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Thermodynamic calculations using reverse Monte Carlo
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We introduce the theoretical background needed to perform thermodynamic calculations using reverse Monte
Carlo (RMC). The theory is developed for binary AxB1−x lattice systems. The main assumption is that the
arrangement of A and B atoms can be described using short-ranged order (SRO) parameters. The detailed balance
equation, which is expressed in terms of SRO parameters, is solved to obtain the equilibrium SRO parameter
value for the given material interactions, temperature, and composition. Thermodynamic properties, such as the
chemical potential, are evaluated using the equilibrium SRO parameter value. RMC enables the calculation of
the probability distribution of the local atomic environments, which is needed in the detailed balance equation.
We illustrate the application of our method to bulk lattice materials with different first nearest neighbor pair
interactions. The main advantage of our approach is that the probability distribution from RMC can be stored in
form of look-up tables, and used with a variety of interaction strengths and temperature for rapid estimation of
thermodynamic properties. In all examples, the chemical potential is accurately evaluated in the matter of a few
seconds on a desktop computer.
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I. INTRODUCTION

Free energy calculations are central to understanding ther-
modynamics of materials [1,2]. In lattice problems, which are
of interest to this study, free energy differences are used in
investigations of alloy phase diagrams [3–7], crystal growth
[8,9], solid-state reaction [10], adsorption, absorption, cat-
alytic reaction [11,12], and phase transformations [5,6,13].
Free energy calculations can serve as a guide for the design of
multicomponent materials [14]. Monte Carlo (MC) based ap-
proaches [15,16] are most commonly used for performing free
energy calculations. However, performing MC calculations
over a wide range of compositions and temperatures can be
computationally demanding. It is desirable to construct meth-
ods that possess a small computational overhead compared to
MC but are as accurate as MC.

In this paper, we introduce a free energy calculation ap-
proach involving crystalline materials with an emphasis on
binary alloys AxB1−x. The present work is built upon ideas
we introduced in Ref. [17]. The main problem in Ref. [17]
involved demonstrating that using short-ranged order (SRO)
[18–23] parameters one can rapidly generate structures that
are close to equilibrium. The method involved two steps.
First, a collection of structures was prepared using fast reverse
Monte Carlo (RMC) calculations. Each atomic structure in-
volved a different value of the SRO parameter, while x was
kept fixed. SRO parameters are typically used to assess order
or disorder in alloys [24]. In Ref. [17], the SRO parameters
were used as a descriptor for the local atomic arrangement.
The RMC configurations generated were associated with dif-
ferent levels of mixing of A and B atoms. There were few
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configurations where A and B were well mixed and few
where A and B were completely separated, whereas in the
remaining configurations the mixing level was somewhere in
between. Next, short MC calculations with a few thousand
trial moves were performed using the RMC configurations as
inputs. Usually, such short MC calculations are insufficient for
convergence. However, the goal was to measure the extent to
which the A-A, A-B, and B-B bond count in the structure and
energy changed in the calculation. Configurations that were
closest to equilibrium exhibited the smallest change in the
bond count and energy. A speedup of 100 times and more was
reported because the need for long preequilibration calcula-
tions in MC was eliminated. It was demonstrated that this idea
can be even extended to off-lattice systems, binary and ternary
metal alloy systems, and study of surface segregation. The
study raised the interesting prospect of directly constructing
equilibrium configurations by specifying the correct equilib-
rium SRO parameter values to RMC. These observations give
rise to the following questions:

(i) Is it possible to identify the equilibrium SRO parame-
ter value without MC?

(ii) Can we directly calculate thermodynamic properties,
e.g., free energy, after knowing the value of the equi-
librium SRO parameter?

Section II describes the theoretical foundation needed to
answer these questions. The RMC approach, which is the
enabling tool for the SRO parameter based free energy cal-
culations, is presented in Sec. III. We demonstrate that using
RMC one can correctly identify the equilibrium SRO param-
eter value and corresponding equilibrium structure. Results
are discussed in Sec. IV where we show that the properties
computed using RMC and MC are in good agreement. Most
importantly, thermodynamic properties are calculated using
our procedure in a matter of a few seconds on a desktop
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computer, whereas MC simulations require hours to days of
wall time.

Much of the research on alloy thermodynamics is based on
the Ising model [4,19,25–28]. In the simplest model, atoms
reside on a lattice of sites, with each lattice site containing ei-
ther A or B atom. Atoms interact with their nearest neighbors.
The Hamiltonian for the system is given by

H =
∑
〈i, j〉

wi jσiσ j . (1)

Here wi j is the interaction between a pair of atoms at sites i
and j, 〈i, j〉 implies that all pairs of sites are to be considered
only once in the sum, and σi is the occupation at site i. wi j

can be obtained from ab initio calculations or using empirical
potentials. Since the goal of this work is to introduce the RMC
based thermodynamic calculations, the simplicity of Eq. (1)
makes it a good starting point to test our approach. For many
crystalline material systems, the Hamiltonian can be written
in a form like Eq. (1) by including second nearest neighbor
sites and so on, and clusters of sites of different sizes.

