perfectly uniform in the horizontal direction, however, as there
is a tendency for particles to populate the edges of the slit and
to move cyclically around them—an effective way to increase
the partial current J—which is also enhanced as the absolute
value of s increases. Beyond a certain point, the band practi-
cally disappears, and the (large) current is almost completely
sustained by vortices localized at the edges, as shown for
s = −3. Such cyclic, localized behavior, which has recently
been observed in random walks on general graphs [51] and the
zero-range process on a diamond lattice [52], presents some
similarities to the vortices of the two-dimensional simple ex-
clusion process [45].

For positive and moderately large values of s, the relatively
low J is achieved by forming a band that avoids passing
through the slit, the bulk of the density showing in the region
where |y| > hL/2, which we will call the outer band, and
is illustrated for s = 1. But also here there is a tendency of
particles to populate the edges of the slit and move in circles
(this time in the opposite direction, so the current decreases
with the adopted sign convention). For sufficiently large s, as
illustrated for s = 3, the band again practically disappears,

leading to a vortex dynamics of opposite vorticity to that
observed for negative s. This phenomenology will be shown
to be associated with a DPT to a localized state. But before
addressing its nature, a macroscopic analysis will provide
further insight into the dynamical regimes at play.

V. MACROSCOPIC ANALYSIS OF DYNAMICAL REGIMES

Following the macroscopic fluctuation theory, which stud-
ies fluctuations of dynamical observables at the macroscopic
(coarse-grained) level [15], we consider the probability of any
trajectory of duration T given by the density and current fields
{ρ(r, t ), j(r, t )}T

0 . For driven diffusive systems, such prob-
ability adopts a large-deviation form P[{ρ(r, t ), j(r, t )}T

0 ] ∼
e−L2I[ρ,j], with the rate functional

I[ρ, j] =
∫ T

0
dt

∫
�

dr
[j + D(ρ)∇ρ − σ (ρ)E]2

2σ (ρ)
. (5)

For a random walk, the diffusivity is D(ρ) = 1/4 and the
mobility σ (ρ) = ρ/2 [53]. A diffusive rescaling of the
microscopic variables, whereby time is rescaled by 1/L2

and space by 1/L, so that the process takes place over
� = [−1/2, 1/2] × [−1/2, 1/2], is applied. From Eq. (5),
we can calculate by contraction the probability of any
observable depending on the trajectory. Thus the probabil-
ity of having a current J through the slit reads P(J ) ∼
exp{−T L2G(J )}, with G(J ) = limT →∞ 1

T min∗
{ρ,j}T

0
I[ρ, j].

Here ∗ means that the minimization is subject to the con-
straints J = T −1

∫ T
0 dt

∫ h/2
−h/2 dy jx(0, y; t ) and ∂tρ = −∇ · j

(continuity equation). Notice that the probability is maxi-
mized [G(J ) is zero] when j(r, t ) equals the macroscopic
average current j = −D(ρ)∇ρ + σ (ρ)E.

Since solving the two-dimensional spatiotemporal varia-
tional problem for density and current fields such as those
displayed in Fig. 1(b) is a daunting task, we shall focus on
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a few idealized ansätze for {ρ(r), j(r)}T
0 . Both their time

independence and their structural features are based on the
previous microscopic results. Specifically, we consider four
dynamical regimes, each one leading to a different form of
G(J ): (i) a flat solution (uniform density and current fields)
Gflat(J ), (ii) an inner band solution (uniform density over the
region of � where |y| < h/2) Gi.b.(J ), (iii) an outer band so-
lution (uniform density over the region of � where |y| > h/2)
Go.b.(J ), and (iv) a vortex solution Gvort.(J ), all of which are
discussed in the Appendices. Figure 1(c) shows Gmin.(J ) =
min{Gflat(J ), Gi.b.(J ), Go.b.(J ), Gvort.(J )}, which maximizes
the probability at each J , yielding

Gmin.(J ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Gvort.(J ) J < 0,

Go.b.(J ) 0 � J < 〈J〉,
Gflat(J ) J = 〈J〉,
Gi.b.(J ) 〈J〉 < J < J̃,

Gvort.(J ) J̃ � J.

(6)

While the flat solution maximizes the probability for J = 〈J〉,
its Gaussian fluctuations around 〈J〉 are suppressed exponen-
tially in time with respect to those of the bands: Immediately
to the right of 〈J〉 the dominant regime is the inner band,
while the outer band prevails for values of J between zero and
〈J〉. For larger fluctuations, Gvort.(J ) dominates for J < 0—
counterclockwise rotation in the upper edge and clockwise
rotation in the lower edge of the slit—and also for J > J̃—
with vortices rotating in the opposite directions—where J̃ is
to an extent dependent on the choice of a cutoff radius (see the
Appendices).

