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Analytical solution of stochastic resonance in the nonadiabatic regime
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We generalize stochastic resonance to the nonadiabatic limit by treating the double-well potential using two
quadratic potentials. We use a singular perturbation method to determine an approximate analytical solution for
the probability density function that asymptotically connects local solutions in boundary layers near the two
minima with those in the region of the maximum that separates them. The validity of the analytical solution is
confirmed numerically. Free from the constraints of the adiabatic limit, the approach allows us to predict the
escape rate from one stable basin to another for systems experiencing a more complex periodic forcing.
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I. INTRODUCTION

It is common to consider noise as a hindrance in mea-
surements and observations, which underlies the general idea
of filtering in signal processing [1,2]. In contrast, there are
circumstances in which the presence of noise may facilitate
the detection of a signal. A prominent example is stochastic
resonance, during which noise can amplify a weak signal
and drive a dramatic transition in the state of a system [3–7].
The simplest stochastic resonance configuration considers the
trajectory of a Brownian particle in a double-well poten-
tial influenced by a weak periodic forcing; as the random
forcing increases so too does the observed signal-to-noise
ratio [6]. As the noise amplitude varies, a resonance with
the periodic forcing triggers transitions between the stable
minima.

The term stochastic resonance originated in a series of
studies by Benzi et al. [3–5] that focused on the observed
periodicity of Earth’s ice ages. Namely, because the 100-kyr
eccentricity of the Milankovitch orbital cycles provides such
a weak periodic solar insolation forcing, as the strength of
random forcing varies, a resonance may drive the transition
between the cold and warm states of Earth’s climate system.
Whilst the original motivation was an explanation of ice-age
periodicity, the generality of the framework has driven a myr-
iad of studies across science and engineering. For example,
a modest subset in which stochastic resonance is a key pro-
cess includes the sensory systems of many animals, including
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humans, facilitating the recognition of weak signals buried
in environment noise [8–10]; it is used to enhance signals in
blurry images [11,12] and in detecting machine faults in me-
chanical engineering [13]. Despite this breadth, the theoretical
foundation of stochastic resonance is based on the Kramer’s
escape rate from one of the mimina of a bistable system within
the adiabatic limit [6,7]. In particular, rather than directly
solving the nonautonomous Fokker-Planck equation, the peri-
odic forcing of the potential is treated as a constant assuming
that the frequency of the periodic forcing is asymptotically
small. However, in most realistic settings, a weak signal
is not consistent with a single periodic function, but rather
with a continuous spectrum of many frequencies [13–16].
However, in other problems, for example, when studying the
crossover between subcritical and supercritical noise intensity
regimes in periodically forced bistable systems [17,18], the
small periodic forcing assumption must be abandoned. There-
fore, use of stochastic resonance in practical systems requires
a generalization of the existing theory to the nonadiabatic
case.

We have made a recent advance in this direction as follows
[19]. We first treated the Kramers escape problem with pe-
riodic forcing within the framework of singular perturbation
theory and matched asymptotic expansions. In particular, we
divided the cubic potential into three regions—two bound-
ary layers near the extrema and one connecting them—and
determined the local approximate analytic solutions of the
Fokker-Planck equation within each region. We constructed
a uniformly valid composite global solution by systematic
asymptotic matching of the local solutions. The bistable sys-
tem was then obtained by reflection of the Kramers problem.
In consequence, the nonadiabatic hopping rate was deter-
mined and the full solution was tested numerically. The
analytic solution is principally reliable only when the mag-
nitude of the periodic forcing is much smaller than the noise
magnitude. Our goal here is to simplify this calculation to
make more transparent and useful the general treatment of
nonadiabatic stochastic resonance.
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FIG. 1. Schematic of the first passage problem with a quadratic
potential U (x) = 1

2 λx2 and a Gaussian white noise of magnitude√
2σ . The potential is divided into an “outer” region (I) around

the minimum at x = 0 and a “boundary layer,” or the “inner” re-
gion (II), near the absorbing boundary at x = β. In each region the
asymptotically dominant solutions are determined and then matched
throughout the entire domain. The boundary layer solution Qin,
satisfying the boundary condition x = β, converges to Qout as the
independent variable approaches the origin.