II. THEORY

A. Statistical mechanics foundation

Let NA and NB be the number of A and B atoms, respec-
tively, in the binary A-B alloy. The fraction of A and B atoms
is xA = NA/Nt and xB = NB/Nt . Nt = NA + NB is the total
number of atoms. Requiring that the volume V or equivalently
Nt is constant, and the temperature T is fixed,

dF (NA, NB;V, T ) = μAdNA + μBdNB. (2)

Here μA and μB are the chemical potentials (or partial
molar Gibbs free energy) for A and B. The Helmholtz free
energy F is a function of NA, V (or Nt ), and T . We calculate
the chemical potential in the canonical ensemble by replacing
B atoms with A atom, or vice versa. Thus, dNA = −dNB.
Defining �μ = μA − μB, Eq. (2) becomes

dF = (�μ)dNA. (3)

or

�μ =
(

∂F

∂NA

)
V,T

(4)

It is convenient to normalize the free energy F by dividing
it by Nt , making the quantity independent of the system size.
Thus the molar Helmholtz free energy F̄ (xA, T ) = F (NA,NB )

Nt
.

We write the free energy and chemical potentials interchange-
ably as a function of xA and NA depending on convenience.
Using Eq. (4), the free energy can be calculated in terms of
�μ as

F̄ (xA, T ) = F̄ (0, T ) +
∫ xA

0
�μ(x)dx. (5)

F̄ (x, T ) is determined with respect to the molar Helmholtz
free energy F̄ (0, T ) for the pure system.

We write F (NA,V, T ) = −kBT ln Q, where Q(NA,V, T )
is the partition function and kB is the Boltzmann constant.

From Eq. (4), the chemical potential difference is calculated
as

�μ = −kBT ln
Q(NA + 1,V, T )

Q(NA,V, T )
. (6)

Moreover,

Q(NA,V, T ) =
∑

e

�ee−βEe . (7)

Here β = (kBT )−1, Ee is the potential energy, and �e is
the multiplicity associated with the level e. The total number
of arrangements possible with the system is

∑
e

�e(NA, NB) = Nt !

NA!(Nt − NA)!
. (8)

Similarly,
∑

e �e(NA + 1, NB − 1) = Nt !
(NA+1)!(Nt −NA−1)! . In

the limit of large system size,
∑

e �e(NA + 1, NB − 1)∑
e �e(NA, NB)

= xB

xA
. (9)

Let fe(NA, NB) = �e∑
e′ �e′

denote the fraction of states with
energy level e. Combining the above expressions, we write

Q(NA + 1,V, T )

Q(NA,V, T )
= xB

xA

∑
e′ f̃e′e−βẼe′∑
e fee−βEe

. (10)

The tilde in Eq. (10) indicates quantities evaluated with
(NA + 1) A atoms present. There are two important points that
need to be considered now. First, for large system size fluc-
tuations in potential energy around the value Ee are expected
to be small. Using the maximum term method, fe becomes 1.
Second, f̃e′ is interpreted as the fraction of ways in which the
energy level Ẽe′ is reached starting from Ee when a B atom is
replaced by an A atom. The energy change can be evaluated by
considering all possible environments ε around the B center
atom:

Q(NA + 1, NB − 1)

Q(NA, NB)
= xB

xA

〈
exp

[
−�Ereplace B(ε)

kBT

]〉
. (11)

�Ereplace B(ε) is the energy change associated with replac-
ing a B particle with an A particle in a chemical environment
ε. Here the term environment implies an arrangement of atoms
around the B atom being replaced. The term �Ereplace B(ε)
arises due to the e−βẼe′ /e−βEe in Eq. (10). The choice of ε

is dictated by the cutoff length of the interactions. Since only
first neighbor interactions are considered in Eq. (1), ε involves
the first coordination shell. The equilibrium probability dis-
tribution of environments around a B center atom is π

eq
B (ε).

π
eq
B (ε) is expected to depend on xA, T and the interactions

wi j . π
eq
B is used in place of f̃e′ in Eq. (10). Thus

〈
exp

[
−�Ereplace B(ε)

kBT

]〉

=
∑

ε

π
eq
B (ε) exp

[
−�Ereplace B(ε)

kBT

]
. (12)
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An expression to calculate �Ereplace B(ε) in context of
Eq. (1) is provided later [see Eq. (36)]. Finally, from Eq. (6),

�μ = −kBT ln
xB

xA
− kBT ln

〈
exp

[
−�Ereplace B(ε)

kBT

]〉
.

(13)
For noninteracting particles the second term in Eq. (13) is

zero, and �μ = −kBT ln xB
xA

; such a lattice system is called
an ideal solution. The second term in Eq. (13) corresponds to
the excess term, which is nonzero for real A-B mixtures. By
repeating the exercise when an A atom is replaced by a B, we
conclude

�μ = −kBT ln
xB

xA
+ kBT ln

〈
exp

[
−�Ereplace A(ε)

kBT

]〉
.

