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One-dimensional telegraphic process with noninstantaneous stochastic resetting
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In this paper, we consider the one-dimensional dynamical evolution of a particle traveling at constant speed
and performing, at a given rate, random reversals of the velocity direction. The particle is subject to stochastic
resetting, meaning that at random times it is forced to return to the starting point. Here we consider a return
mechanism governed by a deterministic law of motion, so that the time cost required to return is correlated to
the position occupied at the time of the reset. We show that in such conditions the process reaches a stationary
state which, for some kinds of deterministic return dynamics, is independent of the return phase. Furthermore,
we investigate the first-passage properties of the system and provide explicit formulas for the mean first-hitting
time. Our findings are supported by numerical simulations.
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I. INTRODUCTION

Stochastic processes under resetting have attracted
growing interest in the past few years. Such processes may be
represented by a diffusing particle which, at random or fixed
times, is reset to a given position, which usually coincides
with the starting point [1]. One can find models of this kind
in many fields: For example, in biophysics this is a good way
to reproduce the Michaelis-Menten reaction scheme [2,3]. In
biology, stochastic resetting is used to describe the competi-
tion between the polymerization of Ribonucleic acid (RNA)
and polymerases backtracking along the template of Deoxyri-
bonucleic acid (DNA) [4]. In fields such as computer science
[5,6] and biological physics [7], algorithms and patterns with
random restarts are identified as optimal search strategies.

In the literature, there is a rich variety of examples where
one analyzes the effects of resetting on different kinds of
stochastic motion, ranging from continuous-time random
walks [8–12] to Lévy flights [13,14]. Also, the domain of
waiting time distributions between resetting events considered
so far covers exponential distributions [15] and power laws
[12,16,17] and includes the case of resetting at fixed times,
which has been recognized as the most effective resetting pro-
tocol for search processes [18–20]. Nevertheless, in the most
common formulation the dynamics is governed by Brownian
motion, the resetting is stochastic, occurring at constant rate
[15,21], and the return is instantaneous. This picture, however,
presents at least two flaws. First, Brownian motion is not al-
ways the best model to describe the stochastic dynamics of the
system, especially when it is probed at microscopic scales and
one needs to take into account the effects of a finite speed of
propagation. A well-known case study is the run-and-tumble
motion of Escherichia coli bacteria [22,23], but we can find
such situations when dealing with long-chain polymers [24],
chemotaxis [25], and active matter [26,27]. In this regard, the
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simplest models to incorporate the momentum dynamics into
the stochastic evolution of the displacement are the persistent
random walk [28] and its continuous-time counterpart, known
as the telegraphic process [29]. This observation has led to
increasing interest in the study of the telegraphic process
undergoing stochastic resetting [30–32]. The second problem
is related to the fact that it is not always possible to neglect the
time cost needed to return to the initial location after the reset,
for example, in experiments. Indeed, in the past few years
several studies have described and analyzed the experimental
realization of systems where different kinds of resetting proto-
cols are implemented with the action of optical traps [33–37].
By exerting a confining potential on the system, which may be
switched on and off, an active trap forces a diffusing particle
to move toward the minimum of the potential, which usually
corresponds to the resetting location. In order to take into
account the contribution of the return dynamics to the whole
process, models including random refractory times preceding
the return have been presented in the literature [38–40], but
these do not consider spatiotemporal correlations. For this
reason, recent works introduced the idea that the return to the
starting location should be performed according to a determin-
istic law [41–45]. In particular, Ref. [45] provides a theory to
treat analytically a stochastic process subject to resetting for
which the return to the starting point is ruled by a general
equation of motion.

The aim of this paper is to investigate the properties of
the one-dimensional telegraphic process undergoing stochas-
tic Poissonian resetting with a deterministic dynamics toward
the starting site, by using the analytical tools presented in
Ref. [45]. Since explicit results can be obtained if we can
determine the return time from the equation of motion, we
will consider three types of return motion for which this is
doable: (i) motion at constant speed, (ii) motion at constant
acceleration, and (iii) harmonic motion.