Insight for this simplification is provided from a calculation
of the mean first passage time of the Ornstein-Uhlenbeck pro-
cess using similar singular perturbation methods [20]. In that
problem we solve the Fokker-Planck equation with an absorb-
ing boundary condition at a point far away from the minimum
of a quadratic potential. In what follows we revisit this prob-
lem and derive the probability density function from which
we determine the escape rate. We then use this method to
treat the stochastic resonance problem as a periodically forced
bistable potential by combining two quadratic potentials. We
then obtain approximate analytical solutions for stochastic
resonance in the nonadiabatic regime. The analytical solutions
compare extremely well with the numerical solutions.

II. FIRST PASSAGE PROBLEM FOR THE
ORNSTEIN-UHLENBECK PROCESS

In order to make this paper reasonably self-contained,
we outline the asymptotic method previously used to solve
the survival probability problem for the Ornstein-Uhlenbeck
problem [20], which we relate explicitly in this section to
the first passage problem. As shown in Fig. 1 we divide the
domain into two regions: a broad O(1) region (I) containing
the minimum of the potential, x = 0, and a narrow O(1/β )
boundary layer (II) near x = β. In the parlance of asymptotic
methods in differential equations [21], the boundary layer is
referred to as the inner region and the remainder of the domain
is the outer region, although in this case the latter is in the
interior of the potential. We solve the limiting differential
equations in these regions, from which we develop a uniform
composite solution for the probability density using asymp-

totic matching. From this composite solution we calculate the
mean first passage time.

A Brownian particle resides in a quadratic potential (Fig. 1)
and its position, x(t ), obeys the following Langevin equation,

dx

dt
= −λx +

√
2σξ (t ), (1)

where λ > 0 captures the stability of the quadratic potential,
and ξ (t ) is Gaussian white noise with zero mean, intensity√

2σ , and correlation 〈ξ (t )ξ (s)〉 = δ(t − s).
The first passage problem describes the mean time re-

quired for the Brownian particle to reach a particular location,
say x = β. The Langevin equation can be transformed to a
Fokker-Planck equation for the probability density, P(x, t ),
given by

∂P

∂t
= λ

∂

∂x
(xP) + σ 2 ∂2P

∂x2
, (2)

with an absorbing boundary condition at x = β, P(x = β ) =
0, and P(x = −∞) = 0. Here, the absorbing boundary con-
dition implies that Brownian particles disappear at x = β,
where we seek the loss rate of the probability density. We have
solved this problem analytically for β � 1 with both λ and
σ = O(1) [20].

Region I: The outer solution. The probability density in the
outer region (the interior of the potential), Pout , satisfies

∂Pout

∂t
= λ

∂

∂x
(xPout ) + σ 2 ∂2Pout

∂x2
, (3)

with boundary conditions Pout (±∞) = 0. The steady-state
solution of Eq. (3) is Pss

out =
√

λ
2πσ 2 exp(−λx2/2σ 2). Now,

we let P(x, t ) = Pss
out Q(x, t ) in Eq. (2) and hence Q(x, t )

satisfies

∂Q

∂t
= −λx

∂Q

∂x
+ σ 2 ∂2Q

∂x2
. (4)

Therefore, in the interior of the potential Q ≡ Qout ≈ N (t ),
where N (t ) is a very slowly varying function due to the leak-
ing of probability density at x = β. Thus, we set N (t ) = N to
be a constant.

Region II: The inner solution. In the boundary layer we
have x ∼ β, and because β � 1, we have ε ≡ 1/β 
 1, mo-

tivating the stretched coordinate η = x− 1
ε

ε
= β(x − β ). Thus,

expressed using η, in the boundary layer Eq. (4) becomes

∂Qin

∂t
= −λ(η + β2)

∂Qin

∂η
+ β2σ 2 ∂2Qin

∂η2
. (5)

Because β � 1, the leading-order balance in Eq. (5) is

−λ
∂Qin

∂η
+ σ 2 ∂2Qin

∂η2
� 0. (6)

Therefore, Qin � K1 exp(λη/σ 2) + K2 with constants K1 and
K2. To satisfy the boundary condition P(x = β ) = 0, which is
equivalent to Qin(η = 0) = 0, we must have K2 + K1 = 0.