(14)
Here 〈exp [ −�Ereplace A(ε)

kBT ]〉 = ∑
ε π

eq
A (ε; xA)

exp[−�Ereplace A(ε;xA )
kBT ] accounts for all environments involving

the A center atom. See Eq. (35) for calculation of
�Ereplace A(ε) in the context of Eq. (1).

From the Gibbs-Duhem equation, xAdμA + xBdμB = 0,
which can be rewritten as dμB = −xAd (�μ) or simply
μB(xA) = μB(x = 0) − ∫ xA

0 x( ∂ (�μ)
∂x )V,T dx. After a few alge-

braic manipulations, we arrive at two other results:

μA(xA) = μ0
A+kBT ln xA

+ kBT
∫ 1

xA

ln

〈
exp

[
−�Ereplace B(ε)

kBT

]〉
dx

− xBkBT ln

〈
exp

[
−�Ereplace B(ε)

kBT

]〉
, (15)

and

μB(xA) = μ0
B + kBT ln xB

− kBT
∫ xA

0
ln

〈
exp

[
−�Ereplace B(ε)

kBT

]〉
dx

+ xAkBT ln

〈
exp

[
−�Ereplace B(ε)

kBT

]〉
. (16)

We define μ0
A = μA(x = 1) and μ0

B = μB(x = 0). From
the above equations μ0

A = μ0
B + ∫ 1

0 �μ(x)dx. For the ideal
solution, using Eq. (15) we conclude

μA(xA) = μ0
A + kBT ln xA. (17)

The excess chemical potential terms are nonzero for un-
equal interactions (�Ereplace A, �Ereplace B �= 0) as can be
identified from Eqs. (15) and (16).

Equations (13) and (14) constitute one of the important
results of this work. They yield a relation of �μ in terms of
the distribution of local atomic environments. For a noninter-
acting system, a completely random A-B mixture is achieved
in order to maximize the entropy of the system. On the
other hand, when interactions are present the equilibrium
distribution of local atomic environments will be different.
Unfortunately, π

eq
A (ε; xA, {wi j}, T ) and π

eq
B (ε; xA, {wi j}, T )

are unknown. For a three-dimensional (3D) lattice system an
exact analytical expression for the environment distributions
is not available. To solve this problem, we assume that the
material structure can be parametrized in terms of a col-
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[Equation (37)]
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FIG. 1. (a) Radial distribution functions for off-lattice Au25Pt75

from MC and RMC. RMC uses zPt−Pt = 0.93. (b) Flow chart for our
approach. SRO parameters are tuned in a continuous manner result-
ing in different types of atomic arrangements—from well mixed to
ordered and phase separated. Corresponding probability distribution
of local atomic environments π (x, z) is measured as a function of
the SRO parameters, and is used for solving the detailed balance
equation. The equilibrium SRO parameter zeq forms a key input for
thermodynamic calculations.

lection of the short-ranged order (SRO) parameters z. This
enables us to write π

eq
A (ε; xA, {wi j}, T ) ≡ π

eq
A (ε; xA, zeq ) and

π
eq
B (ε; xA, {wi j}, T ) ≡ π

eq
B (ε; xA, zeq ). Unfortunately, even an

expression for zeq(xA, {wi j}, T ) is not available to us at this
point. Therefore, finding the equilibrium structure first in-
volves solving for zeq, as discussed in more detail in Sec. II D.
Equations (13) and (14) are written in terms of the parameter
zeq at equilibrium.

Some discussion on the choice of the SRO parameters
becomes necessary. In this work, we have assumed that z
corresponds to the average fraction of A atoms in the first
coordination shell around an A atom. More generally, SRO pa-
rameters can include compositions of nearest neighbor pairs,
triplets, and other types of clusters. Whether the chosen SRO
parameters are indeed an appropriate descriptor for the mate-
rial structure needs to be assessed [17]. The procedure to do so
is as follows: First, we perform a standard MC calculation for
the given composition, interactions, and temperatures. Next,
SRO parameter values are calculated from the MC structure.
Finally, these SRO parameter values are provided to RMC as
an input. Structures consistent with these values are obtained
using our RMC algorithm (see Sec. III A and Ref. [17]).
The chosen SRO parameters are deemed appropriate when
the radial distribution functions (rdfs) from RMC and MC
structures match. Figure 1(a) shows such a result for the
(off-lattice) Au-Pt system wherein z is the average fraction
of A atoms in the first coordination shell around an A atom. A
short MC calculation was performed with the converged RMC
structure to achieve the off-lattice structure. See Ref. [17] for
more details.
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B. Flow chart for RMC based thermodynamics calculations

The central assumption is that the local atomic arrange-
ment can be described in terms of the SRO parameter z.
As it will become clear, z acts as a dial to tune the atomic
arrangements. See Fig. 1(b) for examples of RMC configura-
tions. z can be varied in a continuous manner. An on-lattice
configuration corresponding to a target value of z is prepared
using RMC. The distributions πA(ε; xA, z) and πB(ε; xA, z) are
calculated from the RMC configurations. Because the RMC
configurations may not correspond to any equilibrium con-
figuration, the superscript eq is missing in πA(ε; xA, z) and
πB(ε; xA, z). No inputs regarding the material interactions and
temperature are required in RMC.

