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Excess entropy scaling law: A potential energy landscape view
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The relationship between excess entropy and diffusion is revisited by means of large-scale computer simula-
tion combined to supervised learning approach to determine the excess entropy for the Lennard-Jones potential.
Results reveal a strong correlation with the properties of the potential energy landscape (PEL). In particular
the exponential law holding in the liquid is seen to be linked with the landscape-influenced regime of the PEL
whereas the fluidlike power-law corresponds to the free diffusion regime.
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I. INTRODUCTION

Understanding the link between dynamic properties of flu-
ids and their underlying structure and thermodynamics [1-3]
remains one of the major open issues in condensed matter
physics. The excess entropy scaling law proposed by Rosen-
feld [4,5] provides such a link between diffusion, viscosity, as
well as thermal diffusion and entropy. It applies for a wide
range of systems and thermodynamic states (see Ref. [6]),
and, for instance, for pure metals and alloys [7] yielding a
simple link between partial entropies and corresponding dif-
fusions of the constitutive elements [8]. It counts, however, a
number of counterexamples [6] showing that it remains more
a semiquantitative approach. Nevertheless, it was shown to
be more general than expected initially in the framework of
isomorph theory with hidden scale invariance [6,9-11].

The nonuniversal character of excess entropy law lies on
the fact that entropy is basically a macroscopic equilibrium
thermodynamic quantity whereas diffusion emerges from the
rate of transition between underlying accessible microscopic
states [6]. A unified picture that may conciliate both these
aspects is provided by the potential-energy landscape (PEL)
concept [12,13] in which the thermodynamics comes from the
relative depths of the PEL minima whereas the dynamics is
guided by their connectivity [14]. The effect of complexity
of the PEL on Rosenfeld’s exponential law was investigated
through a Gaussian random interacting potential and showed
that it still holds for moderate disorder [15]. A linear relation-
ship between local characteristics of the PEL and diffusivity
assuming the excess entropy scaling was shown [16]. Never-
theless, a more general link between the PEL and the excess
scaling law is still missing to date.

The aim of the present paper is to provide a deeper insight
on the excess entropy scaling law through the PEL concepts
highlighted here for the Lennard-Jones (LJ) potential. The
choice of the LJ model was guided by the fact that it leads
to a quasiuniversal character of the excess entropy scaling
[5]. This led us first to determine accurately the entropy
over the largest fluid domain of the p* — T* phase diagram,
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where p* = po? and T* = k3T /€ and o being the LJ length
and energy scales, respectively. This nontrivial task [17] is
achieved by setting up a supervised machine learning (ML)
approach using artificial neural networks (ANNs) [18,19]. It
allows us to combine databases covering different thermody-
namic domains irrespective of the mathematical formulation
of their equation of states (EOS) without loss off accuracy. It
was proven recently to be efficient to investigate the crystal
nucleation by Monte Carlo simulation taking entropy as a
reaction coordinate [20]. The second part consists in conduct-
ing large-scale molecular dynamics (MD) simulations [21] to
generate an accurate, consistent, and homogeneous dataset
of self-diffusion coefficients spanning over the same range
of the fluid phase diagram. Our findings show that the gen-
eral characteristics of the PEL might be linked to the excess
entropy scaling, i.e., Rosenfeld’s exponential law is seen to
be correlated with the landscape influenced part of the PEL
[13] whereas the fluidike power law corresponds to its free
diffusion regime.

The layout of the paper is the following. Section II is
devoted to the method by which the entropy is determined, and
Sec. III presents the results that reveal the correlation between
the excess entropy law crossover and the potential energy
landscape. Finally, Sec. IV provides the main conclusion of
the paper.

