
PHYSICAL REVIEW E 104, 044131 (2021)

Spin-s spin-glass phases in the d = 3 Ising model
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All higher-spin (s � 1/2) Ising spin glasses are studied by renormalization-group theory in spatial dimension
d = 3, exactly on a d = 3 hierarchical model and, simultaneously, by the Migdal-Kadanoff approximation on the
cubic lattice. The s-sequence of global phase diagrams, the chaos Lyapunov exponent, and the spin-glass runaway
exponent are calculated. It is found that, in d = 3, a finite-temperature spin-glass phase occurs for all spin values,
including the continuum limit of s → ∞. The phase diagrams, with increasing spin s, saturate to a limit value.
The spin-glass phase, for all s, exhibits chaotic behavior under rescalings, with the calculated Lyapunov exponent
of λ = 1.93 and runaway exponent of yR = 0.24, showing simultaneous strong-chaos and strong-coupling
behavior. The ferromagnetic-spin-glass and spin-glass-antiferromagnetic phase transitions occurring, along their
whole length, respectively at pt = 0.37 and 0.63 are unaffected by s, confirming the percolative nature of this
phase transition.
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I. INTRODUCTION: SPIN-s ISING SPIN-GLASS SYSTEMS

Since the blossoming days of modern phase transitions and
critical phenomena, theoretical insight has been obtained from
model spin systems studied systematically as a function of
the number of local states, namely for all s [1–15]. Indeed,
some of the authors in these references are the founders of
the field. However, the same systematic studies have not been
done on the complex ordering systems of current interest,
such as in the presence of frozen disorder, presumably due to
calculational difficulties, now surmountable by global renor-
malization group, as shown below.

Frozen disorder of the interactions introduces many quali-
tatively and quantitatively new effects to statistical mechanical
systems, such as the immediate (i.e., with infinitesimal
disorder) conversion of first-order phase transitions into
second-order phase transitions [16–19] or the creation of
an entirely new phase such as the spin-glass phase [20].
The latter occurs under frozen (quenched) competing inter-
actions causing local minimum-energy degeneracies dubbed
frustration [21]. The signature of the spin-glass phase is the
appearance of a chaotic sequence of interactions [22–32] un-
der the successive scale changes of a renormalization-group
transformation. This translates to a chaotic spin-spin correla-
tion function, as function of distance, at a given scale [33].
This chaotic behavior signifies that a small change at the
microscopic level in the coupling constant (J ) or temperature
(1/J ), or randomness (p) in the system causes major changes
in the correlation function between two distant spins [33].

The spin-glass phase and its rescaling chaos appears
with the introduction, by rewiring, of infinitesimal frustra-
tion to the Mattis phase [34] obtained by random local spin
redefinitions (gauge transformations) in the usual ferromag-
netic or antiferromagnetic phase [35]. On the other hand,

strong chaos, signalled by a large Lyapunov exponent, of the
spin-glass phase in fully frustrated systems continues [36]
until the lower-critical dimension dc � 2.5 of the spin-glass
phase [36–42]. Thus both gradual [35] or abrupt [36] onsets
of chaos are seen.

Most spin-glass studies have been on the classical spin s =
1/2 Ising model, where locally si = ±1 [43,44]. Spin-glass
studies have also been done on q-state clock models and their
continuum limit the XY model [45,46], chiral (helical [47])
Potts and clock models, in fact leading to chiral spin-glass
Potts [48] and clock [49,50] phases, and quantum Heisen-
berg models [51]. The position-space renormalization-group
method appears to be a method suited for such studies, where
the rescaling behavior of the distribution of the quenched
random interactions is followed and analyzed [52]. This is
best effected (Fig. 2) by use of the Migdal-Kadanoff ap-
proximation [53,54] or, equivalently, the exact recursion of
a hierarchical lattice [55–58]. In the current work, we quan-
titatively and globally study, in spatial dimension d = 3, the
Ising spin glass for all spins s = 1/2, 1, 3/2, 2, 5/2, . . . to
the limiting value s → ∞, obtaining the global s-sequence
phase diagram (Fig. 1) and chaotic behavior.

The spin-s Ising model is defined by the Hamiltonian

−βH =
∑
〈i j〉

Ji j (si/s)(s j/s), (1)

where β = 1/kT , at each site i of the lattice the spin si =
±1/2, ±1, ±3/2, . . . , ±s, and 〈i j〉 denotes summation over
all nearest-neighbor site pairs. The division by s is done to
conserve the energy scale across the different spin-s models
and thereby make meaningful temperature comparisons be-
tween them. Note that, for s = 1/2, this formalism yields the
much studied si/s = ±1 case. The bond Ji j is ferromagnetic
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FIG. 1. Calculated phase diagrams of the spin-s
Ising spin glasses in d = 3. From top to bottom, s =
1/2, 1, 3/2, 2, 5/2, 3, . . . to s → ∞. There is an accumulation,
from above, of the phase diagrams at the lowermost, but still at
finite temperature, phase diagram of the continuum limit s → ∞.
The phase diagrams shown here are the results of our numerical
calculations and are accurate to the thickness of the lines in this
figure.