While a Legendre-Fenchel transformation of Gmin.(J )
yields the macroscopic SCGF of Fig. 2(b) (red discontinuous
line; see the discussion below), an inverse Legendre-Fenchel
transformation applied on such SCGF gives the convex enve-
lope GMaxw.(J ), which, unlike Gmin.(J ) itself, is convex; see
Fig. 1(c). This Maxwell construction highlights a coexistence
between dynamical phases [16], namely, that of vortices and
bands, specifically the outer band for J < 〈J〉 and the inner
band for J > 〈J〉. Though this is broadly in agreement with
the microscopic results of Fig. 1(b), it should not be taken as
indicative of the existence of a first-order DPT, as Gmin.(J ) is
restricted to a few idealized cases, and is thus an upper bound
of the actual macroscopic functional: Such coexistence may
well approximate dynamical regimes not fully describable in
terms of the ansätze under consideration.

VI. MICROSCOPIC ANALYSIS OF THE DPT

In order to elucidate the nature of the DPT, we again focus
on the microscopic SCGF θ (s). In Fig. 2(a), we show the
(rescaled) SCGF L2θ (s) for different linear sizes ranging from
L = 12 to 200. A good collapse of L2θ (s) curves is found for
|s| � 2, which marks the onset of the DPT, as can be better
appreciated in Fig. 2(b), which also includes the macroscopic
SCGF discussed in the previous section (red discontinuous
line). Such an agreement, however, does not exist for |s|
larger than critical, as L2θ (s) then grows without bound as
L increases, yielding a rate function ϕ(J ) that becomes linear
[qualitatively similar to GMaxw.(J ) in Fig. 1(c)], and therefore

FIG. 2. Characterization of the DPT: SCGF and average current.
(a) Density-rescaled SCGF L2θ (s). (b) Same content as in panel
(a) but enlarged around small values of |s| and also including macro-
scopic SCGF (red discontinuous line). (c) SCGF θ (s). (d) Average
current 〈J〉s multiplied by L2 (main panel), by L/h (top right inset)
and without rescaling (lower inset). See text for justifications of
rescalings. In all panels, the colors and symbols represent different
system sizes L according to the legend in panel (a).

an asymptotically exponential distribution P(J ) [16]. Never-
theless, a good collapse is found beyond the critical points if
the rescaling of θ (s) by L2 is not performed (i.e., if the number
of particles N , instead of the density ρ0, is kept fixed), as
shown in Fig. 2(c). Similar conclusions can be drawn from the
average current 〈J〉s, which is shown in rescaled form L2〈J〉s

in the main panel of Fig. 2(d). After further normalization by
the slit length hL, L〈J〉s/h, displayed in the upper inset, shows
a good collapse below the critical points, but certainly not for
larger absolute values of s. There the collapse is observed in
the unrescaled form 〈J〉s (for fixed particle number N , without
normalizing by the slit size), as shown in the lower inset.

We conclude that a collapse for different sizes L occurs
below the critical point for fixed density ρ0, while on the other
side of the transition it is the number of particles N that must
be kept constant. Viewed from the perspective of the idealized
regimes of the previous section, the current associated with
band dynamics is proportional to ρ0, while that of localized
vortices is proportional to the number of particles N .

The features of the DPT can be inferred from
the spectral properties of the Doob generator Ws

Doob
[34,38,54,55], in particular from the analysis of the
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FIG. 3. Characterization of the DPT: spectral gaps and inverse
participation ratio. (a) Rescaled spectral gaps L21(s) (continuous
lines, large symbols) and L22(s) (dotted lines, small symbols); see
text for definitions. (b) Inverse participation ratio, without (main
panel) and with rescaling (inset). As L increases, the range of s
explored decreases, due to convergence issues of the eigenvalue
algorithm. In all panels, the colors and symbols represent different
system sizes L according to the legend in Fig. 2(a).

spectral gaps i(s) = θ (s) − Re[λi(s)] = −Re[λD
i (s)]

(by definition 0(s) = 0). The first two, 1(s) (usually
referred to as the spectral gap) and 2(s), are shown in
rescaled form (multiplied by L2 so as to fix the density,
ρ0 = 1) in Fig. 3(a). While L22(s) only grows with |s|, we
observe that the gap L21(s) closes at a certain value, which
accumulates around the critical region at the onset of the
DPT. As λD