Uniformly valid composite solution. Asymptotic match-
ing of the solutions between Regions I and II requires
that limη→−∞ Qin = Qout = N , which gives Qin = N[1 −
exp(λη/σ 2)]. A uniformly valid composite solution is then
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FIG. 2. Schematic of stochastic resonance in which a double-
well potential is treated using two quadratic potentials, U1(x) =
1
2 λ(x + β )2 when x < 0 and U2(x) = 1

2 λ(x − β )2 when x � 0. There
are two regions, the interior of each near the two minima x = ±β and
boundary layers near x = 0.

Q ≡ Qout + Qin − limη→−∞ Qin, or Q � N{1 − exp[βλ(x −
β )/σ 2]}, which gives

P � N

√
λ

2πσ 2
exp

(
− λ

2σ 2
x2

)(
1 − exp

[
βλ

σ 2
(x − β )

])
.

(7)

Integrating the Fokker-Planck equation (2) over the entire
domain (−∞, β ) we have

∂

∂t

∫ β

−∞
Pdx = Jx=β, (8)

where J = λxP + σ 2∂P/∂x and we use J (x = −∞) = 0. The
probability density is principally concentrated near x = 0, and
hence ∫ β

−∞
Pdx � Qout

∫ ∞

−∞
Pout dx = N, (9)

so that Eq. (8) becomes

dN

dt
= −βλ

√
λ

2πσ 2
exp

(
−λβ2

2σ 2

)
N ≡ −rN. (10)

Therefore, the global probability density decreases with the
rate r and the mean first passage time is 〈T 〉 = 1/r, with

r = βλ

√
λ

2πσ 2
exp

(
−λβ2

2σ 2

)
. (11)

III. STOCHASTIC RESONANCE IN DOUBLE
QUADRATIC POTENTIALS

A. Asymptotic solutions

We now combine the asymptotic methods used to solve
the general problem of stochastic resonance [19] with the
particular setting described in Sec. II, to treat the double-
well potential in stochastic resonance using two quadratic
potentials. As shown in Fig. 2, the potential U (x) is U1(x) =

1
2λ(x + β )2 when x < 0 and U2(x) = 1

2λ(x − β )2 when x �
0. Thus, with the addition of noise,

√
2σξ (t ), and periodic

forcing, A cos(ωt ), stochastic resonance between the minima
at x = ±β is described by the following Fokker-Planck equa-
tion for the probability density P(x, t ),

∂P

∂t
= ∂

∂x

{[
dU

dx
− A cos(ωt )

]
P

}
+ σ 2 ∂2P

∂x2
, (12)

with boundary conditions P(x = ±∞, t ) = 0. Here, the mag-
nitude of the periodic forcing A, λ, and σ are all order O(1)
quantities.

As shown in the Fig. (2), there are two outer regions
interior to each side of the potential centered upon the two
minima, x = ±β, and two boundary layers for each quadratic
potential at x = 0. We now consider approximate solutions to
Eq. (12) in these regions.

In the outer region of U1(x) centered on x = −β, the prob-
ability density Pout

1 satisfies

∂Pout
1

∂t
= λ

∂

∂y

(
yPout

1

) − A cos(ωt )
∂Pout

1

∂y
+ σ 2 ∂2Pout

1

∂y2
, (13)

with Pout
1 (y = ±∞) = 0, where y = x + β. Equation (13) has

the solution

Pout
1 =

√
λ

2πσ 2
exp

(
− λ

2σ 2
[y − h(t )]2

)
, (14)

where

h(t ) = A√
λ2 + ω2

cos(ωt − φ) (15)

and tanφ = ω/λ.
Now we substitute P(x, t ) = Pout

1 Q(x, t ) into Eq. (12),
which becomes

∂Q

∂t
= [−λy + A cos(ωt − 2φ)]

∂Q

∂y
+ σ 2 ∂2Q

∂y2
, (16)

the outer solution of which is Qout
1 = N1(t ), a slowly varying

function of time that we approximate as a constant, N1.
In the boundary layer we introduce the stretched coordinate

η = βx, which leads to

∂Qin
1

∂t
= [−λη − β2λ + βA cos(ωt − 2φ)]

∂Qin
1

∂η

+ β2σ 2 ∂2Qin
1

∂η2
. (17)