+J > 0 or antiferromagnetic −J with respective probabilities
1 − p and p. Under renormalization-group transformation,
this “double-delta” distribution of interactions is not con-
served. A more complicated distribution of interactions ensues
and is kept track of, as explained below.

II. METHOD: RENORMALIZATION-GROUP FLOWS OF
THE QUENCHED PROBABILITY DISTRIBUTION OF THE

INTERACTIONS

Under renormalization group, for s > 1/2, the Hamiltonian
does not conserve its form in Eq. (1). Thus, for any s, the

FIG. 2. (a) Migdal-Kadanoff approximate renormalization-
group transformation for the d = 3 cubic lattice with the
length-rescaling factor of b = 3. In this intuitive approximation,
bond moving is followed by decimation. (b) Exact renormalization-
group transformation of the d = 3, b = 3 hierarchical lattice
for which the Migdal-Kadanoff renormalization-group recursion
relations are exact. The construction of a hierarchical lattice
proceeds in the opposite direction of its renormalization-group
solution. From Refs. [49,55].

Hamiltonian is most generally expressed as

−βH =
∑
〈i j〉

Ei j (si, s j ), (2)

where Ei j (si, s j ) is the interaction between nearest-neighbor
spins, starting out as in Eq. (1) as Ji j (si/s)(s j/s) and general-
izing to an 2s × 2s or (2s + 1) × (2s + 1) matrix under renor-
malization group. With no loss of generality, for each 〈i j〉, the
same constant is subtracted from all terms E (si, s j ), so that
the largest energy E (si, s j )max of the spin-spin interaction is
zero [and all other E (si, s j ) < 0]. This formulation makes it
possible to follow global renormalization-group trajectories,
necessary for the calculation of phase boundaries, Lyapunov
exponent, and runaway exponent, without running into numer-
ical overflow problems. As the local renormalization-group
transformation, the Migdal-Kadanoff approximate transfor-
mation [53,54,59] and, equivalently, the exact transformation
for the d = 3 hierarchical lattice [55,57,58] is used (Fig. 2).
Recent works using exactly soluble hierarchical models are
in Refs. [60–68]. The length rescaling factor of b = 3 is used
to preserve under renormalization group the ferromagnetic-
antiferromagnetic symmetry of the system. This local trans-
formation consists in bond moving followed by decimation,
with the above-mentioned subtraction after each local bond
moving and decimation, giving the local renormalized ener-
gies E ′(si, s j ) � 0. In our notation, all renormalized quantities
are designated by a prime.

The quenched randomness is included by keeping, as a dis-
tribution, 10 000 sets of the nearest-neighbor interaction ener-
gies E (si, s j ). At the beginning of each renormalization-group
trajectory, this distribution is formed from the double-delta
distribution characterized by interactions ±J with probabil-
ities p, (1 − p). Ten thousand local renormalization-group
transformations determine each subsequent distribution as ex-
plained below.

The local renormalization-group transformation is simply
expressed in terms of the transfer matrix T (si, s j ) = eE (si,s j ):
Bond moving consists of multiplying elements at the same
position of bd−1 = 9 transfer matrices randomly chosen from
the distribution,

T̃ (si, s j ) =
9∏

k=1

Tk (si, s j ), (3)

so that a distribution of 10 000 bond-moved transfer matrices
is generated. Decimation consists of matrix multiplication of
three randomly chosen bond-moved transfer matrices,

T′ = T̃1 · T̃2 · T̃3, (4)

so that a distribution of 10 000 renormalized transfer matrices
is generated. Phases are determined by following trajectories
to their asymptotic limit: The asymptotic limit transfer ma-
trices of trajectories starting in the ferromagnetic phase all
have 1 in the corner diagonals and 0 at all other positions. The
asymptotic limit transfer matrices of trajectories starting in the
antiferromagnetic phase all have 1 in the corner antidiagonals
and 0 at all other positions. The asymptotic limit transfer
matrices of trajectories starting in the spin-glass phase all
have 1 in the corner diagonals (si = s, s j = s) and (si = −s,
s j = −s) or in the corner antidiagonals (si = s, s j = −s)
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FIG. 3. The calculated ferromagnetic (at p = 0) and spin-glass
(at p = 0.5) phase transition temperatures as a function of spin value
s. Note that, with increasing s, both transition temperatures saturate
around s � 8. A similar behavior was found in q-state clock mod-
els [56]. The critical temperatures in this figure are the results of our
numerical calculations and are accurate to the size of the data points
in this figure.

and (si = −s, s j = s), and 0 at all other positions. We use
(s, s − 1, s − 2, . . . , −s + 2, −s + 1, −s) for the order of
the rows and columns in the matrix E (si, s j ). The asymp-
totic limit transfer matrices of trajectories starting in the
disordered phase all have 1 at all positions. Phase diagrams
are obtained by numerically determining the boundaries, in
the unrenormalized system, of these asymptotic flows. Thus,
to numerically obtain the phase diagram, we determine the
asymptotic limit, under repeated renormalization-group trans-
formations, of the distribution of transfer matrices. These
asymptotic limits for the ferromagnetic, antiferromagnetic,
spin-glass, and disordered phases are distinct, as described
here. The boundaries between different asymptotic limits, as a
function of starting (unrenormalized) J and p, yield the phase
diagram numerically, as seen in Fig. 1 for different values of
the spin s.