Although RMC calculations involve a computational over-
head, look-up tables provide an efficient means to rapidly
calculate πA and πB for any given xA and z via interpolation.
The same look-up tables are utilized with variety of composi-
tions, temperature, and material interactions. Practical aspects
involved in construction of look-up tables for πA(ε; xA, z) and
πB(ε; xA, z) using RMC are covered in Ref. [29].

Finally, zeq is determined for the given xA, {wi j} and T by
solving a detailed balance equation as described in Sec. II D.
This step can be completed with a negligible computational
overhead. The distributions πA(ε; xA, z) and πB(ε; xA, z) from
RMC help in this step. See the flow chart in Fig. 1(b). Once
zeq is known, π

eq
A (ε; xA, zeq) and π

eq
B (ε; xA, zeq) are calculated,

and the rest of the thermodynamic property calculations fol-
low (Sec. II A).

C. Local atomic environment distribution

We now focus on the bulk face-centered cubic (fcc) lattice.
Since A and B occupy the same lattice sites and interactions
are restricted to first neighbor shell, the atomic arrange-
ment around a central atom, i.e., its chemical environment,
is studied. c is the coordination number. For the fcc lat-
tice c is 12 for the first neighbor shell. The probability of
finding around an A atom n A neighbors and c−n B neigh-
bors is πAA(n) and πAB(c−n), respectively; n = 0, 1, 2, . . . , c.
Clearly, πAA(n) = πAB(c−n). In the notation for environ-
ment probability distribution, e.g., πAB, the center atom is
mentioned first in the subscript, followed by the neighbor
type. Similarly, the probability of finding around a B atom
n A neighbors is πBA(n). Moreover, πBA(n) = πBB(c−n). A
relation between πAA and πBA also exists [29]. Using the
average fraction of A atoms around an A atom, i.e., zAA, as a
descriptor for the material structure, we employ the probabil-
ity distributions πAA(n; x, zAA), πAB(n; x, zAA), πBA(n; x, zAA),
and πBB(n; x, zAA). See example of πAA(n; x = 0.2, zAA) in
Fig. 2(a). It is required that

∑c
n=0 πi j (n; x, zAA) = 1, i, j =

A, B.
zAA is related to the first moment of the distribution πAA as

zAA = c−1
∑

n

nπAA(n). (18)

The number of A-A and A-B bonds in the system is

NAA(x, zAA) = NA

2

c∑
n=0

nπAA(n; x, zAA), (19)
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FIG. 2. (a) Probability distribution of local atomic environments
πAA as a function of the SRO parameter zAA when x is 0.2. (b) Circles
denote (x, zAA) where probability distributions πAA and πBA were
measured with the help of RMC calculations.

and

NAB(x, zAA) = NA

c∑
n=0

(c − n)πAA(n; x, zAA). (20)

The factor of 1
2 is included in Eq. (19) to avoid double

counting. Similar expressions for the number of B-A and
B-B bonds, i.e., NBA and NBB, can be written in terms of
πBA(n; x, zAA).

From Eq. (1) the potential energy can be written as

E (zAA) = NAAwAA + NABwAB + NBBwBB. (21)

The other local compositions are zAB, zBA, and zBB. Note
zAB = 1 − zAA and zBA = 1 − zBB. Therefore,

NAA = 1
2 NAczAA,

NAB = NAc(1 − zAA),

NBA = NBc(1 − zBB),

NBB = 1
2 NBczBB. (22)

Equation (22) satisfies the constraints associated with num-
ber of bonds, namely,

2NAA + NAB = cNA, (23)

and

2NBB + NBA = cNB. (24)

The total number of bonds is

NAA + NAB + NBB = cN

2
. (25)

Since NAB = NBA, a relation between zBB and zAA is ob-
tained. From Eq. (22) we write

zBB = 1 − ξ (1 − zAA), (26)
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where ξ = xA/xB. Moreover, we require 0 � zAA � 1 and 0 �
zBB � 1, which leads us to the constraint

zAA ∈
[

max

(
xA − xB

xA
, 0

)
, 1

]
, (27)

which needs to be satisfied. In reality, a smaller range of zAA

is accessible. Figure 2(b) shows points in the (x, zAA) space
that were sampled using RMC. Since the radial distribution
function (rdf) is related to the bond count (see [29]), and from
Eqs. (22) the bond count depends on zAA, we conclude that the
rdf is a function of zAA.

From Eq. (21), the potential energy for the system is given
by

E (x, zAA) = csN

2
[zAAx(wAA − 2wAB + wBB) + 2wABx

+ (1 − ξ )wBB(1 − x)], (28)

which is a linear function of zAA when wAA − 2wAB +
wBB �= 0. Moreover, the chemical potentials of A and B
in their respective pure phases are μ0

A = 1
2 cwAA and μ0

B =
1
2 cwBB.