1 (s) is real across the range of s considered (unlike
λD

2 (s), which is complex for some values of s), the closing
of the gap means that the stationary distribution becomes
degenerate for |s| above the critical value in the limit L → ∞.
For |s| below the critical value, the stationary probability
ps

stat = rD
s,0 is unique and one can check numerically that it

has a reflection symmetry y → −y also possessed by the
generator: U Ws

DoobUT = Ws
Doob, U ps

stat = ps
stat, where U is

the permutation matrix that maps the lattice site at (x,±y)
into the one at (x,∓y). For the argument that follows, it is
useful to decompose the stationary probability into its upper
and lower halves, as ps

stat = (ps
↑ + ps

↓)/2, where ps
↑ (ps

↓)

is zero for y < 0 (y > 0); both ps
↑ and ps

↓ are normalized,
and U ps

↑ = ps
↓ (U ps

↓ = ps
↑). Beyond the critical point, the

right eigenspace (corresponding to the space of stationary
distributions) is spanned by rD

s,0 = (ps
↑ + ps

↓)/2 (which by
continuity shares the symmetries of ps

stat below the critical
value), and an orthogonal stationary state numerically found
to be rD

s,1 = (ps
↑ − ps

↓)/2, for which U rD
s,1 = −rD

s,1. More
conveniently, one can use ps

↑ and ps
↓, which concentrate

(more sharply as |s| is increased) around the upper and lower
edges of the slit, respectively, as a basis to form possible
stationary distributions. A particle starts from an initial site,
moves toward one of the slit edges, and remains there, as
the probability of making the journey to the other edge is
vanishingly small for L → ∞. The Z2 reflection symmetry is
spontaneously broken.

To conclude our exploration of the DPT, we use the in-
verse participation ratio (IPR) as an order parameter. This is
defined as the sum of the squared probabilities of occupation
in the stationary state over all sites, IPR(s) = ∑

n[ps
stat(n)]2,

and is widely employed in the characterization of localized
states [56]. In idealized cases where the probability is evenly
distributed over N sites and is zero outside, the IPR is
1/N . For s = 0 (flat solution), IPR(0) = 1/L2, as shown in
Fig. 3(b). In the case of infinitely sharp bands, we would
have IPR = 1/hL2 for the inner band [IPR = 1/(1 − h)L2

for the outer band], and therefore band dynamics correspond
to IPRs between 1/L2 and 1/hL2 [1/(1 − h)L2], and larger
values must arise from localized vortices. Accordingly, we
set max{1/hL2, 1/(1 − h)L2} as a threshold, then use ps

stat
to calculate the IPR for values that are smaller than such
threshold, and otherwise base the calculation of the IPR on
ps

↑ = rD
s,0 + rD

s,1 (or ps
↓ = rD

s,0 − rD
s,1, as they give equivalent

results), as a particle is trapped in one slit edge. The argument
works in the limit of large L, but we use our finite-size results
as approximations to that limit. The IPR shown in the main
panel of Fig. 3(b) reaches a small and stable value for s below
the critical point. As expected from the characteristics of band
dynamics, multiplication of the IPR by L2 in this range of s
leads to an excellent collapse; see the inset of Fig. 3(b). For
large values of |s|, the IPR approaches a constant value of 1/4
as |s| → ∞. The latter (N = 4) corresponds to the existence
of a vortex around an edge slit, where the loop comprises four
lattice sites. If instead of the stationary state ps

↑ (or ps
↓) we

naively take rD
s,0, the IPR approaches a value of 1/8 for large

|s|, corresponding to the existence of two vortices at the edges
(N = 8), as in the right panels of Fig. 1(b), but sharper.

VII. CONCLUSIONS

We have shown that the two-dimensional random walk
conditioned on partial currents undergoes a DPT between
delocalized bands and localized vortices, where particles con-
densate around the slit edges and a Z2 reflection symmetry
is spontaneously broken. In principle, this DPT should be
observable in experiments based on driven diffusive systems
via an accurate characterization of the probability distribution
of partial currents. While our analyses assume the presence of
a sizable driving field, a change of field strength does not lead
to any qualitatively different behavior. For zero field, however,
we find that the band regime is absent from the dynamics.
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Intriguing localization phenomena have also been observed
in other random walks, e.g., in the maximal entropy random
walk on a lattice [57], which can also be understood as the
result of conditioning on a particular observable [58], or in
random walks on complex networks, where some DPTs have
been also investigated [59]. Many interesting questions re-
main open, however, regarding, for example, the existence of
similar localization effects when other processes (including
exclusion effects or interactions) or number of spatial dimen-
sions are considered. Whether such effects are relevant in
dissipative quantum walks [60,61] (where the spectral theory
of Liouvillians can be brought to bear [55,62]) is also an
interesting question, as an answer in the affirmative might
stimulate a search for potential relationships to well-known
localization effects in quantum mechanics [63,64].
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APPENDIX A: MACROSCOPIC FLUCTUATION THEORY
OF THE TWO-DIMENSIONAL RANDOM WALK