III. RESULTS: GLOBAL s-SEQUENCE PHASE DIAGRAM
AND SATURATION

In this and the next sections, we present the numerical
results on spin-s Ising spin-glass systems, calculated exactly
on a d = 3 hierarchical model and, simultaneously, by the
Migdal-Kadanoff approximation on the cubic lattice.

The calculated phase diagrams of the spin-s Ising spin
glasses in d = 3 are shown in Fig. 1. From top to bottom, the
phase diagrams are for spin s = 1/2, 1, 3/2, 2, 5/2, 3, . . .

to s → ∞. There is an accumulation, from above, of the phase
diagrams at the lowermost, but still at finite temperature,
phase diagram of the continuum limit s → ∞. The phase
diagrams shown in Fig. 1 are the results of our numerical
calculations and are accurate to the thickness of the lines in
this figure.

The calculated ferromagnetic (at p = 0) and spin glass
(at p = 0.5) phase transition temperatures as a function of
spin s are given in Fig. 3. With increasing s, both transition
temperatures saturate around s � 8. A similar behavior was

FIG. 4. The chaotic renormalization-group trajectory of the in-
teraction Ki j at a given location 〈i j〉, for various spin s values, at
spatial dimension d = 3. Note the strong chaotic behavior for all s,
as also reflected by the calculated Lyapunov exponent λ = 1.93 for
all s. The calculated runaway exponent is yR = 0.24 for all s, showing
simultaneous strong-chaos and strong-coupling behavior.

found in q-state clock models saturating at the continuum XY
model transition temperature [56]. The critical temperatures
in Fig. 3 are the results of our numerical calculations and are
accurate to the size of the data points in this figure.

IV. RESULTS: CHAOS FOR ALL SPINS s, LYAPUNOV
EXPONENT, AND RUNAWAY EXPONENT

For all spin s, the renormalization-group trajectories start-
ing within the spin-glass phase are asymptotically chaotic, as
seen in Fig. 4, where the consecutively renormalized (combin-
ing with neighboring interactions) values at a given location,
meaning 〈i j〉 then the renormalized 〈i′ j′〉 that includes 〈i j〉,
etc., are followed. For the interaction Ki j , we have used the
difference between the largest value (which is zero by con-
struction) and the lowest value in E (si, s j ). K is the average
of this interaction over the entire distribution at the given
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renormalization-group step. Since the dimensionless interac-
tion K is proportional to inverse temperature, as seen from our
Eq. (1), chaotic K means chaotic temperature.

The chaotic behavior is strong, as measured by the Lya-
punov exponent [44,69,70]

λ = lim
n→∞

1

n

n−1∑
k=0

ln

∣∣∣∣dxk+1

dxk

∣∣∣∣, (5)

where xk = Ki j/K at step k of the renormalization-group tra-
jectory. We obtain the Lyapunov exponents by numerically
calculating the logarithmic sum in Eq. (5), eliminating the
first 100 renormalization-group steps as crossover from initial
conditions to asymptotic behavior and then using the next
1500 steps. This calculation, for all spins s, yields λ = 1.93,
numerically correct to the three significant figures shown.

In addition to strong chaos, the renormalization-group tra-
jectories show asymptotic strong-coupling behavior,

K ′ = byR K, (6)

where yR > 0 is the runaway exponent [36]. Again using
1500 renormalization-group steps after discarding 100 steps,
we find yR = 0.24 for all spins s, numerically correct to the
two shown significant figures. We thus find that yR and λ are
universal with respect to spin s.

Note that here is a “weak” strong-coupling behavior, as the
stronger runaway exponent of the ferromagnetic and antifer-
romagnetic phases is yR = d − 1 = 2. In fact, the runaway

exponent yR occurs, under renormalization group, in all or-
dered phases and is yR = d − 1 in all conventionally ordered
phases. However, in the spin-glass phase, since deep into this
phase where the renormalization-group flows lead (at the sink
of this phase), we do not have the rescaling of compactly
ordered renormalization-group cells [22], yR < d − 1, as also
seen in Refs. [36,42], where the runaway exponents yR have
been studied in detail.

V. CONCLUSION

We have calculated the global spin-s sequence of phase di-
agrams for all spins s = 1/2, 1, 3/2, 2, 5/2, 3, . . . , s → ∞
for the Ising spin-glass system in spatial dimension d = 3.
The phase diagrams, all with a finite-temperature spin-glass
phase, for increasing spin s saturate to the limit value of s →
∞. For all spins s, the spin-glass phase has renormalization-
group trajectories that are chaotic, with calculated Lyapunov
exponent λ = 1.93 and runaway exponent yR = 0.24, thus
simultaneously showing strong chaotic and “weak” strong-
coupling behavior.
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