D. Detailed balance equation in terms of SRO parameters

The detailed balance equation provides the key relation
for identifying the equilibrium condition. Suppose the po-
sitions of a randomly selected pair of A and B atoms in
a given configuration are interchanged so that the move
corresponds to

A(ε) + B(ε′) � A(ε′) + B(ε). (29)

The move in the right direction of Eq. (29) causes the envi-
ronment of the A atom to change from ε to ε′. At equilibrium,
the distribution of environments is given by π

eq
A (ε; x, zeq) ≡

πAA(n; x, zeq
AA) and π

eq
B (ε) ≡ πBA(n; x, zeq

AA). For large systems,
it is unlikely that the selected A and B atoms will have com-
mon neighbors. Thus, the probability of selecting the pair of
environments ε−ε′ is π

eq
A (ε)π eq

B (ε′). The probability flux in
the right direction is

fr[A(ε), B(ε′)] = π
eq
A (ε)π eq

B (ε′)
r . (30)


r is the transition probability for the move. In the nota-
tion for flux fr , the first and second arguments correspond to
the environment for the A- and B-center atoms, respectively.
Similarly, the probability flux in the left direction is

fl [A(ε′), B(ε)] = π
eq
A (ε′)π eq

B (ε)
l . (31)

The detailed balance equation requires

fr = fl . (32)

Using the Metropolis criterion [30],


r = min

[
exp

(
−�Er

kBT

)
, 1

]
, (33)

and


l = min

[
exp

(
−�El

kBT

)
, 1

]
. (34)

Here �Er and �El are the energy change associated with
the forward and backward move, and �Er = −�El .

We write �Er = �Ereplace A(ε) + �Ereplace B(ε′). The lo-
cal environments are described in terms of the number
of A and B atoms, e.g., nAA(ε) and nAB(ε) around the selected
A-center atom. �Ereplace A is the change in energy when an
A-center atom in environment ε is replaced by a B atom.
Accordingly,

�Ereplace A(ε) = nAA(ε)(wBA − wAA) + nAB(ε)(wBB − wAB).
(35)

Similarly, �Ereplace B(ε′) is the energy change when a B-
center atom in environment ε′ is replaced by a A atom:

�Ereplace B(ε′) = nBA(ε′)(wAA − wBA)

+ nBB(ε′)(wAB − wBB). (36)

nBA(ε′) and nBB(ε′) are the number of A and B atoms
around the selected B-center atom. When all interactions are
equal, �Er and �El become zero. Unlike πAA and πBA, �Er

and �El do not depend on x and zAA.
The value of zAA that satisfies the relation∑

〈ε,ε′〉
fr[A(ε), B(ε′)] =

∑
〈ε,ε′〉

fl [A(ε′), B(ε)] (37)

is the equilibrium local composition zeq
AA ≡ zeq. Equation (37)

is the overall detailed balance considering all possible ε−ε′
pairs. Equation (37) is a nonlinear algebraic equation, and
zeq

AA is the root of the equation. Equation (37) requires the
composition xA, temperature T , and interactions wi j as input
[see Fig. 1(b)]. In our implementation of the sum, the number
of A atoms in ε is kept lower than the number of A atoms
in ε′. Thus the forward direction involves movement of A
atoms from A-lean environments to A-rich environments. The
detailed balance equation refers to the situation where the
probability flux of A atoms moving from A-lean to A-rich
environments exactly matches the probability flux from A-rich
to A-lean environments. Finally, π

eq
A and π

eq
B are calculated at

x and zeq
AA, and thermodynamic property calculations follow

using the equations provided in Sec. II A.

III. COMPUTATIONAL DETAILS

A. Reverse Monte Carlo calculations

Structural quantities, such as radial distribution functions
(rdfs) and environment probability distributions, calculated
using RMC, are accurate because RMC accounts for con-
straints arising in 3D atomic arrangements. RMC [22,31–
36] has been previously used for creating atomistic and
coarse-grained structure models for liquids and amorphous
and crystalline materials based on the idea of matching the
experimental radial distribution function or related structural
quantities. Here we employ RMC for generating structures
having bond counts (NAA, NAB, NBB, etc.) consistent with a
target zAA [see [Eq. (22)]]. RMC is a Metropolis-Hastings
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(a) (b)

(c) (d)

FIG. 3. Mixing behavior witnessed in the A50B50 system with zAA

being (a) 0.35, (b) 0.5, (c) 0.8, and (d) 0.95. A and B atoms are shown
in magenta and yellow, respectively.

algorithm that takes an input material structure as a start-
ing guess, and employs a large number of trial moves, e.g.,
interchanging the positions of randomly selected pairs of A-
B atoms, that may be accepted or rejected with a certain
probability, such that the target bond count is achieved. No ex-
perimental structural quantities are required in our procedure.
More details of our RMC algorithm can be found in Ref. [17].