II. DETERMINATION OF THE EXCESS ENTROPY

A. Constructing the dataset

The entropy is determined in two steps from the basic
thermodynamic relation Sex = (Uex — Aex)/T, Where Uy is
the excess internal energy and A the excess Helmholtz free
energy. For the latter, many EOS were proposed in the litera-
ture [22,23] that are valid over various domains of the phase
diagram. Here, the Johnson e al. EOS [24] for temperature
domain 0.5 < T* < 6.0 and the one for higher temperatures
in the range 6.0 < T* < 9.0 of Thol ef al. was used. Con-
sidering densities from 0.005 to p* = 1.2 allows us to cover
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FIG. 1. Schematic of the feedforward neural network built as
densely connected multilayer perceptrons. The input layer {x{;x}
will be fed with density p* and temperature 7" couples of the
training set, and the output y3 takes the value of corresponding
excess Helmholtz free energy AZ . The neural network contains two
hidden layers with superscripts 1 and 2, respectively. The first layer
is composed of 13 neurons, and the second one is composed of 12.
The weights w! j« and bias b are optimized during the training (see

the text).

a range of pressures up to P* = Po3e = 50. In this domain,
using the respective EOS equations the dataset is composed
of 16 448 values of A}, = A /€ for regularly spaced couples
(p*, T*) in the domain defined above. The typical temperature
and density meshes are 0.065¢ /kp and 0.0150 3, respectively.
The data points in the unstable liquid-gas coexistence region
were removed.
The complete dataset is primarily randomized and scaled
with
— m(x)

SS(x) = ~ , (1)

o(x)

where m refers to the mean and o refers to the standard devi-
ation, whereas x is an input series of the dataset. The training
set consists in taking 80% of the dataset, the remaining part
is left for the test set. The training set is further split to
get a validation set, which amounts to 20% of the training
observations.

B. Supervised learning approach

In a first step, Aex is determined from a supervised learn-
ing process using an artificial neural network. The ANN is
defined by a network topology which specifies the number
of neurons formally named here y' ; and their connectivity

through the weights wf. Figure 1 represents schematically the
typical architecture used in the present paper, called a multi-
layer perceptron. The weights associated with each node pairs
are optimized during the learning process by a feedforward
technique [25]. Thus, each of the N layers within the neural
network consists of sets of nodes which receive multiple in-
puts from the previous layer and pass outputs to the next layer.
Here a fully connected network is used in which every output
of a layer is an input for every neuron in the next layer. The
corresponding mathematical description is the following: The
inputs signals are linearly combined before being activated by
function f to give each output y! of a given fully connected

layer [ as

Ni—
= f(Z wy ™+ bi-) : ©
j=1

where N, refers to the size of the /th layer, i.e., the number
of neurons in the layer. Note that positive weights enhance
connections whereas negative weights tend to inhibit them.
Most of the activation function are choose to have a range
in either [0,1] or [—1, 1] and modulates the amplitude of
the output. The activation function f is applied elementwise
and is taken as the hyperbolic tangent form f(x) = tanh(x).
Backpropagation is used to update the network weights and
their the gradients. The ANN was coded using the KERAS
module from the TENSORFLOW PYTHON package [26] in the
regression mode.

C. Training the artificial neural network

The supervised training is carried out using the macro-
scopic two-component descriptor (p*;T*) as the input, and
the corresponding A%, as the output to find the optimal set of
weights and biases. For a given architecture, the optimization
is performed using the training data alone, terminating when
the validation error begins to increase. Simultaneously, a L,
norm regularization is performed to check for consistency.
An early stopping criterion is used on training and validation
sets to avoid overfitting the training data. Once trained, the
ANN was used to predict A}, whatever the temperature and
density inside the above defined domain allowing us to predict
the excess entropy with a high accuracy by simply using the
internal energy from the corresponding MD simulation.

This training stage is repeated with various ANN architec-
tures to find the optimal one capturing numerically at best
the functional dependence of the data. The minimization of
the mean-square error (MSE) is carried out with stochastic
gradient descent using the Adam optimization algorithm [25]
giving a measure of the loss with a constant learning rate of
0.001, By =0.9, B, =0.999, and ¢ = 108, The early stop-
ping was performed with maximum loss variation of 10~ and
a patience of 45 epochs. The least MSE loss is obtained for
an architecture of 13 and 12 neurons in the first and second
hidden layers, respectively, as depicted in Fig. 1. A cross
validation performed over ten independent trainings gives a
loss of (2.3 £ 0.4) x 10~*¢ on the per atom excess Helmholtz
free energy. The left panel of Fig. 2 displays the predictive
ability of the model on the unseen data of the test set. The
quality is very high on the whole range of the free energy with
a small deviation at the very end of the large values for which
there is less data. The right panel of Fig. 2 shows the evolution
of the MSE loss as a function of epochs. The typical duration
of the training period was about 10 000 to 15 000 epochs.