The paper is organized as follows: In Secs. II and III, we
provide the reader with a short review of the theory presented
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in Ref. [45] and an introduction to the telegraphic process.
In Sec. IV, we apply the theory to our model, presenting
the results obtained for the probability density function, the
stationary distribution, and the corresponding moments. In
Sec. V, we investigate the first-passage properties of the
system and their dependence on the return dynamics, by pro-
viding explicit expressions for the mean first-passage time.
Finally, in Sec. VI, we draw our conclusions and discuss the
results.

II. MODEL: NONINSTANTANEOUS RESETTING

In this section, we shortly review the model presented in
Ref. [45] in order to provide the reader with the analytical
tools that will be used throughout the paper. The process as
a whole can be seen as a sequence of subprocesses. Each
subprocess can be split in two phases: the displacement phase
x(t ), consisting of the stochastic dynamics of the diffusing
particle, and the return phase, which occurs after the resetting
event and consists of the deterministic motion to the resetting
location. In the following, we will always take x = 0 as both
the starting point of the displacement phase and the resetting
location. The duration τ of the displacement phase, which
corresponds to the time of the resetting event measured from
the start of the subprocess, is a random variable drawn from a
waiting time distribution with density ψ (τ ). The deterministic
motion during the return phase is governed by the equation of
motion x = χ (x0, θ ), which can be inverted to obtain the time
needed to travel from x0 to x, i.e., θ = ϑ (x0, x). The time cost
to return to the origin is θ (x0) = ϑ (x0, 0). The total duration
of the subprocess is thus t = τ + θ (x0).

A. Duration of a subprocess

Let φ(t ) be the probability density that the duration of the
subprocess is t . The duration τ of the displacement phase is
ruled by the waiting time distribution for the resetting event
ψ (τ ). At the time of the reset, the particle occupies a random
position x, with distribution p(x, τ ), where p(x, t ) is the prob-
ability density of the displacement phase. The duration θ (x0)
of the return phase is a deterministic function of this random
position, and hence we can write

φ(t ) =
∫ ∞

0
dτψ (τ )

∫ +∞

−∞
dxδ[t − τ − θ (x)]p(x, τ ), (1)

where δ(·) denotes the Dirac delta function. We can eliminate
the constraint of the delta function by defining the Laplace
transform

φ̂(s) =
∫ ∞

0
e−stφ(t )dt, (2)

and performing the integration in t :

φ̂(s) =
∫ +∞

−∞
dxe−sθ (x)

∫ ∞

0
dτe−sτψ (τ )p(x, τ ). (3)

The probability that the nth subprocess ends at time t is

φn(t ) =
∫ t

0
φn−1(t ′)φ(t − t ′)dt ′, (4)

which can be equivalently written in Laplace space as

φ̂n(s) = [φ̂(s)]n. (5)

The total probability of starting a new subprocess at time t
is defined by

κ (t ) = δ(t ) +
∞∑

n=1

φn(t ), (6)

where the delta function accounts for the fact that the first
subprocess starts at t = 0. Note that in the Laplace domain
this becomes

κ̂ (s) = 1

1 − φ̂(s)
, (7)

and hence for distribution possessing a well-defined first mo-
ment η such that in the small-s limit we can write φ̂(s) ∼
1 − ηs, this equation yields κ̂ (s) ∼ 1/(ηs), where η is the
mean duration of a subprocess. This means that in the long-
time limit the renewal rate converges to a constant value:

lim
t→∞ κ (t ) = 1

η
. (8)

B. General form of the probability density function
and stationary distribution

In order to obtain the probability density function (PDF) of
the position for the complete process, P(x, t ), one can first de-
fine G(x, t ), the density of the displacement for a subprocess.
Then P(x, t ) can be expressed in terms of the probability that
the last subprocess started at time t ′ < t and has reached x in
a time t − t ′:

P(x, t ) =
∫ t

0
κ (t ′)G(x, t − t ′)dt ′. (9)

