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The loop model is an important model of statistical mechanics and has been extensively studied in two-
dimensional lattices. However, it is still difficult to simulate the loop model directly in three-dimensional lattices,
especially in lattices with coordination numbers larger than 3. In this paper, a cluster weight Ising model is
proposed by introducing an additional cluster weight n in the partition function of the traditional Ising model.
This model is equivalent to the loop model on the two-dimensional lattice, but on the three-dimensional lattice,
it is still not very clear whether or not these models have the same universality. By using a Monte Carlo method
with cluster updates and color assignment, we obtain the global phase diagram containing the paramagnetic
and ferromagnetic phases. The phase transition between the two phases is second order at 1 � n < ncri and first
order at n � ncri, where ncri ≈ 2. The thermal exponent yt is equal to the system dimension d when the first-order
transition occurs. For the second-order transitions, the numerical estimation of yt and the magnetic exponent ym,
shows that the universalities of the two models on the three-dimensional lattice are different. Our results are
helpful in the understanding of some traditional statistical mechanics models.
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I. INTRODUCTION

A basic task in statistical physics is revealing the univer-
salities of many theoretical models describing the common
properties of different kinds of materials. The the earliest stan-
dard model in statistical physics is the Ising model, proposed
by Ising in 1925 [1]. The model was generalized to a large va-
riety of models, such as the O(n) spin model initially defined
by Stanley [2] as n-component spins interacting in an isotropic
way. Another interesting model is the n-component face cubic
model, which is usually defined as a Hamiltonian containing
two nearest-neighbor interactions between n-component spins
that point to the faces of an n-dimensional hypercube [3,4].
The face cubic model’s counterpart is a corner cubic model
with spins pointing to the corners instead of faces of the
hypercube [4,5].

The critical properties of the O(n) spin model and n-
component face cubic model have been studied and compared
extensively in the language of graphs by expanding the par-
tition function in powers of the interaction strength between
spins and integrating the spin variables. The O(n) spin model
should be able to be mapped to the loop model [6–9], where
the parameter n is not restricted to integers. Similarly, map-
pings exist ranging from the n-component face cubic model
to the so-called cubic loop model as named in Ref. [10] or
the Eulerian bond-cubic model [11,12], as each vertex (site)
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connects an even number of bonds. On the square lattice, in
the range 1 � n < 2, the O(n) loop model and n-component
face cubic model [11] belong to the same universality class,
and the critical exponents are expected to be obtained by
mapping the model to the Coulomb gas model [13]. The
differences between the two models start at n = 2 because
the O(2) spin model undergoes a topological phase transition
[14–16] while the n-component face cubic model undergoes a
second-order transition [11]. For the n > 2 loop model on the
honeycomb lattices, the phase transition belongs to the three-
state Potts universality [17]. On the square lattices, the n > 2
loop model is of an Ising-like transition [8,18]. However, the
n > 2 n-component face cubic loop model undergoes a first-
order transition [19]. In three dimensions, the O(n) symmetry
can lead to continuous transitions at very large n [20,21],
while the cubic symmetry makes the transition discontinuous
in the range n > ncri with ncri ≈ 2.89 [22].

In order to access the rich critical properties of the loop
model, the local updates of a Monte Carlo (MC) simulation is
performed, although it is a difficult though interesting task due
to the nonlocal weight in the partition sum of the model [9].
To solve this problem, a cluster algorithm combining the tricks
of the Swendsen-Wang (SW) algorithm [23] and the “coloring
method” was proposed by Deng et al. [24]. In this algorithm,
the microstate (configuration) of the loop model is represented
by the configuration of Ising spins, and the loops are regarded
as the domain walls [9,25] of the Ising clusters. However, a
problem arises naturally. Such a representation is applicable
only in two-dimensional honeycomb lattices because there is
no loop intersection phenomenon. In three dimensions with
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FIG. 1. (a) On a honeycomb lattice, the loop marked in red is
just the domain walls of the Ising clusters. There is a total of nc = 2
clusters and l = 1 loop. (b) On a cubic lattice, the graph may not
satisfy the planarity, required by the relationship nc = l + 1.

a maximum coordination number of 3 due to the special
topology, the loop model was simulated by resorting to other
methods, such as the worm algorithm [26,27].