D. Molecular dynamics simulations

The MD simulations were performed with N = 10768 LJ
particles in the isobaric-isothermal ensemble (N, P, T)) within
the Nosé-Hoover scheme [21] using the LAMMPS code [27].
The truncated LJ was used with cutoff radius as large as
rc = 4o and standard long-range corrections [21] were ap-
plied to pressures and energies. Equations of motions were
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FIG. 2. (a) Train-test curve showing the quality of the prediction
on the test set for the optimized NN with 13 and 12 neurons, respec-
tively, in the first and the second hidden layers. The blue solid line
represents the known output of the excess Helmholtz free energies,
and the red dots represent the values predicted against the known
ones. (b) Evolution of the MSE losses as a function of the number of
epochs for the training and validation sets.

integrated with velocity-verlet algorithm and a time step 6¢* =
0.001. The chosen large value of N reduces strongly the finite
size effects so that corrections on the diffusion coefficients
were not necessary [28]. For all the thermodynamic states,
the system was equilibrated during 10° time steps followed
by a production run of 2 x 103 steps during which averaged
properties were calculated.

Results along isobar P* = 1.0 are shown in Fig. 3 as a
typical example. Those for isobars P* = 5.0 and P* = 10.0,
respectively, are shown in Figs. S1 and S2 in the Supplemental
Material [29]. Various quantities were collected for all tem-
peratures spaced by temperature step AT = 0.02. Below the
melting point, the system was cooled down with a fast quench-
ing rate of Q = 0.01 to avoid spontaneous crystallization. The
dynamical glass transition occurs at the crossover seen on the
temperature evolution of the density [panel (b)] and the diffu-
sion [panel (c)]. In panel(a) the excess potential energy with
and without long-range corrections are compared, showing
that they are always very small. For each generated state point,
inherent structure energies [12,13] were determined from a
conjugate gradient minimization on five independent config-
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FIG. 3. Molecular dynamics simulation results along isobar
P* =1, namely, excess potential energy (a), density (b), self-
diffusion coefficients (c), and pair-correlation functions (d).
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FIG. 4. Excess chemical potential reduced by the temperature
(B =1/T*) as a function of density. Predictions of the NN (solid
lines) are compared to the direct molecular dynamics simulations
(filled circles) of Ref. [30] for isotherms 7* = 1.5 and 2 and
Ref. [31] for T* = 1.2.

urations. The needed data from these isobars as well as all
others were stored in a data set to determine in a post treatment
the excess entropy with the machine learning approach.

E. Testing the neural network

From the predicted excess Helmholtz free energy A, the
excess entropy can be determined readily from MD simula-
tions by the thermodynamic relation,
Uet( — A:x
e 3)
in which UZ is the excess energy. In order to assess the
reliability of the approach, results of the excess entropy is
compared to independently published MD dynamics simula-
tion [30,31] through the excess chemical potential fi.x using
the standard relation [32],

P
Sexzﬂ__1+
0

* —
Sex -

IBUex
- exs 4
) Bu “)

where P is the pressure. Figure 4 shows the excess chemical
potential for several isotherms. Good agreement is found for
all of them given the fact that the small number of atoms in
those simulations tends to underestimate the chemical poten-
tial [30].