Figure 3 shows RMC structures obtained with A50B50

with varying zAA. The relative arrangement of atoms A and
B changes from complete mixing to separated as the SRO
parameter is tweaked. Depending on the value of (x, zAA)
the RMC calculations can require a few minutes wall time
to several hours [29]. To lower the computational require-
ment, πAA(n; x, zAA) and πBA(n; x, zAA) are calculated only at
a handful of points in the x − zAA space. Figure 2(b) shows
the points where the distributions were calculated. Look-up
tables consisting of such probability distribution values are
used with numerical interpolation to estimate πAA(n; x, zAA)
and πBA(n; x, zAA) for any value of (x, zAA).

B. Grand canonical Monte Carlo calculations

Grand canonical MC (GCMC) calculations were per-
formed to validate our RMC approach. In GCMC, we specify
Nt ,�μ, T , and wi j and obtain estimates for NA and NB. This
is in contrast to our RMC approach wherein NA, NB, T , and
wi j are specified, and �μ is estimated. A comparison between
xA versus �μ from GCMC and RMC is made in Sec. IV.

In a typical GCMC calculation, the initial system is either
pure A or pure B. Two types of moves are attempted, namely,
(i) replacing the B atom with A and (ii) replacing the A atom
with B, each with a probability of 50%. The acceptance prob-
ability for replacing the B atom with A is

preplace B
acc = min

(
NB

NA + 1
exp

[
−�Ereplace B(ε)

kBT

]

× exp

(
�μ

kBT

)
, 1

)
, (38)

where ε is the environment of the atom being replaced. Simi-
larly, the acceptance probability for replacing A atoms with B
atoms is

preplace A
acc = min

(
NA

NB + 1
exp

[
−�Ereplace A(ε)

kBT

]

× exp

(
− �μ

kBT

)
, 1

)
. (39)

See Eqs. (35) and (36) for change in energy after the move.

IV. RESULTS AND DISCUSSION

Equations (35) and (36) involve differences in interac-
tion strength. Moreover, wAB = wBA. We define β�wAB =
βwAB − βwAA and β�wBB = βwBB − βwAA. Three cases are
considered: (a) β�wBB �= 0 and β�wAB = 0, (b) β�wBB = 0
and β�wAB �= 0, and (c) β�wBB �= 0 and β�wAB �= 0.

A. β�wBB �= 0 and β�wAB = 0

Figure 4 shows the forward, backward, and net prob-
ability flux calculated for three different interactions in
blue, red, and green, respectively. Results are shown for
A20B80. Note that the forward and backward probabil-
ity flux is given by Fr (xA, zAA) = ∑

〈ε,ε′〉 fr[A(ε), B(ε′)]
and Fl (xA, zAA) = ∑

〈ε,ε′〉 fl [A(ε′), B(ε)], respectively. The net
probability flux is plotted as |Fr − Fl |. In general, more B
atoms are present around A atoms at small zAA, whereas more
A atoms are present in the environment at large zAA.

In the ideal situation, i.e., β�wBB = 0, Fr =∑
〈ε,ε′〉 πA(ε)πB(ε′) and Fl = ∑

〈ε,ε′〉 πB(ε)πA(ε′). We discuss
the relative magnitudes of Fr and Fl at x = 0.2 [see Fig. 4(a)].
When zAA < x, the probability of finding an A atom in A-lean
environments ε is high. Because of the large number of B
atoms present, one can also find B atoms in environments
ε′ that are relatively richer in A than the environments ε. In
contrast for the backward move, finding A atoms in A-rich
environments ε′ is less likely. As a result, Fr > Fl . This
situation changes when zAA > x. Now, Fl > Fr . The condition
Fr = Fl is satisfied at zeq

AA. For β�wBB = 0, zeq
AA is always

equal to xA.
For cβ�wBB < 0, the forward and backward flux calcula-

tions involve the energy term �Er . For the present case, �Er

simplifies to �Er = [nAB(ε) − nBB(ε′)]�wBB. Once again, we
consider small x and zAA for this discussion [see Figs. 4(b)
and 4(c)]. Due to our choice of environments ε and ε′ as
mentioned earlier, nAB(ε) > nBB(ε′). Recall that in our im-
plementation of Eq. (37), the number of A atoms in ε is
kept lower than the number of A atoms in ε′ [see discussion
around Eq. (37)]. Since �wBB < 0, we conclude that �Er < 0
and 
r = 1. The forward flux is independent of β�wBB. In
contrast, Fl tends to become smaller as β�wBB becomes more
negative. These two aspects can be seen in Figs. 4(b) and 4(c).
The implication is that the intersection point of the forward
and backward flux curves, i.e., zeq

AA, shifts toward the right in
Figs. 4(b) and 4(c), and zeq

AA > x.
Figure 5 shows the general behavior of the net probability

flux for different values of xA. Black circles denote the value
of zeq

AA found. zeq
AA equals x when β�wBB = 0. In Figs. 5(b)

and 5(c), we find that the value of zeq
AA keeps increasing as

044129-6



THERMODYNAMIC CALCULATIONS USING REVERSE … PHYSICAL REVIEW E 104, 044129 (2021)