Because β � 1, keeping terms to O(β ) and higher gives[
−λ + A

β
cos(ωt − 2φ)

]
∂Qin

1

∂η
+ σ 2 ∂2Qin

1

∂η2
� 0, (18)

the solution of which is

Qin
1 = K1 exp

(
λ − A

β
cos(ωt − 2φ)

σ 2
η

)
+ K2, (19)
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with constants K1 and K2 to be determined.1 Asymptotic
matching requires that the outer limit of the inner solution
equal the inner limit of the outer solution; limη→−∞ Qin

1 =
limy→β Qout

1 = N1 and hence K2 = N1. Therefore, a uniformly
valid composite asymptotic solution in U1(x) is Q1 = Qout

1 +
Qin

1 − limη→−∞ Qin
1 , giving

P1 =
√

λ

2πσ 2
exp

(
− λ

2σ 2
[x + β − h(t )]2

)

×
{

N1 + K1 exp

(
βλ − Acos(ωt − 2φ)

σ 2
x

)}
. (20)

Similarly, we obtain the solution P2 in U2(x) as

P2 =
√

λ

2πσ 2
exp

(
− λ

2σ 2
[x − β − h(t )]2

)

×
{

N2 + D1 exp

(
−βλ + A cos(ωt − 2φ)

σ 2
x

)}
. (21)

Now we determine the constants K1 and D1 from the conti-
nuity of the probability density P(x) and the flux J (x) at x = 0,
where J (x) = [dU/dx − A cos(ωt )]P + σ 2∂P/∂x. First, the
continuity of P(x) at x = 0 is P1(x = 0) = P2(x = 0), which
results in

D1 = (N1 + K1) exp

(
2βλ

σ 2
h(t )

)
− N2. (22)

The fluxes at the origin from both sides are

J1(x = 0) = {[βλ + λh(t ) − 2A cos(φ) cos(ωt − φ)]K1

+[λh(t ) − A cos(ωt )]N1}
√

λ

2πσ 2

× exp

(
− λ

2σ 2
[β − h(t )]2

)

and

J2(x = 0) = {[−βλ + λh(t ) − 2A cos(φ) cos(ωt − φ)]D1

+ [λh(t ) − A cos(ωt )]N2}
√

λ

2πσ 2

× exp

(
− λ

2σ 2
[β + h(t )]2

)
, (23)

respectively. Now, imposing J1(x = 0) = J2(x = 0) and
P1(x = 0) = P2(x = 0), viz., Eq. (22), gives

K1 =
[

1

2
+ A

2βλ
cos(ωt − 2φ)

]

×
[
−N1 + N2 exp

(
−2βλ

σ 2
h(t )

)]
,

1We note that Eq. (17) could be solved using a regular perturba-
tion method by setting Qin

1 � Qin
10 + 1

β
Qin

11, which results in Qin
1 �

K1 exp( λ

σ 2 η)[1 − A
βσ 2 cos(ωt − 2φ)η] + K2. However, as noted, to

O(β ), the solution (19) uses exp[− A
βσ 2 cos(ωt − 2φ)η] instead of

1 − A
βσ 2 cos(ωt − 2φ)η, which simplifies the subsequent develop-

ment at that order.

D1 =
[

1

2
− A

2βλ
cos(ωt − 2φ)

]

×
[
−N2 + N1 exp

(
2βλ

σ 2
h(t )

)]
. (24)

Integration of Eq. (12) from x = −∞ to x = 0,

∂

∂t

∫ 0

−∞
P1dx = J1|x=0, (25)

gives

dN1

dt
= −r1N1 + r2N2, (26)

with escape rates

r1 =
[

1

2
− A

2βλ
cos(ωt − 2φ)

]
[βλ − λh(t ) + A cos(ωt )

+ A cos(ωt − 2φ)]

√
λ

2πσ 2
exp

(
− λ

2σ 2
[β − h(t )]2

)

and

r2 =
[

1

2
+ A

2βλ
cos(ωt − 2φ)

]
[βλ + λh(t ) − A cos(ωt )

− A cos(ωt − 2φ)]

√
λ

2πσ 2
exp

(
− λ

2σ 2
[β + h(t )]2

)
,

(27)

where, because
∫ ∞
−∞ Pdx = 1, we use the normalization con-

dition N1 + N2 = 1. Similarly, upon integration of Eq. (12)
from x = 0 to x = ∞, we obtain

dN2

dt
= r1N1 − r2N2. (28)

Therefore, r1 and r2 are the escape rates from x = ±β over
the barrier at the origin and Eqs. (26) and (28) are simplified
forms of the two-state master equations derived for general
quartic potentials [19].