III. RESULTS AND DISCUSSION

Figure 5 shows the evolution the reduced diffusion by
means of Rosenfeld’s scaling as a function of —S% =
—Sex/Nkp for all the simulated state points. The latter were
obtained along 22 isobars with a temperature step of 0.02 that
cover quite homogeneously the considered phase diagram as
shown in the inset. In doing so, —S7, spans almost over the
complete range considered for most of the pressures. Dif-
fusion curves for all isobars collapse nicely onto a master
curve for —S% going from O in the dilute gas phase to the
dense liquid phase even up to roughly 3.9 corresponding to
the melting line [34] as will be seen below. Such a behavior
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FIG. 5. Scaled diffusion D* as a function of excess entropy
—S8% = —Sex/Nkg along 22 isobars shown in the upper right inset.
The green dashed line corresponds to a fit of the diffusion data in the
range 1 < 8% <3 with Rosenfeld” law 0.61 x exp(—0.7518%)
(see the text). The considered pressures are P*=
0, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 10, 15,
20, 25, 30, 40, and 50. The black dashed lines correspond to
liquid-gas coexistence after Ref. [33] below p* = 0.8 and the
solid-liquid coexistence after Ref. [34] above. The lower left inset
shows the scaled diffusion in the dilute fluid range with small —S7,.
The blue dashed-dot line corresponds to Rosenfeld’s [5] power-law
0.305(—Se) 23,

is well known and corresponds to Rosenfeld’s findings com-
mented several times and nicely reviewed very recently by
Dyre [6]. The data shown in the curves have unprecedented
low dispersion [22], which can be attributed to the fact that:
(1) the diffusion coefficients and corresponding potential en-
ergies are extracted from the same body of 17 500 large-scale
MD simulations, and (ii) the entropy is obtained consistently
using a machine learning approach on accurate EOSs [23,24].
Following Rosenfeld [5], above melting, the excess entropy
scaling shows a clear crossover around —S7, >~ 1 with a power
law for dilute gas below 1, i.e., 0.305(—S¢ )%/ and the ex-
ponential law 0.61 * exp(—0.751S% ) above as shown in the
lower left inset of Fig. 5. The exponential law was fitted in
the range of 0.61 * exp(—0.751S}, ) including all isobars. It is
worth mentioning that with this fitting range, the exponential
law still holds even below the melting line for low pressures
roughly P* < 0.5.

Figure 6 displays the temperature evolution of the ex-
cess entropy for all considered isobars. The blue dashed line
shows the values of S¥ found for the densities and temper-
atures corresponding to the melting line taken from Mastny
and De Pablo [34]. Interestingly, S}, remains quite constant
with a value of ~3.85 up to P* =50 that highlights once
more the importance of excess entropy in describing the
phases of matter [32]. The dashed red line corresponds to
the crossover between the power and the exponential scaling
laws as described above. Three green curves were chosen to
intersect the crossover over the complete range of tempera-
tures investigated, avoiding them being too close to liquid-gas
coexistence line and critical point. They correspond to isobars
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FIG. 6. Excess entropy as a function of temperatures along iso-
bars for all pressures. The blue dashed line corresponds to the
melting line inferred from Ref. [34] and the red dashed-dot one
marks the crossover at —S7, = 1 (see the text). The green full circle,
triangle, and square represent the onset of free diffusion regime in
the potential energy landscape for P* = 1.0, 5.0, and 10.0 as shown
in Fig. 7.

P*=1.0, P*=5.0, and P* = 10.0 that were investigated
further by MD to reveal the properties of their underling PEL.

For each temperature above the melting line, an average
inherent-structure energy (ISE) [13] over 50 independent con-
figurations was determined by means of conjugate gradient
minimization, bringing the system local minimum of the PEL.
Below the melting line, the system was first rapidly quenched
with a cooling rate of 0.02 before calculating the ISEs in
the same manner. The corresponding ISE curves for the three
pressures are drawn in Fig. 7 for which an additional Stavitky
and Golay smoothing with ten points was applied. A typical
behavior as a function of temperature [13] is seen for all
the curves with an almost linear regime at high-temperature
corresponding to the so-called free diffusion regime that turns
to a more pronounced decrease upon further cooling as the
system enters the landscape-influenced regime (highlighted
by a colored area under the curves). Finally, when the dynam-
ical glass transition is reached, ISE curves remain essentially
constant at low temperatures, marking the glassy regime. The
turning points between the free diffusion and the landscape
influenced regime, marked by symbols were determined by
a linear regression by least squares minimization of the free
diffusion regime. Decreasing progressively the hypothetical
turning point temperature (i.e., increasing the fitting range)
the final value was identified when the Pearson correlation
coefficient was below a threshold of 0.98. The correspond-
ing p value of the ¢ statistics with a null hypothesis of a
nonlinear regression was always below 0.05. The ISEs are
seen to decrease with pressure whereas the range of landscape
influenced regime widens.