The macroscopic fluctuation theory (MFT) is a powerful
framework for the study of dynamical fluctuations of driven
diffusive systems [15]. When such processes take place over a
square region of linear size L, the probability of a trajectory of
duration T , {ρ(r, t ), j(r, t )}T

0 , adopts a large deviation form

P[ρ(r, t ), j(r, t )] ∼ e−L2I[ρ,j], (A1)

where the so-called rate functional is as follows (the spa-
tiotemporal dependence of ρ and j is omitted for ease of
notation)

I[ρ, j] =
∫ T

0
dt

∫
�

dr
[j + D(ρ)∇ρ − σ (ρ)E]2

2σ (ρ)
. (A2)

The spatial coordinates have been rescaled so that r ∈ � =
[−1/2, 1/2] × [−1/2, 1/2] (i.e., a square region of unit area
with the origin (0,0) at its center). The probability is maxi-
mized around the macroscopic average current, which in the
presence of a uniform driving field E is j = −D(ρ)∇ρ +
σ (ρ)E, where the diffusivity D(ρ) and the mobility σ (ρ) are
in general functions of the density field.

For the particular case of a random walk, D = 1/4 and
σ (ρ) = ρ/2, the functional can be expanded as

I[ρ, j] =
∫ T

0
dt

∫
�

dr

[
j + 1

4∇ρ − 1
2ρE

]2

ρ
=

∫ T

0
dt

∫
�

dr
j2 + 1

16 (∇ρ)2

ρ
+ E2

4

∫ T

0
dt

∫
�

dr ρ

+ 1

2

∫ T

0
dt

∫
�

dr
j · ∇ρ

ρ
−

∫ T

0
dt E ·

(∫
�

dr j + 1

4

∫
�

dr ∇ρ

)
. (A3)

As we assume the system has periodic boundary conditions, the last term is
∫
�

dr ∇ρ = 0, while the following integral can be
simplified using integration by parts,∫ T

0
dt

∫
�

dr
j · ∇ρ

ρ
=

∫ T

0
dt

∫
�

dr j · ∇ ln ρ =
∫ T

0
dt

∫
�

dr ∇ · (j ln ρ) − (∇ · j) ln ρ =
∫ T

0
dt

∫
�

dr (∂tρ) ln ρ

= A(T ) − A(0), (A4)

where we have taken into account that the density and current
fields are coupled via the continuity equation ∂tρ + ∇ · j = 0.
The function A(t ) = ∫

�
dr(ρ ln ρ − ρ) is bounded in time,

which distinguishes the corresponding term in I[ρ, j] from the
other terms, as they are all time extensive. Considering that the
system is closed with a fixed number of particles N = ρ0L2,
by definition ρ0 = ∫

�
dr ρ. Together with the definition of

a global current JG = ∫
�

dr j, all of this leads to a simpler
expression for the functional,

I[ρ, j] =
∫ T

0
dt

∫
�

dr
j2 + 1

16 (∇ρ)2

ρ
+ E2T ρ0

4

+ 1

2
(A(T ) − A(0)) − E ·

∫ T

0
dt JG. (A5)

We next calculate by contraction from the MFT functional
(A5) the probability of having a current J through the slit,
which reads

P(J ) ∼ exp{−T L2G(J )}, (A6)

with G(J ) = limT →∞ 1
T min∗

{ρ,j}T
0

I[ρ, j]. Here ∗ means
that the minimization is subject to the constraints
J = T −1

∫ T
0 dt

∫ h/2
−h/2 dy jx(0, y; t ) and ∂tρ = −∇ · j. This

variational problem will be applied to the different dynamical
regimes discussed in the main text, which are idealizations of
the density and current fields observed in the stationary states
of the Doob-transformed microscopic dynamics. Sketches
of these idealized regimes are provided in Fig. 4. They all
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FIG. 4. Dynamical regimes for the two-dimensional random walk conditioned on different values of the partial current J across a slit
(vertical strip in the center). (a) Flat profile. (b) Inner band. (c) Outer band. (d) Vortices. These regimes are idealizations of those observed in
the microscopic analysis based on the Doob transform.

correspond to time-independent density and current fields, for
which the rescaled functional can be written as

G(J ) = min∗
{ρ,j}

[∫
�

dr
j2 + 1

16 (∇ρ)2

ρ
+ E2ρ0

4
− E · JG

]
.

(A7)

The third term in (A5) has been neglected, since the discus-
sion focuses on the long-time limit, and, as we pointed out
before, limT →∞(A(T ) − A(0))/T = 0.