B. The validity of asymptotic solutions

We test the validity of the asymptotic solutions by com-
parison with full numerical solutions of the Fokker-Planck
equation (12) using the implicit finite difference method of
Chang and Cooper [22]. To facilitate this comparison, near
x = 0 we introduce a function defined as H (x) = P1/Pout

1
when x < 0 and H (x) = P2/Pout

2 when x � 0. We study two
different magnitudes of the periodic forcing A and the noise
magnitude σ , and combined with the range of the angular
frequency ω, this puts our results in the nonadiabatic regime.
In particular, A is not asymptotically smaller than σ , and ω

is not trivially small. Previously we showed that the adiabatic
limit requires ω 
 1 and A 
 σ and the nonadiabatic case
referred to nontrivial ω [19]. Here, we extend the nonadia-
baticity with the condition A ∼ σ . Figure 3 shows that the
asymptotic and numerical solutions compare very well. When
A ∼ σ or A 
 1 (not shown), the asymptotic solutions are
nearly indistinguishable from numerical solutions. However,
when A � σ , the analytic solutions become less accurate.
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(a)

(b)

FIG. 3. The comparison between numerical simulations and
asymptotic solutions using H (x, t ) = P1(x, t )/Pout

1 when x < 0 and
H (x, t ) = P2(x, t )/Pout

2 when x � 0. The different cases are denoted
in the inset. The two examples use ω = π/20, β = 1.0, and λ = 1.0
as common variables. The first case (a) has A = 0.1 and σ = 0.2, and
the second case (b) has A = 0.3 and σ = 0.1.

The central quantity in stochastic resonance is the flux at
the barrier (x = 0) between the two wells of the potential,
which controls the oscillatory behavior of the probability den-
sity. In Fig. 4 we compare the analytical [dashed lines from
Eq. (23)] and numerical (solid lines) fluxes at x = 0. Clearly
these compare very favorably.

The escape (or hopping) rates r1 and r2 shown in Eq. (27)
are valid independent of the magnitude of ω and A, and so
long as A is not much larger than σ , the analytic solutions are
very accurate. Therefore, our analytic solutions can be used
for the wide range of applications of stochastic resonance that
appear in science and engineering, which removes the need for
substantial simulations of either the Langevin or the Fokker-
Planck equations.

C. Weak periodic forcing A � 1

In the original treatment of stochastic resonance [3–5],
one has A 
 1, which implies that there is a weak signal
in a noise-dominated background. Here, we still seek to un-
derstand the amplification of the periodic forcing A cos(ωt )

(a)

(b)

FIG. 4. The probability flux calculated at the barrier (x = 0) be-
tween the two wells of the potential. Comparison between numerical
simulations (solid lines) and asymptotic solutions [dashed lines from
Eq. (23)] for the same two cases used in Fig. 3.

for A 
 1; however, we treat ω as arbitrary so that we have
the nonadiabatic case, which is not within the corpus of the
original work.

Because we are in possession of the probability density
function P(x, t ), we can calculate the mean position of a
Brownian particle as

〈x〉 =
∫ 0

−∞
xP1dx +

∫ ∞

0
xP2dx. (29)

We note that P1 and P2 are principally concentrated near x =
−β and x = β, so that∫ 0

−∞
xP1dx

�
√

λ

2πσ 2
N1

∫ ∞

−∞
x exp

(
− λ

2σ 2
[x + β − h(t )]2

)
dx

� −N1β. (30)

Similarly, because
∫ ∞

0 xP2dx � N2β, we have 〈x〉 =
β(−N1 + N2). Using Eqs. (26) and (28), we write the
time evolution of −N1 + N2 as

d

dt
(−N1 + N2) = −(r1 + r2)(−N1 + N2) + (r1 − r2). (31)
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FIG. 5. Contour plot of the σ and λ dependencies of the mag-
nitude of the response λA

σ 2 cos ψ from Eq. (34). The location of the
absorbing boundary is (a) β = 5 and (b) β = 10 for a fixed angular
frequency of ω = 0.1.