In this paper we pay special attention to the Ising rep-
resentation. In fact, the two-dimensional loop model can be
regarded as an Ising model with cluster weight, which we will
explain in detail in the next section. A generalization of such
a “cluster-weighted Ising” (CWI) model to three-dimensional
lattice is applicable and straightforward, and the cluster algo-
rithm is still applicable for it. We investigate this model with
MC simulations and compare its critical properties with the
results from the loop models [11,21].

The outline of this work is as follows. Section II introduces
the loop model and its Ising representation on the honeycomb
and cubic lattices, the proposed CWI model. The difficulty
of simulating the loop model in nonplanar graphs is also
described. Section III describes the cluster update algorithm
and several sampled observables in MC simulations. Numer-
ical results are then presented in Sec. IV. The global phase
diagram is shown, and the critical exponents for the first- and
second-order transitions are presented. The efficiency of the
algorithm and how to get the error bars are also discussed.
Concluding comments are made in Sec. V.

II. ISING MODEL WITH A CLUSTER WEIGHT

We start with the partition function of the loop model,

Zloop =
∑
{G}

xbnl , (1)

where l , n, b are the number of loops, weight of each loop,
and weight of each bond, respectively. The symbol G means
all possible configurations of loops. The loop configuration
on the honeycomb lattice can be represented by the Ising
configuration on the triangular lattice (dual lattice of the hon-
eycomb lattice), and the loops are just the domain walls [9,25]
of the Ising clusters. The number of the Ising clusters nc is
just the number of loops l plus 1, namely, nc = l + 1. As
shown in Fig. 1(a), two Ising clusters are separated by the red
loop. It is important to note that for the honeycomb lattices,
intersecting loops do not emerge. The reason for this is that
each configuration is composed of an Eulerian bond graph

where “Eulerian” means each site (vertex) is connected to an
even number of bonds.

However, for the square lattice, similar to the cubic lattice
shown in Fig. 1(b), loop intersecting will occur. This will
cause difficulties in counting the number of loops during
simulations. Not only a square lattice, but any lattices with
degree more than 3 will cause such confusion. Namely, each
site connects more than three sites.

One way to solve this issue is to avoid using the term
“number of loops” in Eq. (1) because such a quantity is not
well defined on graphs with degree above 3. The correct term
is “cyclomatic number,” defined to be the minimum number
of edges required to be deleted from a graph in order to
obtain a forest [28]. The value of the “cyclomatic number”
is l = e − ns + 1, where e and ns are the numbers of bonds
and the sites in the lattices, respectively. On graphs of maxi-
mum degree 3, the cyclomatic number does indeed count the
number of loops l .

On the other hand, when considering the definition of “cy-
clomatic number” l , the relation nc = l + 1 still holds for the
square and honeycomb lattices, but this is true only for planar
graphs. The requirement of planarity is very crucial. For the
cubic lattices, the graph may not satisfy the requirement.

Here we propose to study directly the CWI model in the
language of Ising clusters in the dual lattices rather than loop
language. The partition function of the CWI model proposed
reads as

ZCWI =
∑
{Si}

exp(−H )nnc , (2)

with the reduced Hamiltonian of the well-known Ising model,

H = −K
∑
〈i, j〉

SiS j, (3)

where K = J/kBT . The term nnc is a factor of the cluster
weight, and n is the weight of each cluster and is not limited to
an integer. The clusters are formulated by the connected spins
with same directions.

The exploration of the CWI model will help to un-
derstand the loop model. By doing similar work like
the low-temperature expansion [29], the above model can
be transformed into a loop model with the relation x =
exp(−2K ) between the parameters x and K . The study of the
CWI model helps us understand the n-component face cubic
model [10–12], whose partition function can be transformed
into that similar to a loop model.