Now we note that G(x, t ) is the sum of two terms: Indeed,
if no reset has occurred up to time t from the beginning of
the subprocess, then the displacement density is simply given
by p(x, t ) and hence the corresponding contribution can be
written as

G1(x, t ) = p(x, t )�(t ), (10)

where �(t ) denotes the probability that no resetting event has
occurred up to time t :

�(t ) =
∫ ∞

t
ψ (t )dt . (11)

If instead the reset occurred at time τ < t , then the pro-
cess stopped at a random position x0, whose distribution is
p(x0, τ ), and then started moving according to the determinis-
tic law of motion x = χ (x0, θ ). Therefore, the corresponding
term can be expressed as

G2(x, t ) =
∫ ∞

0
dτψ (τ )

∫ +∞

−∞
dx0 p(x0, τ )g2(x, t ; x0, τ ),

(12)
where g2(x, t ; x0, τ ) is

g2(x, t ; x0, τ )

= δ[x − χ (x0, t − τ )] × �(t − τ )�(τ + θ (x0) − t ),
(13)
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and �(x) is defined as follows:

�(x) =
{

1 if x � 0
0 if x < 0.

(14)

In order to evaluate the PDF of the complete process, we
observe that since Eq. (9) takes the form of a convolution, it is
more easily evaluated in Laplace space:

P̂(x, s) = κ̂ (s)Ĝ(x, s) = Ĝ(x, s)

1 − φ̂(s)
, (15)

where we used Eq. (7) and we recall that Ĝ(x, s) = Ĝ1(x, s) +
Ĝ2(x, s). By using Eqs. (10) and (12), it is possible to obtain
more explicit formulas for the Laplace transforms Ĝ1(x, s)
and Ĝ2(x, s). For Ĝ1(x, s) we get

Ĝ1(x, s) =
∫ ∞

0
e−st p(x, t )�(t )dt . (16)

For Ĝ2(x, s), we change the order of integration between t and
τ , and by introducing u = t − τ we can write

Ĝ2(x, s) =
∫ ∞

0
dτe−sτψ (τ )

∫ +∞

−∞
dx0 p(x0, τ )

×
∫ ∞

−τ

due−suδ[x − χ (x0, u)]�(u)�(θ (x0) − u)

(17)

=
∫ ∞

0
dτe−sτψ (τ )

∫ +∞

−∞
dx0 p(x0, τ )

×
∫ ∞

0
due−suδ[x − χ (x0, u)]�(θ (x0) − u). (18)

We now observe that the integration variable u represents the
time of the return phase, during which the distance of the
particle from the origin is a decreasing function of u. This
means that the delta function in the last integral provides a
nonvanishing contribution only for distances smaller than the
initial distance, i.e., for |x| � |x0|. The computation can then
be performed by using the equation of motion to define a new
integration variable y as y = χ (x0, u). This definition can be
inverted to write the old variable u as

u = ϑ (x0, y), (19)

so that the integral in u yields∫ ∞

0
due−suδ[x − χ (x0, u)]�(θ (x0) − u)

=
{

e−sϑ (x0 ,x)

|v(x0,x)| for |x| � |x0|
0 for |x| > |x0|, (20)

where |v(x0, x)| = |( dϑ (x0,x)
dx )−1| is the speed of the particle at

position x. Therefore, we find

Ĝ2(x, s) =
∫ ∞

0
dτe−sτψ (τ )

∫ ∞

|x|
dx0

×
{

e−sϑ (x0 ,x)

|v(x0,x)| p(x0, τ ) for x � 0
e−sϑ (−x0 ,x)

|v(−x0,x)| p(−x0, τ ) for x < 0,
(21)

and one can prove that the resulting PDF is correctly normal-
ized; see Appendix A.