We now take A 
 1 to find

r1 + r2 ≡ r � βλ

√
λ

2πσ 2
exp

(
−λβ2

2σ 2

)
and

r1 − r2 � r
βλh(t )

σ 2
, (32)

and hence the approximate solution of Eq. (31) is

−N1 + N2 � βA

σ 2
cos φ cos ψ cos(ωt − φ − ψ ), (33)

where cos φ = λ/
√

λ2 + ω2 and cos ψ = r/
√

r2 + ω2.
Hence,

〈x〉 = β(−N1 + N2) = β2 A

σ 2
cos φ cos ψ cos(ωt − φ − ψ ).

(34)

Therefore, the original signal is A cos(ωt ) and the response,
〈x〉, is order O(β2).

Equation (34) shows that the magnitude of the response,
〈x〉, depends nonlinearly on the stability factor λ and the noise
amplitude σ , as λA

σ 2 cos ψ , where cos ψ is a function of λ and σ

(and other parameters) as seen in Eq. (32). Figure 5 shows two
contour plots of the magnitude of the response, λA

σ 2 cos ψ , for
two values of the location of the absorbing boundary (a) β = 5
and (b) β = 10 for fixed ω = 0.1. Optimal values of the noise
amplitude σ and the stability of the potential λ are revealed as

the maxima in these plots. This optimal noise magnitude is a
signature of stochastic resonance.

When A 
 1 our results are similar to the adiabatic limit,
except for the fact that there is a phase shift, φ. However,
as shown above and expected from the original theory, the
response to the periodic forcing, A cos(ωt ), is magnified by
a factor β2. In strong contrast to the original theory [6], we
provide an explicit mathematical expression, Eq. (34), that
shows this dependence. Although we have focused upon a
single forcing frequency, our method can be generalized to
weak signals consisting of many frequencies.

IV. DISCUSSION

A. Singular perturbation theory and nonadiabaticity

Here we have studied the Fokker-Planck equation for
stochastic resonance directly using singular perturbation the-
ory [21], which has been principally developed in applied
mathematics and fluid dynamics. The value of this approach
is that it overcomes constraints intrinsic to the theory. The
most severe and commonly imposed constraint is adiabatic-
ity, which in this context relies on the direct translation of
the Kramers transition rate between the two minima of the
double-well potential as described in detail presently.

In adiabatic stochastic resonance the periodic forcing
A cos(ωt ) is treated under the assumption that ω is asymptoti-
cally small. Hence, the modulation of the potential, U (x) −
A cos(ωt )x, is weak and the Kramers escape rate is cor-
respondingly assumed to be unchanged. Near a potential
minimum, x = xmin, the dominant timescale in the dynam-
ics of a Brownian particle is the response time governed by
λ = ∂2U/∂x2|x=xmin . Therefore, in the adiabatic limit ω 
 λ,
which is heuristically reasonable but poses quantitative chal-
lenges, particularly in that there is no obvious upper bound on
ω to control experimental errors.

The singular perturbation method used here overcomes this
limitation of the adiabatic assumption. Rather than assuming
the Kramers escape rate is unchanged, we construct a time-
dependent solution directly without the small ω assumptions;
ω 
 r and ω 
 λ. Indeed, Eq. (34) is a generalization of
the adiabatic theory as reflected through the presence of the
extra term cos φ. Hence, the adiabatic limit is recovered when
cos φ � 1, which is equivalent to ω 
 λ, thereby providing
a clear quantification of the adiabatic limit and a framework
to generalize stochastic resonance to a wide class of nonadia-
batic cases and forcing signals.

We note here the other methods that have been introduced
to overcome the adiabatic limit: Floquet and linear response
theory. In the former, one uses the Floquet theorem to con-
struct a series solution of periodic Floquet modes [23,24]. This
approach does not require appeal to a small parameter, but
seeks the exact solution using an infinite sum of eigenfunc-
tions. However, because the solutions are a complicated series
of eigenfunctions, they can be challenging to use in various
applications. Linear response theory only requires weak, or
low amplitude, A 
 1, signals amplified by an undisturbed
linear operator [e.g., [25,26]. It can thereby be used to treat
nonadiabatic cases, but when A is O(1), the approach clearly

044130-6



ANALYTICAL SOLUTION OF STOCHASTIC RESONANCE … PHYSICAL REVIEW E 104, 044130 (2021)

has limitations. Note that the hopping rates r1 and r2 in
Eq. (27) do not require the condition A 
 1.