Different forms of the density and current fields condi-
tioned on a given partial current J will be evaluated in each
particular regime, always focusing on situations where E is
horizontal and points to the right, E = E x̂. When a parameter
characterizes an idealized regime, as embodied in a given
ansatz for {ρ(r), j(r)}, the parameter choice that minimizes
G(J ) for that value of J is the one that is (overwhelmingly)
more likely to be observed. When different ansätze, each one
individually optimized by the appropriate parameter choice,
are compared for a given J , the one that yields a minimum
value of G(J ) is the one that would be observed in practice.

APPENDIX B: FLAT SOLUTION

For a given partial current J across a slit of length h, a flat
density profile that sustains a uniform current, see Fig. 4(a),
takes the following values:

ρ = ρ0, j = J

h
x̂. (B1)

The time-rescaled MFT functional (A7) takes a simple
quadratic form:

Gflat(J ) = J2

h2ρ0
+ E2ρ0

4
− EJ

h
= ρ0

(
J

hρ0
− E

2

)2

. (B2)

The fluctuations around the mean value 〈J〉 = Ehρ0

2 are thus
Gaussian, with a variance that decreases as 1/T ,

Pflat(J ) ∼ exp

[
−(J − 〈J〉)2

/(
h2ρ0

L2T

)]
. (B3)

APPENDIX C: INNER BAND SOLUTION

We next analyze the case when the density profile forms
a horizontal band that decays for |y| > h/2, and the current
is proportional to the density. For simplicity, we assume an

exponential decay:

ρ(x, y) =

⎧⎪⎨
⎪⎩

C e−(y−h/2)/� y > h/2

C |y| � h/2, j(x, y) = j0ρ(x, y)x̂.

C e(y+h/2)/� y < −h/2
(C1)

In this case, there is one parameter in the solution, which is the
characteristic length of the exponential decay �. In Fig. 4(b),
this regime is illustrated for � � h; there the density profile as
a function of y approaches a step function. Both density and
current are invariant under translations along the horizontal
axis.

In order to determine C, we perform the integral of the
density over the square region � and equate it to ρ0:

ρ0 =
∫ 1/2

−1/2
dyρ(x, y) = C(2�(1 − e−(1−h)/2�) + h)

⇒ C = ρ0

2�(1 − e−(1−h)/2�) + h
. (C2)

In the following, it will be useful to divide the integrated
density into two contributions, namely, that corresponding to
particles passing through the slit ρin(�), which is decreasing
in �, and that corresponding to particles moving across the
region where |y| > h/2, ρout(�), which increases with �,

ρin(�) = Ch = ρ0h

2�(1 − e−(1−h)/2�) + h
,

ρout(�) = ρ0 − ρin(�) = ρ02�(1 − e−(1−h)/2�)

2�(1 − e−(1−h)/2�) + h
. (C3)

As for the proportionality constant j0, it can be obtained
from the fact that the current integrated over the slit is by
definition J:

J =
∫ h/2

−h/2
dy j(x, y) = j0ρin(�), j0 = J

ρin(�)
. (C4)

The rate functional (A7) thus takes the form

Gi.b.(J, �) =
∫

�

dr
j2
0ρ

2 + 1
16 (∂yρ)2

ρ
+ E2ρ0

4
− E j0ρ0

= ρ0

(
J

ρin(�)
− E

2

)2

+ ρout(�)

16�2
. (C5)

The first term quantifies the cost of having a density ρin(�)
different from 2J/E , and the second that of forming a nonuni-
form density field. The flat solution previously discussed
corresponds to ρin(�) = ρ0h, and hence the first term is min-
imized for J = Ehρ0/2 = 〈J〉 in that case. As the density is

044134-7



GUTIÉRREZ AND PÉREZ-ESPIGARES PHYSICAL REVIEW E 104, 044134 (2021)

FIG. 5. Macroscopic functionals for the inner band, the outer band, and the vortex solution as functions of the characteristic length � and
the partial current J . (a) Inner-band functional Gi.b.(J, �). (b) Outer-band functional Go.b.(J, �). (a) Vortex functional Gvort. (J, �). In each case,
the location of the minimum value of the functional for each J is shown as a gray continuous line. In panels (a) and (b), the red discontinuous
line corresponds to the average partial current 〈J〉.

then uniform, � → ∞, the second term proportional to ρout(�)
also vanishes.

Of all possible band profiles, which are characterized by
different values of the characteristic length �, the one that
is most likely to be observed for a given J is the one that
minimizes the functional. For fluctuations around the mean
value, we have two possibilities:

(1) If J > 〈J〉, a band is formed whose vertical profile is
steeper as J increases, as, in order to minimize the first term,
we need some ρin(�) > ρ0h, which requires having a finite
value of � (nonflat solution), so ρout(�) < ρ0(1 − h).