0.2 0.4 0.6 0.8
zAA

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y 
Fl

ux

(a) c��w   = 0BB

0.2 0.4 0.6 0.8
zAA

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y 
Fl

ux

(b) c��w   = -4.8BB

0.2 0.4 0.6 0.8
zAA

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y 
Fl

ux

(c) c��w   = -12BB

FIG. 4. Probability flux as a function of zAA for xA = 0.2 and
different interaction strengths cβ�wBB. Blue dashed line: forward
flux; red dotted line: backward flux; green solid line: net flux.

β�wBB becomes negative. This behavior is expected. As the
attractive B-B interaction becomes strong, it is energetically
more favorable for B atoms to be surrounded by other B
atoms; i.e., A and B atoms are separated.

Figure 6 shows the isotherm for AxB1−x at four different
values of cβ�wBB. When cβ�wBB = 0, both GCMC and
RMC approaches provide the same result, namely, β�μ =
ln xA

xB
. As the B-B interactions become more attractive, the

RMC and GCMC isotherms shift toward the right such that
β�μ = cβ�wBB/2 at xA = 0.5. In Figs. 6(a) and 6(b), one
unique value of xA is found for each value of β�μ. The
midsection of the RMC isotherm becomes vertical when
cβ�wBB = −4.8. Multiple solutions for x are obtained once
cβ�wBB < −4.8. The well-known hysteresis behavior is ob-
served in GCMC when the simulation is initialized with an
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FIG. 5. Net probability flux calculated as a function of xA and zAA

for different interactions.

A-rich system (A-unloading calculations of Fig. 6) or a B-
rich system (A-loading calculations). The arrows show the
approximate value of �μ in GCMC where xA jumps from the
lower branch to the upper branch, or vice versa. In contrast,
the RMC �μ-xA curve is continuous. From Figs. 6(c) and
6(d), we find that the upper and lower branches of the RMC
isotherm pass through GCMC results, thus validating our
RMC approach. The third solution for xA from RMC cannot be
accessed with GCMC. The computational cost associated with
RMC is negligibly small in comparison to GCMC. Whereas
each GCMC calculation may require hours, the corresponding
RMC calculation can be completed in a few seconds.

B. β�wBB = 0 and β�wAB �= 0

In Sec. IV A, we considered examples of interacting B-B
pairs and noninteracting A-A and A-B pairs. Here we consider
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FIG. 6. �μ-xA isotherms from RMC and GCMC for different
values of βc�wBB. Black line: RMC; rRed circles: GCMC with A
loading; blue plus: GCMC with A unloading.

a situation where the cross interaction β�wAB �= 0, whereas
the self-interaction β�wBB = 0. Such a situation, although
encountered rarely, is useful to understand in order to appre-
ciate the more general situation discussed in Sec. IV C where
all interactions are different. Both positive and negative values
of β�wAB are explored. When β�wAB > 0, A and B repel
each other, which should result in separate A- and B-rich
regions and large values of zAA. On the other hand, when
β�wAB < 0 (A-B interaction is attractive in comparison to
A-A interaction), intuitively, we expect A and B to mix.

First, we consider β�wAB < 0. Using nAB(ε) =
c − nAA(ε) and nBB(ε′) = c − nBA(ε′), Eqs. (35) and
(36) simplify to �Ereplace A(ε) = (2nAA(ε) − c)�wAB and
�Ereplace B(ε′) = [c−2nBA(ε′)]�wAB, respectively, and
�Er = 2[nAA(ε) − nBA(ε′)]�wAB. Since nAA(ε) < nBA(ε′)1,

we conclude that �Er > 0 and 
r < 1. The forward
flux depends on β�wBB. However, the backward flux is
independent. This behavior is observed in Fig. 7(a). Recall
that earlier with �wAB = 0 the forward and backward flux
curves intersect at the point zAA = x. The consequence of
the drop in the numerical value of forward flux is that at the
intersection point zAA < x. The zAA versus x curve falls below
the diagonal line zAA = x, and tends to be more depressed as
�wAB becomes more negative [Fig. 7(b)].