We summarize this section by emphasizing that the power
of singular perturbation and asymptotic methods is the great
simplifications of complex differential equations that they
provide, whilst giving rise to analytical solutions. Because
the edifice of the approach has been developed in applied
mathematics and fluid dynamics [21], where many of the key
features of the equations of motion are present in the Fokker-
Planck equations appearing in stochastic problems, we argue
that the theoretical tools of asymptotic methods will find a
fertile ground in stochastic dynamics.

B. Relationship to a two-state model

When the hopping time is much longer than the response
time of a Brownian particle minima, it may not be necessary
to consider the detailed motion of the particle in the vicin-
ity of a minimum. In this case, a two-state model focusing
solely on the hopping dynamics provides an approximation of
the full solution of the Fokker-Planck equation for stochastic
resonance [6]. Here we show a clear link between the com-
plete problem and the two-state model. Namely, for β � 1,
we approximate the probability density function P(x, t ) by
connecting two Gaussians centered around the two minima:
We impose the continuity of P(x, t ) and the probability flux
J (x, t ) to determine the magnitudes of the two Gaussians, N1

and N2. Thus, because Eqs. (26) and (28) are exactly same
as the two-state model with the new hopping rates r1 and r2,
we show the equivalence between the complete Fokker-Planck
equation with a double-well potential and a two-state model
with two hopping rates.

C. Applications of stochastic resonance
using a double-quadratic potential

The canonical approach to stochastic resonance has a con-
tinuous quartic potential because it relies on the Kramers exit
rate, which requires the curvature of potential at the minima
and the maximum. Here, as described in Sec. II, rather than
relying on the Kramers exit rate, we treated the first passage
problem of an Ornstein-Uhlenbeck process for a double-well
potential consisting of two connected quadratic potentials.
Thus, for a dwell time in either minimum that is considerable,
one can consider independent Ornstein-Uhlenbeck processes
in each potential. This provides a framework for experimental
or observational data for which there are insufficient transi-
tions to deduce the precise functional form of the potential
connecting the two minima. Here we describe the utility of
our approach.

1. How general is the double-quadratic potential?

The general question concerning the applicability of our
approach is the degree to which our potential structure cap-
tures the behavior of a continuous potential with two minima
separated by one maximum. To that end we compare the re-
sponse in the case of the double-parabolic potential, Eq. (29),
to that in which the potential is approximated using three
parabolas. Thus, we define the following potential by im-
posing continuity of the three parabolas and of their first

FIG. 6. Schematic of the potential U (x) defined in Eq. (35) (solid
blue line) with β = 3 and δ = 0.5 and of two double-parabolic po-
tentials with β = 3 (dashed red line) and β = √

7.5 (solid red line).
In all three potentials, λ = 1.

derivatives at x = ±δ as

U (x) =
⎧⎨
⎩

λ
2 (x + β )2 for x < −δ,

− λ(−δ+β )
2δ

x2 + λ
2 (−δ + β )β for x ∈ [−δ, δ],

λ
2 (x − β )2 for x > δ.

(35)

In Fig. 6 we see that the potential in Eq. (35) is enveloped by
the two double-parabolic potentials U1(2)(x) = λ

2 (x ± β1(2))2

with β1 = β and β2 = √
β(β − δ) for x ∈ (−β2, β2). We thus

choose small but finite values of δ in Eq. (35) to examine
the response of the general case, where the gradient of the
potential vanishes at the origin. Because by setting δ = 0 we
recover the double-parabolic potential, our aim is to show how
our results in that case can be generalized to the case with
finite δ.