(2) If 0 < J � 〈J〉, we still have a flat solution, as ρ0h is
the lowest value that ρin(�) can achieve, and moreover the
second term vanishes for such flat solution, � → ∞.

For J > 〈J〉, there is an effective competition between
the first and the second terms in Eq. (C5), as the second,
ρout(�)/16�2, includes the cost of creating a nonuniform den-
sity profile, and is a decreasing function of �. In the limit of
very large J , the first term clearly dominates and the system
adopts an abrupt vertical profile, � ≈ 0, but intermediate cases
between 〈J〉 and such large values of J must be determined
from a minimization of Gi.b.(J, �).

Given in terms of �, Eq. (C5) is too cumbersome for a
convenient analytical minimization. Instead, the values of �

that minimize this function have been found numerically. In
Fig. 5(a), we provide a surface plot showing Gi.b.(J, �) as a
function of J and � for E = 5 and h = 1/2. The values of
� where the minimum is achieved for each J are displayed
as a gray continuous line. As expected, it turns out that for
0 < J � 〈J〉 the minimum is achieved for � → ∞, and for
J > 〈J〉 the position of the minimum gets closer and closer to
zero as J increases. 〈J〉 is highlighted by a red discontinuous
line.

APPENDIX D: OUTER BAND SOLUTION

We next consider the case when the density profile forms a
horizontal band that avoids passing through the slit, which is

constant for |y| > h/2 and decays for |y| � h/2, see Fig. 4(c),
where this regime is illustrated for � � h. As in the previous
case, the current is taken to be proportional to the density. For
simplicity, we again assume an exponential decay:

ρ(x, y) =

⎧⎪⎨
⎪⎩

C y > h/2
C

1+e−h/� (e(y−h/2)/� + e−(y+h/2)/�) |y| � h/2

C y < −h/2

,

j(x, y) = j0ρ(x, y)x̂, (D1)

where the prefactor of the middle term has been chosen so
as to ensure continuity. In order to determine C, we need to
normalize the integral of the density over the square region �

and equate it to ρ0:

ρ0 =
∫ 1/2

−1/2
dyρ(x, y) = C

(
1 − h + 2� tanh

(
h

2�

))

⇒ C = ρ0

1 − h + 2� tanh
(

h
2�

) . (D2)

As in the previous case, it will be useful to divide the inte-
grated density into two contributions that corresponding to
particles passing through the slit ρin(�), which is now increas-
ing in �, and that corresponding to particles moving across the
region where |y| > h/2, ρout(�), which decreases with �,

ρout(�) = C(1 − h) = ρ0(1 − h)

1 − h + 2� tanh
(

h
2�

) ,

ρin(�) = ρ0 − ρout(�) = ρ02� tanh
(

h
2�

)
1 − h + 2� tanh

(
h
2�

) . (D3)

As for the proportionality constant j0, it can be determined
from the fact that the current integrated over the slit is by
definition J:

J =
∫ h/2

−h/2
dy j(x, y) = j0ρin(�), j0 = J

ρin(�)
. (D4)

The rate functional is in this case

Go.b.(J, �) =
∫

�

dr
j2
0ρ

2 + 1
16 (∂yρ)2

ρ
+ E2ρ0

4
− E j0ρ0 = ρ0

(
J

ρin(�)
− E

2

)2

+ ρ0
(

sinh
(

h
2�

) + arctan e−h/2� − arctan eh/2�
)

4�eh/2�(1 + e−h/�)
(
1 − h + 2� tanh

(
h
2�

)) .

(D5)
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Again, the first term quantifies the cost of having a density
ρin(�) different from 2J/E , and the second that of form-
ing a nonuniform density field. The flat solution is given
by ρin(�) = ρ0h, and hence the first term is minimized for
J = 〈J〉 in that case. This corresponds to a uniform density,
� → ∞, for which the second term also vanishes.

Of all possible band profiles, which are characterized by
different values of the characteristic length �, the one that
is most likely to be observed for a given J , is the one that
minimizes the functional. For fluctuations around the mean
value, we have two possibilities:

(1) If 0 < J < 〈J〉, a band is formed whose vertical profile
is steeper as J decreases from 〈J〉, at least up to certain value
of J (more about this later), as, in order to minimize the first
term, we need some ρin(�) < ρ0h, which requires having a
finite value of � (nonflat solution), so ρout(�) > ρ0(1 − h).

(2) If J � 〈J〉, we have a flat solution, as ρ0h is the highest
value that ρin(�) can achieve, and moreover the second term
vanishes for such flat solution, � → ∞.