III. ALGORITHM AND OBSERVABLES

The algorithm to simulate this model is as follows:
(1) Initialize the randomly assigned configuration.
(2) Construct the Ising clusters: for a pair neighborhood

sites i and j, if Si = S j , then absorb site j into the cluster.
(3) Assign each Ising cluster in green (active) a probability

of 1/n, but for a cluster in red (inactive) a probability of 1 −
1/n.

(4) Construct the SW clusters: for the site i, add its neigh-
borhood site j into the cluster according to the following rules:

(a) No matter what the of the spins on the sites i and j
are, the only consideration is the color assigned the sites. If
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one site in the site i and j is in red, then absorb the site j
into the cluster absolutely.

(b) If both sites i and j are in green, then absorb site
j into to the cluster with a probability of p = 1 − e−2K if
Si = S j .
(5) Flip the clusters with a probability 1/2.
This algorithm is precisely introduced in Ref. [24]. In this

paper, we apply it only to nonplanar graphs. Meanwhile, it
would be worth mentioning that there is no particular reason
to use the SW algorithm for the Ising updates on the active
subgraph in step 4. Actually, “any” valid Ising MC method
would suffice, such as the worm algorithm [30], the Sweeny
algorithm [31], or the dynamic connectivity checking algo-
rithm [32].

Considered that we assign the clusters red (inactive) with
a probability of 1 − 1/n, hence the algorithm we use works
only for n � 1 even though the CWI model is well defined for
any n > 0. With the help of the above algorithm, the sampled
observables with magnetization m, magnetic susceptibility χ ,
specific heat CV , and Binder ratio Q are defined as follows:

m = 〈|M|〉, (4)

Q = 〈M2〉2
/〈M4〉, (5)

χ = L3

kBT
[〈M2〉 − 〈M〉2], (6)

CV = 1

kBT 2
[〈E2〉 − 〈E〉2], (7)

with M defined as

M =
∑

i

Si/L3. (8)

These physical quantities have their scaling behavior as a
function of the system size L and the thermodynamic tem-
perature T :

m = Lym−d [m0 + a1(T − Tc)Lyt + a2(T − Tc)2L2yt

+ · · · + b1Ly1 + b2Ly2 + · · · ], (9)

Q = Q0 + e1(T − Tc)Lyt + e2(T − Tc)2L2yt

+ · · · + f1Ly1 + f2Ly2 + · · · , (10)

where Tc is the critical temperature, yt is the thermal exponent,
ym is the magnetic exponent, d is the space dimension, and
y1, y2, . . . , are the negative correction-to-scaling exponents.
The expansion coefficients ai, bi, ei, fi, (i = 1, 2, . . . ) emerg-
ing in the two scaling functions are different in general.

The fitting function in Eq. (9) describes how m depends
on the expansion coefficients, and at the critical points, the
function is reduced to

m = Lym−d (m0 + b1Ly1 + b2Ly2 + · · · ), (11)

which is used to determine the exponent ym.

IV. RESULTS

A. Global phase diagram and exponents

Figure 2 shows the global phase diagram containing, the
paramagnetic (PM) and ferromagnetic (FM) phases, where

1 1.5 2 2.5 3
n

4

6

8

10

12

T PM

FM

FIG. 2. The global phase diagram in the plane T vs n, containing
the FM and PM phases. The dashed (solid) lines denote a first-
(second-order) transition.

the dashed line denotes the first-order transition in the range
ncri � n < 3 and the solid line represents the second-order
transition in the range 1 � n < ncri, where ncri ≈ 2.

For different values of n, the numerical exponents yt and
ym at the critical points are listed in Table I. The numerical
estimation of yt and ym is different from the values of the
loop model [21] for n = 1.5. For n = 2, the value of the
scaling dimension yt is equal to the system dimension within
error bars, which confirms that a first-order transition occurs
between the PM and FM phases.

To summarize, for n > 1 on the 3D lattices, the universali-
ties of the CWI model and the loop model are different.

The above conclusions are obtained via the MC simula-
tions, and the details are as follows. The first 105–106 (MC)
steps of simulation are performed in order to let the system
reach equilibrium states. Then 105 samples in each thread
(totally 100 threads) are taken to calculate each quantity for
the system sizes 16 � L � 144.