We integrate Eq. (1) numerically many times using U (x),
U1(x), and U2(x) for three different values of δ (0.1, 0.2,
0.5) and take the average over the trajectories to obtain the
response according to Eq. (29). The responses for each value
of δ are shown in Figs. 7(a)–7(c). Apart from the fluctuations
associated with the finite number of trajectories, the response
for U (x) is always bounded by the responses for U1(x) and
U2(x) and is well approximated by their average. Therefore,
the double-parabolic potential reproduces very well the re-
sponse of the general quartic of Eq. (35) and, for a given
δ, provides a confidence interval inside which the response
obtained from a quartic potential can be determined.

2. Neuron activity

Consider the activity of neurons as a stochastic process
with a threshold dynamics, which amplifies an input signal.
The membrane voltage x(t ) is well approximated by the fol-
lowing Langevin equation,

τmẋ(t ) = −x(t ) + μ + A cos(ωt ) + ξ (t ), (36)

where τm is a response timescale, μ is a drift, ξ (t ) is Gaussian
white noise, and the threshold dynamics is represented by
resetting the voltage when it reaches xth [27–29]. Namely, the
neuron fires when x(t ) = xth and the voltage and the phase ωt
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FIG. 7. Response, Eq. (29), to periodic forcing, 0.2 cos(ωt )
(dashed lines), using the potential U (x) defined in Eq. (35) with
β = 3 for different values of δ = 0.1, 0.2, and 0.5 corresponding
to panels (a), (b), and (c), respectively (solid thick black lines), and
comparison with the response obtained using two double-parabolic
potentials with β = 3 and β = √

3(3 − δ) (solid thin black lines).
In the three panels we also show the average of the two solid thin
black lines (solid thick gray lines). In all three potentials, λ = 1 and
ω = π/50.

are reset to their values at t = 0. This situation is analogous
to the hopping of a Brownian particle from one minimum to
another, after which its motion is centered around the new
minimum. Thus, we can consider the leaky integrate-and-fire
neuron model described above in the double-quadratic poten-
tial framework of stochastic resonance described here.

3. Manipulating the phase shift in stochastic resonance

A particularly useful aspect of stochastic resonance is to
amplify a weak signal within a background of high-frequency
noise. In our model the magnitude of amplification is quan-
tified by β2 and the phase shift is given by φ + ψ . Clearly,
the degree to which the phase shift is favorable or deleterious
depends on the nature of the application and, hence, so too
is the frequency dependence of the phase shift. Our approach
quantifies these dependencies through Eq. (34) thereby pro-
viding a guide for experiments and simulations.

4. Limitations and outlook

We emphasize that our results treat the most general sit-
uation in stochastic resonance. Of particular note is the fact
that our escape rates in Eq. (27) require neither the adiabatic
limit nor that the magnitude of a signal A be asymptotically
small. However, the complexity of Eq. (27) may pose some
challenges for particular applications. Whereas, assuming that
A 
 1, we can use the approximation that exp[− A

σ 2 f (t )] �
1 − A

σ 2 f (t ), thereby showing the amplification of the mag-
nitude of a simple trigonometric function f (t ). On the other
hand, when A is O(1), the exponential form is poorly approx-
imated by a Taylor expansion and amplification of a given
signal does not lead to the magnitude of a single frequency
component in the power spectrum. Furthermore, as discussed
above, one must consider the phase shift of the response of a
given signal. Therefore, these issues will constrain the use of
Fourier transforms in the interpretation and application of the
stochastic resonance based on using Eq. (27) across the entire
range of parameter space.

V. CONCLUSION

We have used asymptotic methods that are central in the
theory of differential equations to derive analytical expres-
sions for the entire suite of results in stochastic resonance.
Having previously used this general methodology to analyze
the Fokker Planck equation (2) for a general quartic potential
in the nonadiabatic limit [19], here we have managed to fur-
ther simplify the problem whilst maintaining the key features
of that analysis. In particular, we approximated the quartic
potential of the underlying Ornstein-Uhlenbeck process as
two parabolic potentials. We derived explicit formulas for
the escape rates from one basin to the other free from the
constraints of the adiabatic limit, and we have shown their
veracity using direct numerical solutions of the dynamical
equations. Moreover, we have shown numerically that the
double-quadratic potential reproduces the results of the con-
tinuous quartic potential. Finally, our results can easily be
generalized to multiple frequencies and forcing amplitudes
and the ease of use of explicit formulas free a practitioner
interested in stochastic resonance from the labor of numerical
simulations.
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