For 0 < J < 〈J〉 there is an effective competition between
the first and the second terms in Eq. (D5), as the second
includes the cost creating a nonuniform density profile, and
is a decreasing function of �. As J decreases from the average
value 〈J〉, the first term tries to adapt to a smaller ρin(�), so �

becomes smaller, at the cost of creating a nonuniform profile,
which contributes to the second term of Go.b.(J, �). However,
when J gets very small, deviations around the average in the
first term become less important than the second term, and
therefore we again obtain a flat solution, � → ∞.

The values of � that minimize Go.b.(J, �) have been found
numerically. In Fig. 5(b), we provide a surface plot showing
Go.b.(J, �) as a function of J and � for E = 5 and h = 1/2. The
values of � where the minimum value is achieved for each J
are displayed as a gray continuous line. As expected, it turns
out that for J > 〈J〉 the minimum is always achieved for � →
∞, and for 0 < J � 〈J〉 the value of � where the minimum
is achieved has the nonmonotonic behavior discussed in the
previous paragraph. 〈J〉 is highlighted by a red discontinuous
line.

APPENDIX E: VORTICES

Finally, we consider a solution where vortices form around
the edges of the slit, see Fig. 4(d), which as mentioned in the
main text resembles a configuration previously described in
the two-dimensional simple exclusion process conditioned on
partial currents [45]. Due to the rotational symmetry of the
solution, the density is best represented in polar coordinates,
by some decreasing function of the radial distance r from the
center of the vortex. We again assume the density profile to be
of exponential form due to its simplicity:

ρ(r, ϕ) =
{

0 r < r̃,

Ce−(r−r̃)/� r � r̃.
(E1)

Again the steepness of the profile is given by the character-
istic length �. The role played by the cutoff radius r̃ will be
discussed later. The normalization in this case is given by

ρ0 = 2
∫ 2π

0
dϕ

∫ ∞

r̃
dr r C e−(r−r̃)/� = 4πC�(r̃ + �) ⇒ C = ρ0

4π�(r̃ + �)
. (E2)

The factor of 2 multiplying the integral of the density arises
from the existence of two vortices, each one located in the
vicinity of each of the two edges of the slit. The upper limit
of integration in the integral over r should not exceed h/2,
but at least for � � h the simplification arising from taking
it to infinity is expected to compensate for any slight loss of
accuracy, as we will explain below.

The current at the vortices in the microscopic results was
numerically found to be roughly proportional to the density
divided by r. For simplicity, we assume a strict proportionality
j(r) ∝ ρ(r)/r in our ansatz:

j(r) = j0
ρ(r)

r
ϕ̂ =

⎧⎨
⎩

0 r < r̃,

j0 C e−(r−r̃)/�

r
ϕ̂ r � r̃.

(E3)

The proportionality factor j0 is as usual determined from a
calculation of the partial current through the slit

J = 2
∫ ∞

r̃
dr j(r) = 2 j0Cer̃/��(0, r̃/�)

⇒ j0 = J2π�(r̃ + �)e−r̃/�

ρ0�(0, r̃/�)
, (E4)

where the final expression contains an incomplete gamma
function evaluation.

The rate functional is in this case

Gvort.(J, �) =
∫

�

dr
j2 + 1

16 (∂rρ)2

ρ
+ E2ρ0

4
− E · JG

= J24π2�(r̃ + �)e−r̃/�

ρ0�(0, r̃/�)
+ ρ0

8�2
+ E2ρ0

4
, (E5)

where we have taken into consideration that, due to the vortex
geometry, the total current vanishes JG = 0.

The values of � that minimize Gvort.(J, �) have been found
numerically. In Fig. 5(c), we provide a surface plot showing
Gvort.(J, �) as a function of J and � for E = 5 and h = 1/2.
The values of � where the minimum value is achieved for each
J are displayed as a gray continuous line. We see that the � that
minimizes Gvort.(J, �) decreases as |J| increases. For |J| � 2,
the condition � � h that was assumed before in order to
simplify certain integrals is indeed satisfied. In the figure, we
have set the cutoff r̃ = 0.001, as the qualitative dependence
on � is independent of this choice. As for the quantitative
influence of the cutoff r̃ on the minimum value that is achieved
by Gvort.(J, �) for a given J , it will be discussed next when
the MFT functionals of the four dynamical regimes that have
been considered (that is, flat solution, inner band, outer band,
and vortices) are compared over a range of fluctuations of the
partial current J .
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FIG. 6. Comparison of the MFT functional for the different dynamical regimes under consideration. The MFT functional of the flat solution
Gflat(J ), the inner-band solution Gi.b.(J, �∗(J )), the outer-band solution Go.b.(J, �∗(J )), and the vortex solution Gvort.(J, �∗(J )) are displayed.
The minimum value among them corresponding to each J , which is denoted Gmin.(J ), is also shown, as well as its convex envelope GMaxw.(J ).
Panels (a) and (b) contain the same results with significantly different axis ranges, thus making it possible to inspect different aspects of them
(see text for an explanation). Figure 1(c) displays the same results with yet another choice of axis ranges.