The large-t behavior of P(x, t ) can be deduced from the
small-s limit of P̂(x, s). The situation is particularly easy if the
mean duration of a subprocess is finite. Indeed, from Eq. (15),
by taking the limit s → 0 and assuming that φ̂(s) ∼ 1 − ηs,
we can write

P̂(x, s) ∼ 1

ηs
Ĝ(x, s = 0) = 1

ηs

∫ ∞

0
G(x, t )dt, (22)

from which one can deduce the following relation in the time
domain:

lim
t→∞ P(x, t ) = P(x) = 1

η
[ρ1(x) + ρ2(x)], (23)

where

ρ1(x) =
∫ ∞

0
G1(x, t )dt (24)

ρ2(x) =
∫ ∞

0
G2(x, t )dt . (25)

This means that in the long-time limit the system reaches a
steady state, often referred to as nonequilibrium steady state
(NESS), for to the presence of persistent probability currents
directed toward the resetting position [21]. The steady state is
described by P(x), the stationary distribution, which in this
case is the sum of two different contributions. The compo-
nents ρ1(x) and ρ2(x) can be computed as the limit s → 0 of
Ĝ1(x, s) and Ĝ2(x, s), respectively, yielding the expressions

ρ1(x) =
∫ ∞

0
p(x, t )�(t )dt (26)

and

ρ2(x) =
∫ ∞

0
dτψ (τ )

∫ ∞

|x|
dx0

×
{

p(x0,τ )
|v(x0,x)| for x � 0
p(−x0,τ )
|v(−x0,x)| for x < 0.

(27)

We point out that there exist cases in which, despite the
action of a resetting mechanism, the system never reaches
a steady state. This fact has been observed, e.g., for scaled
Brownian motion under Poissonian and power-law resetting
[46], or in diffusive systems with resetting at power-law times
[16–18]. In such situations, the long-time behavior of the
system can still be described by an invariant density which is,
however, non-normalized. In other words, for some exponent
α there exists

lim
t→∞ tαP(x, t ) = I∞(x), (28)

where I∞(x) is called an infinite density in the sense that
it is non-normalizable. Nevertheless, the infinite density can
capture some of the statistical properties of the system. The
study of infinite invariant densities and the connection with
the properties of stochastic processes is a major topic in infi-
nite ergodic theory, which has attracted significant interest in
recent years; see, for example, Refs. [47–54].

III. THE TELEGRAPHIC PROCESS

The telegraphic process has been widely considered in both
the physical and the mathematical literature [29,55–59]. In
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one dimension, the process may be defined as the mathemati-
cal equivalent of a particle moving at constant velocity c and
randomly reversing the direction of motion from time to time
at a fixed rate γ . If c0 is the initial velocity, then the state of
the velocity at time t is

v(t ) = c0(−1)N (t ), (29)

where N (t ) is the number of events up to time t of a ho-
mogeneous Poisson process of rate γ . It follows the Kac’s
representation [55]:

x(t ) =
∫ t

0
v(t ′)dt ′ = c0

∫ t

0
(−1)N (t ′ )dt ′. (30)

It turns out that the equation for the time evolution of the PDF
of the process is the so-called telegrapher’s equation [29]

∂2 p

∂t2
+ 2γ

∂ p

∂t
= c2 ∂2 p

∂x2
, (31)

whose solution, relative to the initial conditions

p(x, 0) = δ(x),
∂ p(x, t )

∂t

∣∣∣∣
t=0

= 0, (32)

is [29]

p(x, t ) = e−γ t

2

{
δ(x − ct ) + δ(x + ct )

+ γ

c

[
I0(z) + γ t I1(z)

z

]
�(ct − |x|)

}
, (33)

where I0(z) and I1(z) are modified Bessel functions of the first
kind [60] and z is the dimensionless variable defined as

z = γ

c

√
c2t2 − x2. (34)

Contrary to the diffusion equation, the telegrapher’s equation
contains the speed of the particle c as a parameter, implying
that the probability density propagates in space with finite
velocity. Indeed, the solution presented in Eq. (33) vanishes
unless −ct � x � ct . However, note that we can still recover
the diffusion equation if we take the limit c → ∞, γ → ∞,
with the ratio

c2

2γ
= D (35)

kept constant (diffusive limit). Indeed, one can show that the
mean square displacement is [29]

〈x2(t )〉 = c2

2γ 2
(2γ t − 1 + e−2γ t ), (36)

which grows linearly in time and reduces to 〈x2(t )〉 = 2Dt in
the aforementioned limit. On the other hand, the limit γ → 0
corresponds to a wave equation

∂2 p

∂t2
= c2 ∂2 p

∂x2
, (37)

describing the deterministic motion at fixed c of a particle
never reversing the velocity direction (ballistic limit).