Typically, in the regimes of a continuous phase transition,
taking n = 1.5 as an example, the dynamical exponent is
estimated to be z = 0.45(3) (see Sec. IV D). The autocorre-
lation time τint = Lz, is sufficiently smaller than the number
of samples. Therefore, there are enough independent samples
between the total 107 samples.

As for other values of n, such as n � 2, it is still not easy to
obtain the quantities z and τint. The reason for this is that the
mixing time of the SW algorithm is slow and τint does not obey
Lz when the first-order phase transition occurs [33]. However,
we still use enough different samples to obtain convincing
data and examine the conclusions in many different ways.

TABLE I. Comparison of the numerical exponents with those
exponents of the loop model on three-dimensional lattices [21]. The
critical temperature Tc, thermal exponent yt , and magnetic exponent
ym for different values of n. The estimated errors in the last decimal
place are shown in parentheses.

CWI model Loop model

n Tc yt ym yt ym

1.0 4.5115(1) 1.584(4) 2.487(1) 1.588(2) 2.483(3)
1.5 4.99912(5) 1.639(6) 2.400(5) 1.538(4) 2.482(3)
1.6 5.12147(5) 1.71(5) 2.34(2) — —
2.0 5.7514(2) 2.95(5) — 1.488(3) 2.483(2)
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FIG. 3. (a) m, (b) χ , (c) CV , (d) Q vs T at n = 1.5 in the range
0 < T < 10, with different sizes L = 4, 8, 16, and 32, respectively.
The peaks or jumps are located at the position Tc ≈ 5.

For n = 1, the CWI model is reduced to the pure Ising
model, which has been simulated in a higher precision accord-
ing to Ref. [34]. The algorithm described previously reduces
to the standard SW cluster algorithm [23]. Concurrently, the
simulation and analysis of the n = 1 case are shown as bench-
marks in the Appendix.

B. n = 1.5, detailed analysis

To get the regime of the critical point, we scan the tem-
perature in the range 0 < T < 10. In Fig. 3 the quantities
m, χ , CV , and Q are shown with different system sizes L =
4, 8, 16, and 32. From the position of peaks and jumps, Tc is
around 5.

To obtain more accurate values of Tc, the Levenberg-
Marquardt (LM) least-squares fit [35] of of Eq. (10) is
performed, and the weighted distance between data points and
fitting function is defined as �i = Q(Ti; {an}) − Qi, where an

is the parameter to be fitted including the exponents yt , y1,
y2, the coefficients e1, e2, f1, f2, and other quantities Q0 and
Tc. In practice, the error, i.e., standard deviation σi of the
data points Qi, is divided aiming to minimize the quadratic
distance,

χ2 =
N∑

i=1

�2
i

σ 2
i

=
N∑

i=1

[Q(Ti; {an}) − Qi]2

σ 2
i

. (12)

In Fig. 4(a) Q vs T is calculated in a very narrow region
4.9990 < T < 5.0002 with many different sizes L = 4–112,
and the precise critical point is found to be Tc = 4.99912(5).

Correspondingly, the thermal exponent is estimated to be
yt = 1.639(6). This value is obtained by calculating the av-
erage of yt through different Lmin, and the different values of
χ2/dof are also shown in Fig. 4(b). The resulting yt obtained
is different from 1.538(4), which is the result from the loop
model in Ref. [21].

4.999 4.9992 4.9994 4.9996 4.9998 5 5.0002
T

0.54

0.56

0.58

0.6

0.62

Q L=20
L=24-64
L=80
L=96
L=112

(a)   n=1.5

20 24 28 40 48
Lmin

1.4

1.6

1.8

y t

(b)   n=1.5   Lmax=112

1.42 1.03 0.95
0.64

0.490.63

χ2/dof

20 28 40 48 64 12864
L

0.07

0.15

0.19

0.227

m
(ym-d)logL+logm0

ym=2.400(5)
(c)   n=1.5

FIG. 4. (a) The Binder ratio Q vs T at n = 1.5 with different
sizes. (b) yt vs Lmin. The values of χ 2/dof are marked by the
numbers in red. (c) The log-log plot of m vs L. A more accurate
critical point is obtained at Tc = 4.99912(5).