The opposite behavior is observed for β�wAB > 0 (re-
pulsive A-B interactions). Now �Er < 0, 
r = 1 and 
l =
exp(β�Er ). The backward flux value is dependent on �wAB.
Now the forward and backward flux curves intersect at a point
zeq

AA > x. Figure 8 shows the net probability flux as a function
of xA and zAA. Strong repulsive interaction between the A-B
pairs causes an upshift in the zeq

AA. This is expected since A-A

1Recall that in our implementation of Eq. (37), the number of A
atoms in ε is kept lower than the number of A atoms in ε ′ [see
discussion around Eq. (37)].
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FIG. 7. (a) Forward, backward, and net probability flux obtained
with A20B80 and cβ�wAB = −4.8. Blue dashed line: forward flux;
red dotted line: backward flux; green solid line: net flux. (b) zeq

AA as
a function of xA when cβ�wAB = −8.4. Black circles are values of
zeq

AA from GCMC. Blue line corresponds to RMC. Gray dashed line
(shown for reference) corresponds to x - zeq

ZZ curve for a noninteract-
ing system.

bonds are preferred in comparison to A-B bonds. A large
nonzero net probability flux is witnessed at zAA < xA indicat-
ing a preference for such a situation. The black circles in Fig. 8
denote the zeq

AA versus xA curve. With �wAB = 0 the zeq
AA versus

x curve becomes a straight line [see Fig. 5(a)]. The nature
of the net probability flux lines at given xA changes once the
A-B pair interactions are attractive (�wAB < 0). Now, a large
nonzero net probability flux is witnessed for zAA > xA.

Figure 9 shows isotherms at different interaction strengths.
Comparisons between RMC and GCMC results are made. In-
dependent of the strength of interactions, we find that �μ = 0
at x = 0.5. For repulsive A-B interactions (with respect to
the A-A interactions), i.e., �wAB > 0, multiple solutions for
xA are obtained with RMC [Figs. 9(a) and 9(b)]. Hysteresis
is observed in GCMC. The plus symbols in Figs. 9(a) and
9(b) denote the GCMC results when the pure B lattice is
provided to an input, and circles when pure A is provided
as input. Results from RMC and GCMC are consistent. Why
the shape of the RMC isotherm arises can be explained by
studying how �μ varies with increasing xA. In B-rich systems,
inserting A atoms is energetically unfavorable since a greater
number of A-B pairs are formed. For this reason, the excess
term is positive when xA = 0−0.5. In Figs. 9(a) and 9(b),
a balance between the energetic (excess terms) and entropic
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FIG. 10. (a) Net probability flux. (b) Comparison of zAA versus xA
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from RMC (line) and GCMC (circles).

(ideal) terms is attained, which causes the isotherm to become
vertical in the midsection. In A-rich systems, inserting A atoms
is energetically favorable as it results in fewer A-B pairs. Now
the excess term becomes negative when xA = 0.5−1.0. The
hysteresis region becomes narrower as the repulsive interac-
tions become weaker.

For attractive cross interactions [Figs. 9(c) and 9(d)] and
xA = 0−0.5, inserting A atoms in the B-rich system is favor-
able and the excess chemical potential is negative. As a result,
β�μ shifts toward more negative values than observed in the
ideal situation. The shift is more prominent as the attractive
A-B interactions become stronger. Like Fig. 6(a), the isotherm
yields a single solution for x for a given β�μ.

C. β�wBB �= 0 and β�wAB �= 0

In most binary systems, both pure and cross inter-
actions are present. We consider the case where wAB =
1
2 (wAA + wBB), which is analogous to a mixing relation
commonly used in molecular simulations relating A-B inter-
actions to the A-A and B-B interactions. In Fig. 6(d), we
witnessed multiple solutions for xA when cβ�wBB = −12 and
cβ�wAB = 0. The presence of attractive cross interactions
(e.g., when cβ�wBB = 0 and cβ�wAB = −6) results in sin-
gle solution. Figure 10 shows the results obtained with RMC
when cβ�wBB = −12 and cβ�wAB = −6. Interestingly, the
system behaves almost like an ideal one. The net probability
flux surface in Fig. 10(a) is similar to Fig. 5(a). The value of
zeq

AA is shown in black circles in Fig. 10(a). We find zeq
AA = x.

Figure 10(b) shows zeq
AA from RMC (line) and GCMC (cir-

cle). It is usually expected that an ideal well-mixed solution
will be observed when A-A, A-B, and B-B interactions are
equal; i.e., A and B are chemically identical. Here we find
that a well-mixed solution is obtained in spite of the strong
attractive interactions. The chemical potential versus xA is a
slightly different matter. Figure 10(c) shows the isotherm from
RMC (line) and GCMC (circle). The isotherm is identical to
the one for the ideal solution, except that it is shifted to the
right by βc�wBB/2. For the ideal solution, the value β�μ is
zero at xA = 0.5.

V. CONCLUSION

The fundamentals of thermodynamic calculations using
reverse Monte Carlo (RMC) simulations are presented. The
RMC calculations presented here used a single database that
was employed with different temperatures and interaction
strengths. Each RMC based chemical potential calculation
reported in this work required a few seconds on a desktop
computer. In contrast, the corresponding GCMC simulations
required 1–2 days wall time. Besides the significantly smaller
computational burden and accurate estimation of thermody-
namic properties, the RMC analysis has another advantage in
that it reveals the atomic environment probability distributions
at equilibrium. Such distributions are useful for understand-
ing atomic arrangements within a material structure, and for
obtaining structural quantities, such as the radial distribution
functions, for the material.

We believe the same approach can be generally applied
to longer-ranged interactions, although more SRO parameters
may be needed.
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