In the following, we will need the Laplace transform of
p(x, t ), which can be obtained by first computing the proba-

bility density in Fourier-Laplace space. By defining

p̃(k, s) =
∫ ∞

0
dte−st

∫ +∞

−∞
dke−ikx p(x, t ), (38)

plugging this expression into the telegrapher’s equation and
considering the initial conditions specified by Eq. (32), one
obtains

p̃(k, s) = s + 2γ

s(s + 2γ ) + c2k2
, (39)

whose Fourier inversion is easy to perform, since p̃(k, s)
presents two simple imaginary poles:

k± = ± i

c

√
s(s + 2γ ). (40)

Therefore, one finally gets

p̂(x, s) =
∫ +∞

−∞

dk

2π
eikx p̃(k, s) = λs

2s
e−|x|λs , (41)

where the parameter λq is defined as

λq =
√

q(q + 2γ )

c
. (42)

IV. TELEGRAPHIC PROCESS AND POISSONIAN
RESETTING

We now consider the telegraphic process undergoing
stochastic resetting and performing the return motion at con-
stant velocity, constant acceleration, and under the effect of
a harmonic potential. The particle starts from x(0) = 0 ran-
domly choosing the initial direction of motion, with equal
probability. The position evolves according to Eq. (30). The
dynamics is interrupted at a random time τ by the resetting
event, after which the particle starts moving toward the origin
according to the deterministic equation of motion. When the
origin is finally reached, the process is restored to the initial
conditions and starts anew. Note that different resetting proto-
cols for the initial state of the velocity can also be considered
[30]. We will take Poissonian resetting, so that the distribution
of the time interval between resetting events is exponential,

ψ (τ ) = re−rτ , (43)

where r is the resetting rate. It immediately follows that the
probability of no resetting occurring in the time interval (0, t )
is

�(t ) = r
∫ ∞

t
e−rτ dτ = e−rt . (44)

A. Return motion at constant speed

Let v be the absolute value of the velocity. Then if the
particle is reset at position x0, its position during the return
motion evolves according to

x(θ, x0) = −sgn(x0)vθ + x0, (45)

where sgn(·) denotes the sign of the argument. The time cost
needed to return to the origin is thus

θ (x0) = |x0|
v

. (46)

A sample trajectory is represented in Fig. 1.
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FIG. 1. A sample trajectory of the telegraphic process undergo-
ing stochastic Poissonian resetting and returns at finite velocity.

The Laplace transform of the duration of a subprocess can
be computed from Eq. (3) by considering the return time given
by Eq. (46); see Appendix B. We obtain

φ̂(s) = r

r + s

vλr+s

s + vλr+s
, (47)

with λr+s defined by Eq. (42). The corresponding mean dura-
tion η is

η = 1

r
+ 1

vλr
. (48)

Note that since we are considering Poissonian resetting, the
term 1/r is the mean duration of the displacement phase,
while the remaining term is the contribution of the return
motion.

We now proceed with the computation of the PDF in
Laplace space. The contribution of the displacement phase
is given by Eq. (16), from which we see that, by virtue of
Eq. (44), the function Ĝ1(x, s) is expressed as the Laplace
transform of p(x, t ), with r + s playing the role of the Laplace
variable. We thus have

Ĝ1(x, s) = p̂(x, r + s) = λr+s

2(r + s)
e−|x|λr+s ; (49)

see Eq. (41). The other contribution can instead be written, for
x � 0, as

Ĝ2(x, s) = 1

v

∫ ∞

x
dx0e−sϑ (x0,x)

∫ ∞

0
dτe−sτψ (τ )p(x0, τ )

(50)

= r

v

∫ ∞

x
dx0e−sϑ (x0,x)