To get the magnetic exponent ym, in Fig. 4(c) the log-
log plot m vs system size L is shown and according to the
equation

log(m) = (ym − d ) log(L) + log(m0) (13)

or equivalently the power relationship m = m0Lym−d , which is
the lead term of Eq. (11). The fitted exponent ym is estimated
to be 2.400(5) and is also different from 2.482(3) from the
loop model in the last two significant digits.

The values of yt and ym mean that the CWI model is not in
the same universality as the pure loop model.

C. n = 2, 3, a first-order phase transition

We gradually increase n in the range 2 � n < 3. Since
first-order transitions are difficult to study, we first consider
simulating significantly larger n values, which should be
safely done in the strongly first-order regime. The methods
used involve plotting the histograms of the hysteresis and of
m and E [36–38], and checking whether or not the exponent
of yt equals d . For n = 2, the histogram and fitting of Eq. (10)
are used. The results by different methods are checked against
each other.
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FIG. 5. (a) Hysteresis loop of the quantity m vs T ; (b) the quan-
tity E vs T ; (c, d) m, E vs MC time at T = 10; (e, f) double-peak
distributions of the histograms of m, E at n = 3, with different sizes
L = 8, 16, 32, and 64.

1. n = 3

To show the signature of a first-order transition for suf-
ficiently large n = 3, we draw the hysteresis loops of the
absolute magnetization m and energy E in Figs. 5(a) and 5(b)
in the range 0 < T < 15, respectively. The expression for the
energy E is

E =
[−J

∑
〈i, j〉 SiS j − nc log(n)

]
L3

, (14)

where nc is the number of Ising clusters in a spin configu-
ration. The hysteresis loops have been observed both in the
classical Baxter-Wu model [39] and in the site random cluster
model [40], as well as quantum systems [41–43], which means
that there is obviously a first-order phase transition [44,45].

Although the SW algorithm has a global update advantage,
it still has a slow mixing time for a first-order transition regime
as proven in Ref. [33], which can be used to form a closed
hysteresis loop. Initializing with the temperature T = 0, we
increase T as well as sample the energy per site E . In the sim-
ulation of a given value of T , we treat the spin configuration of
the completed simulation, as the (new) initial configuration of
the simulation for the next value of T . After T exceeds Tc by a
small value, the energy per site E jumps to a higher value. We
decrease T in the same way with regard to the initialization
of configurations. A closed hysteresis loop takes shape when
T becomes smaller than Tc. We repeat these steps in a similar
fashion for m, and the loop is shown in Fig. 5(b).

The hysteresis loops are caused by the fact that the life-
times of the metastable states are much longer than the
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FIG. 6. (a) The Binder ratio Q vs T at n = 2 with different sizes;
(b) yt vs Lmin; (c) double-peak distributions of the histograms m at
n = 2; (d) double-peak distributions of the histograms of E at n = 2
for T = 5.755, 5.7518, and 5.7516, respectively.

time intervals between temperature variations [39], and sim-
ulation and the measurements are taken from metastable
states, marked by the gray area. To confirm this, the quan-
tity 〈m(t )〉 = 1

t

∑t
l=1 m(l ) is also measured, where m(l ) is

the observable m observed at time l in the MC simulations.
E (t ) is defined in the same way. As shown in Figs. 5(c) and
5(d), m(t ) and E (t ) converge to 0.38013(1) and −0.27634(2),
respectively, which are the values of one metastable state.

For a system with size L → ∞, there will be a disconti-
nuity at Tc of order parameter m [44]. For a finite system,
the probability p(m) is approximated by two Gaussian curves
[45]. As shown in Figs. 5(e) and 5(f), there are clearly double-
peak structures at sizes L = 32 and 64 in the histograms of m
and E . The sharp double peak at n = 3 indicates a sufficiently
strong first order-transition.