The excess entropy corresponding to the temperature sepa-
rating the landscape-influenced and the free diffusion regimes
determined above for each of the three pressures are also
drawn in Fig. 6 with the symbols. An excellent match is
found with the crossover in the excess entropy scaling laws,
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FIG. 7. Inherent structure energy for P* = 1.0, 5.0, and 10.0.
The filled areas under the curves correspond to the landscape influ-
enced regime with a lower limit corresponding to the dynamical glass
transition of 0.32, 0.67, and 1.20, and a upper limit of 2.32, 5.04,
and 8.52, respectively, for P* = 1.0, 5.0, and 10.0. The respective
vertical dashed, dashed-dot, and dotted lines mark the melting points,
namely, 0.74, 1.06, and 1.379, after Ref. [34]. The green full circle,
triangle, and square represent the onset of free diffusion regime in
the potential energy landscape.

demonstrating a strong correlation between the two in a
wide range of pressures and temperatures. The free diffusion
regime is representative of the dilute gas with low density
and high-temperature fluid where the PEL is only weakly felt
by the system. The latter can be considered as composed of
colliding hard sphere particles having a diffusion proportional
to the mean free path and thermal velocity. This might be
well undertaken in the framework of Enskog’s theory [3] from
which emerges the power law with exponent 2/3 [5]. For
=Sk > 1, our results show that Rosenfeld’s exponential law
might be related to the landscape-influenced regime whatever
the pressure. The progressive transition region between weak
and strong coupling behaviors of the entropy scaling curve
around —S} =~ 1 mirrors the one of the ISE curves between
diffusion and landscape-influenced regimes shown in Fig. 7.
Although not justified in details by Rosenfeld initially, his
macroscopically reduced units involve a general length scale
p~'/3 generally associated with an average distance between
particles. It can be interpreted as a mean free path between
collisions at low densities that progressively tends to the av-
erage interparticle distance as the density increases. Along
this line, a modified excess entropy scale was proposed very
recently, unifying the two regimes [22].

Although the landscape-influenced regime of the PEL ex-
tends to the glass transition by definition [13], the exponential
seems to hold generally only above the melting point. Fig-
ure 5 indicates, however, that it extends significantly below
the melting line for low pressures, consistently with the PEL

view. For higher pressure, probably the high density and low
pressure thermodynamic states are less well described by
the underlying equation of states [24] considered, preventing
accurate estimation of the entropy with the ML approach,
accuracy known to be crucial [17]. Interestingly, MD simula-
tions with the Kob-Andersen binary LJ model [35] show that
excess-entropy scaling still holds down to the mode coupling
critical temperature, but the exponential law seems to be lim-
ited to moderate undercooling only, recalling though that the
configuration entropy was used for the scaling in that case.
This prompts us to further investigations below the melting
line [36].

IV. CONCLUSION

A significant body of self-diffusion coefficients and po-
tential energies obtained by large-scale molecular dynamics
simulation was combined to machine learning to efficiently
and accurately determine the entropy for temperatures and
pressures ranging to 0.5 < 7" < 6.0 and 0 < P* < 50.0, re-
spectively, representative of the essential part of the LJ phase
diagram for the fluid phase. Our results reveal that excess-
entropy scaling discovered by Rosenfeld is a consequence of
the properties of the underlying potential energy landscape.
This link reflects the complexity of the PEL. As a matter of
facts, local minima of the PEL fix the number of accessible
states corresponding to the very definition of the entropy
and barrier heights fix the transition rates. Such an intimate
relation between the PEL and the dynamics was also demon-
strated recently to be quite general for pure liquid metals [37].
Interestingly, as revealed here, the crossover line between the
free diffusion and the landscape-influenced regimes as well as
the melting line within the pressure range investigated here
seem to be excess entropy invariant. For dense liquids, it was
shown that isomorph invariance might be the appropriate theo-
retical framework [6]. Given the link revealed here, it could be
more general as the PEL view offers a generalization ground
and opens the way for further theoretical developments and
understanding.
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