∫ ∞

0
dτe−(r+s)τ p(x0, τ ) (51)

= r

v

∫ ∞

x
dx0e−sϑ (x0,x) p̂(x0, r + s), (52)

where ϑ (x0, x) can be deduced from the equation of motion,
Eq. (45):

ϑ (x0, x) =
{ x0−x

v
for x � 0

x−x0
v

for x < 0.
(53)

By using this expression in the former integral, we get

Ĝ2(x, s) = r

s + vλr+s
p̂(x, r + s), x � 0, (54)

and one can check that the same result is valid for the case x <

0. By adding the contributions given by Eqs. (49) and (54) we
obtain the Laplace transform Ĝ(x, s), which can be plugged
in Eq. (15), together with the expression for φ̂(s) given by
Eq. (47). This yields

P̂(x, s) = r + s

s
p̂(x, r + s) = λr+s

2s
e−|x|λr+s , (55)

which can be inverted explicitly, so that one arrives at

P(x, t ) = e−rt p(x, t ) + r
∫ t

0
e−rt ′

p(x, t ′)dt ′. (56)

Interestingly, this is the same density one obtains in the case
of Poissonian resetting with instantaneous returns; see, for
instance, Refs. [1,30]. Therefore, in this case the PDF is com-
pletely unaffected by the particular type of return dynamics.
Furthermore, by taking the limit t → ∞, we can check that
the system relaxes to the steady state

P(x) = lim
t→∞ P(x, t ) = λr

2
e−|x|λr , (57)

which indeed is the same obtained for instantaneous resetting
[30,31]. One can compute the qth moment of the stationary
distribution, obtaining

〈|x|q〉 = λr

∫ ∞

0
xqe−λr xdx = �(1 + q)

λ
q
r

, (58)

and in particular the mean square displacement is

〈x2〉 = 2

λ2
r

= 2c2

r(r + 2γ )
. (59)

We remark that the independence of the steady state from
the return velocity was already observed in the literature for
many systems, including the telegraphic process [41]. Such
a feature may be extended to the finite-time behavior of the
PDF, as it happens in the case of Brownian motion [42].

B. Return motion at constant acceleration

We assume that when the deterministic return motion
starts, the initial velocity is v0 = 0. The dynamics is thus given
by

x(θ, x0) = −sgn(x0)
1

2
aθ2 + x0

v(θ ) = −sgn(x0)aθ,

where a is the absolute value of the acceleration. The time
needed to return to the origin from x0 is

θ (x0) =
√

2|x0|
a

. (60)

Figure 2 displays a sample trajectory.
In Appendix B, we show that the Laplace transform of the

duration of a subprocess is

φ̂(s) = r

r + s
{1 − √

πξeξ 2
[1 − erf (ξ )]}, (61)
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FIG. 2. A sample trajectory of the telegraphic process undergo-
ing stochastic Poissonian resetting and returns at finite acceleration.

where

ξ =
[

2a

cs2

√
(2γ + r + s)(r + s)

]− 1
2

, (62)

and erf (z) is the error function

erf (z) = 2√
π

∫ z

0
e−t2

dt, (63)

from which it follows that the mean duration is

η = 1

r
+

√
π

2aλr
. (64)

In order to compute the PDF, we first consider the Laplace
domain. The contribution of the displacement phase does not
depend on the return motion, and hence Ĝ1(x, s) has the same
expression as before, given by Eq. (49). The contribution
of the return phase instead can be computed from Eq. (21).
By considering the case x � 0 (the case x < 0 follows from
symmetry) and carrying out the integration in τ , we get

Ĝ2(x, s) = r
∫ ∞

x

dx0

|v(x0, x)|e−sϑ (x0,x) p̂(x, r + s), (65)

with

ϑ (x0, x) =
√

2(x0 − x)

a
, (66)

|v(x0, x)| =
√

2a(x0 − x). (67)

The integral thus yields

Ĝ2(x, s) = r

s

√
πξeξ 2

[1 − erf (ξ )] p̂(x, r + s), (68)

which is also valid for x < 0. The Laplace transform Ĝ(x, s)
is then obtained by adding the two contributions Ĝ1(x, s) and
Ĝ2(x, s). Therefore, from Eqs. (15) and (61), one arrives at

P̂(x, s) = r + s

s
p̂(x, r + s), (69)

which is precisely the result of the previous case, meaning that
also for returns at constant acceleration the PDF is unaffected
by the return motion.