2. n = 2

Theoretically, for a first-order transition, the fitting of
Eq. (10) cannot help determine Tc [44]. However, when finite
system sizes are small and the temperatures become very
close to Tc, Eq. (10) is used here to determine yt . Figure 6(a)
shows the lines Q vs T in the regimes of Tc in the range
5.7502 < T < 5.7532 with various system sizes L = 16–48.
By performing the LM algorithm, the values of goodness
of fit χ2/dof , are acceptable and these values are shown in
Fig. 6(b). By summing over yt with different values of Lmin,
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FIG. 7. AM (t ) vs t for n = 1.5 CWI model with different sizes
at (a) T = Tc; (b) T = 6 > Tc; (c) τint vs L at different temperatures.
The exponent z is fitted to be z = 0.45(3).

the average yt is obtained as 2.95(5) indicating the scaling
dimension yt equals the space dimension d , i.e., yt = d . This
result is consistent with the conclusions in Refs. [36–38].

In Figs. 6(c) and 6(d) the double-peak distributions of m
and E at n = 2 are shown, with different sizes L = 32, 64, 96
for T = 5.755, 5.7518, and 5.7516. By increasing the system
sizes, the peaks become sharper, representing that a first-order
transition occurs.

D. AM (t ), τint and z at n = 1.5

The algorithm has a little critical slowing down. The algo-
rithm we used for n = 1.5 is as efficient as the SW algorithm
even if we let the clusters be inactive in a probability 1 − 1/n.
This can be judged by the autocorrelation time τint and the
dynamical exponent z, which can identify the number of MC
steps required between two configurations before they can be
considered statistically independent [46].

For the absolute magnetism quantity M = |M|, the inte-
grated autocorrelation function AM (t ) is defined as

AM (t ) = 〈MkMk+t 〉 − 〈Mk〉2〈
M2

k

〉 − 〈Mk〉2
, (15)

and the integrated autocorrelation time τint is defined as

τint = 1

2
+

∞∑
t=0

AM (t ). (16)

In Figs. 7(a) and 7(b) Am(t ) for the M decays almost
purely exponentially in MC time (a linear decay on the linear-
log scale). Close to Tc = 0.499912(5), AM (t ) grows with L,
while it decreases with L when the temperature deviates away
from Tc.

As shown in Fig. 7(c), τint behaves like Lz at T = Tc

where the dynamical exponent is estimated to be z = 0.45(3)

and the error bar in parentheses is the systematic error due
to corrections to scaling [47]. This value of z is consistent
(within the error bar) with the result 0.443 ± 0.005 ± 0.030 of
a “susceptibility-like” observable, or 0.459 ± 0.005 ± 0.025
of an “energy-like” observable from Ref. [47] for the 3D Ising
model with the SW algorithm, where the two numbers after
the symbol ± mean two types of error bars.

The correct τint and z can be obtained correctly only if
one obtains the phase transition points precisely enough. As
shown in Fig. 7(c), the values of τint at T/J = 5 are obviously
smaller than those at T/J = 4.99912; even the gap between
the two temperatures is just 0.00088. Therefore, only the
dynamical exponent z at n = 1.5 is calculated in this paper.

E. Error bar analysis

The programs are run in 100 threads (bins), and for each
thread (bin), a different random number generator seed is
used. The first 105–106 MC steps of simulations are run with-
out measuring any quantities, allowing the systems to reach
the stage of equilibrium. Simulation is performed over 107

sampling times in the equilibrium states, and the mean values
of the quantities are collected from each bin.

For example, the quantity m is averaged from many bins
according to m = 1

nbin

∑nbin
b=1 mb, where mb, b = 1, · · · , nbin

are computed over each bin. The error bar σ is calculated
according to

σ =
√√√√ 1

nbin(nbin − 1)

nbin∑
b=1

(mb − m)2 (17)

The quoted error bar corresponds to one standard deviation
(i.e., confidence level ≈68%).