APPENDIX F: COMPARISON OF DIFFERENT
DYNAMICAL REGIMES

In order to determine the most likely form of a fluctuation
away from the mean, J 
= 〈J〉, the functionals correspond-
ing to the different dynamical regimes must be compared.
This includes the flat solution Gflat(J ), the inner-band solution
Gi.b.(J, �∗(J )), the outer-band solution Go.b.(J, �∗(J )), and the
vortex solution Gvort.(J, �∗(J )), where �∗(J ) denotes the value
of � for which each of those functionals are minimized for a
given J , which was highlighted by gray continuous lines in the
different panels of Fig. 5. The dependence on �∗(J ) is omitted
in the main text, as the role played by the characteristic length
� is not discussed there.

A comparison of the different dynamical regimes is
provided in Fig. 6. Aside from the functionals corre-
sponding to the different ansätze, we include the func-
tional that takes the minimum value at each J , Gmin.(J ) =
min{Gflat(J ), Gi.b.(J, �∗(J )), Go.b.(J, �∗(J )), Gvort.(J, �∗(J ))},
and also its convex envelope GMaxw.(J ). While Gmin.(J ), from
which the macroscopic SCGF of Fig. 2(b) has been obtained
via a Legendre-Fenchel transform, maximizes the probability
for each value of J , it is not convex. If the inverse Legendre-
Fenchel transform is performed on the SCGF, we then obtain
GMaxw.(J ), which is convex. This Maxwell construction high-
lights a coexistence between the different dynamical phases
[16].

The two panels of Fig. 6 show essentially the same results,
which were moreover displayed in Fig. 1(c), but the axis
ranges are very different and thus focus on different aspects.
In Fig. 6(a), which is meant to facilitate the comparison be-
tween the different dynamical regimes, we can clearly see that
Gmin.(J ) takes values across the range of J as follows:

Gmin.(J ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Gvort.(J, �∗(J )) J < 0,

Go.b.(J, �∗(J )) 0 � J < 〈J〉,
Gflat(J ) J = 〈J〉,
Gi.b.(J, �∗(J )) 〈J〉 < J < J̃,

Gvort.(J, �∗(J )) J̃ � J.

(F1)

The average 〈J〉 corresponds to the absolute minimum
of Gmin.(J ) where the flat solution and the band solu-
tions are equal, Gmin.(〈J〉) = Gflat(〈J〉) = Gi.b.(〈J〉, �∗(〈J〉)) =
Go.b.(〈J〉, �∗(〈J〉)), as expected from the discussions above.
All solutions take the value Gflat(0) = ρ0E2/4 for J = 0, in-
cluding Gvort.(J, �∗(J )), which dominates immediately to the
left, i.e., for J < 0—corresponding to clockwise rotation in
the upper edge and counterclockwise rotation in the lower
edge of the slit—and also for J � J̃—corresponding to coun-
terclockwise rotation in the upper edge and clockwise rotation
in the lower edge of the slit—where J̃ is to some extent de-
pendent on the choice of the cutoff r̃. Indeed, Gvort.(J, �∗(J ))
for different values of r̃ is qualitatively similar, starting from
the same value at J = 0, and growing symmetrically to right
and left. However, the steepness of the increase as |J| grows
decreases as r̃ is made smaller, which in Gmin.(J ) is only
reflected in a slower growth for J < 0 or J > J̃ , and in a
leftwards shift of J̃ .

In Fig. 6(b), GMaxw.(J ) is shown to arise from a coexistence
of the outer-band solution and the vortex solution for J < 〈J〉,
and from a coexistence of the inner-band solution and the
vortex solution for J > 〈J〉. Such coexistences, which seem
to be consistent with the superpositions of bands and vortices
observed in the Doob-transformed microscopic dynamics of
Fig. 1(b), should not be interpreted literally as signaling the
existence of a first-order DPT in the random walks. We are
considering a limited subset of idealized dynamical behaviors,
and what is here described by a coexistence of them may
in fact correspond to dynamical behaviors that are not fully
describable in terms of the ansätze under consideration. In
fact, our Gmin.(J ) is an upper bound of the actual macroscopic
functional restricted to a quite limited subset of density and
current fields {ρ(r), j(r)} (though qualitatively representative
of some of the main features that are observed in the micro-
scopic analysis), as is frequently the case is the analysis of
mean-field solutions of dynamical large deviations of many-
body systems [35]. Yet, despite its simplicity, our study does
provide a sound qualitative understanding of the dynamical
regimes under consideration—if not of the nature of the phase
transition, which is actually continuous, as explained in the
main text.
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