The error bars of the fitted exponents are estimated by
the diagonal elements of the covariance matrix [C] = [α]−1,
where α is defined by [35]

αkl =
N∑

i=1

1

σ 2
i

[
∂Q(Ti; {an})

∂ak

∂Q(Ti; {an})

∂al

]
. (18)

V. DISCUSSION AND CONCLUSION

It should be noted that the loop model can be obtained as
a high-temperature expansion of various cubic models, such
as both face cubic and corner cubic models [4], in which the
spins point to the corners of an n-dimensional hypercube, but
it also arises as a high-temperature expansion of the O(n)
vector spin model in certain settings. The descriptor “cubic”
or “O(n)” refers to a symmetry of the spin Hamiltonian and
has no immediate interpretation in the loop language. Fur-
thermore, the face cubic and corner cubic models can both be
related to this same loop model but can have entirely different
phase transitions [4].

In conclusion, we have proposed the CWI model, com-
posed of an Ising model with an additional cluster weight
in the partition function with respect to the traditional Ising
model. In order to simulate the CWI model, we apply an effi-
cient cluster algorithm by combining color assignation and the
SW method. The algorithm has almost the same efficiency as

044132-6



PHASE TRANSITIONS IN A THREE-DIMENSIONAL … PHYSICAL REVIEW E 104, 044132 (2021)

the SW method; i.e., the dynamical exponent for the absolute
magnetization z = 0.45(3) at n = 1.5 is consistent with that
of the standard SW method.

Second-order transitions emerge with 1 � n < ncri, and
first-order transitions occur when n � ncri (ncri ≈ 2) in the
CWI model on the 3D lattices, and the universalities of our
CWI model and the loop model [21] are completely differ-
ent. The first-order transition is verified by the signatures of
hysteresis, double-peak structure of histograms for the order
parameters, and the value of the critical exponent yt = d .
Our results can be helpful in the understanding of traditional
statistical mechanics models.
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APPENDIX: n = 1 AS TEST EXAMPLE

To verify our method and results, we first simulate the
model with n = 1 on the 3D lattice equivalent to the 3D Ising
model, whose critical point is known at Tc = 4.5110(3) [48].
Our result Tc = 4.5115(1) from the Binder ratio Q according
to Eq. (10) is consistent with results in Ref. [48]. Apart from
the critical points, yt and ym are also very consistent with the
results in Ref. [21]. We obtain yt = 1.584(4), while yt takes a
value of 1.588(2) in Ref. [21].

Figure 8(a) shows the lines Q vs T in the regimes of Tc

in the range 4.506 < T < 4.518 with various system sizes
L = 16–144. Using the data Q vs T beginning with dif-
ferent values of Lmin = 16, . . . , 48 and the fixed maximum
size Lmax = 144, the critical temperature is obtained as Tc =
4.5115(1), which is consistent with a more precise value
1/Tc = 0.221654626(5) [34].

4.506 4.508 4.51 4.512 4.514 4.516 4.518
T

0.5

0.6

0.7

0.8

0.9

Q

L=16
L=20,24,28,32,40,48,64
L=96,112
L=128,144

(a)   n=1

20 30 40 50
Lmin

1.56

1.57

1.58

1.59

1.6

y t

1.36 1.51 1.41 1.48 1.55 2.08 1.47

χ2/dof

Ref   1.588(2)

(b)   n=1   Lmax=128

20 28 40 96 176
L

0.10

0.2

0.3

0.4
m (ym-d)logL+logm0

ym=2.487(1)
(c)   n=1

FIG. 8. (a) Binder ratio Q vs T at n = 1 with different sizes.
The critical point is Tc = 4.5115(1), and Q0 = 0.62(4). (b) yt vs
Lmin. The values of χ 2/dof are labeled. (c) The log-log plot of the
magnetization m vs L.

In Fig. 8(b) the red symbols yt are obtained by fitting the
terms including one corrected term f1Ly1 . Increasing Lmin,
yt gradually converges to a value yt = 1.584(4) consistent
with the known result yt = 1.588(2) [21] within the error
bars when Lmin = 48. The goodness of fit χ2 per degree is
distributed into an acceptable range between 1.36 and 2.08.
In Fig. 8(c) the magnetic exponent ym = 2.487(1) is consis-
tent with the results ym = 2.483(3) in Ref. [21] according to
Eq. (9).
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