It is possible to show that, if we consider the telegraphic
process and Poissonian resetting, a sufficient condition for
the independence of the PDF from the return dynamics is
that both ϑ (x0, x) and v(x0, x) are functions of the distance
|x0 − x|:

ϑ (x0, x) = ϑ (|x0 − x|), (70)

v(x0, x) = v(|x0 − x|). (71)

We recall that ϑ (x0, x) represents the time needed to travel
from x0 to x and v(x0, x) is the velocity reached at position x
during the return phase. The two are thus related by

1

v(x0, x)
= ∂ϑ (x0, x)

∂x
. (72)

Let us consider the case x � 0. Then from Eq. (21), by taking
ψ (τ ) = r exp(−rτ ) and performing the time integration, we
get

Ĝ2(x, s) = r
∫ ∞

x
dx0

e−sϑ (x0−x)

|v(x0 − x)| p̂(x0, r + s) (73)

= r
∫ ∞

0
dy

e−sϑ (y)

|v(y)| p̂(y + x, r + s), (74)

where in the second line we introduced the variable y = x0 −
x. Now, since we are considering the telegraphic process, we
have

p̂(x + y, r + s) = λr+s

2(r + s)
e−(x+y)λr+s (75)

= e−yλr+s p̂(x, r + s), (76)

and hence Ĝ2(x, s) can be written

Ĝ2(x, s) = rC(r, s) p̂(x, r + s), (77)

where

C(r, s) =
∫ ∞

0
dy

e−sϑ (y)−yλr+s

|v(y)| . (78)

We remark that C(r, s) depends on the parameters of the return
motion. One can easily verify that the same expression is
obtained for the case x < 0, where it is useful to consider the
change of variable y = x − x0, so that

Ĝ2(x, s) = r
∫ x

−∞
dx0

e−sϑ (x−x0 )

|v(x − x0)| p̂(x0, r + s) (79)

= r
∫ ∞

0
dy

e−sϑ (y)

|v(y)| p̂(x − y, r + s) (80)

= r
∫ ∞

0
dy

e−sϑ (y)

|v(y)| p̂(|x| + y, r + s), (81)

where in the last line we exploited the symmetry of p̂(x, s).
Therefore, the complete PDF reads

P̂(x, s) = Ĝ1(x, s) + Ĝ2(x, s)

1 − φ̂(s)
(82)

= 1 + rC(r, s)

1 − φ̂(s)
p̂(x, r + s). (83)
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FIG. 3. Agreement of the numerical results with P(x, t ) given by Eq. (56), for several resetting rates in the case of (a) return motion at
constant speed with v = 1 and (b) constant acceleration with a = 1. The data (markers) are compared with the theoretical time-dependent
PDFs (solid lines) and the corresponding stationary distributions (black lines). In both cases, we simulated 107 processes with individual time
step length dt = 0.01 and set γ = c = 1. The vertical lines mark the values ±x∗ given by Eq. (88) in the particular case r = 0.5.

At this point, we observe that by integrating both sides in x,
the normalization condition implies

1

s
= 1 + rC(r, s)

1 − φ̂(s)

1

r + s
, (84)

from which it immediately follows that

P̂(x, s) = r + s

s
p̂(x, r + s). (85)

Note that the crucial point is the factorization of p̂(x + y, r +
s) as the product of a function of x only and a function of y
only. Therefore, the same reasoning can be applied to the case
of Brownian motion, where

p(x, t ) = e− x2

4Dt√
4πDt

⇐⇒ p̂(x, s) = e−|x|
√

s
D

√
4Ds

. (86)

Figure 3 shows the agreement of our numerical simulation
with the theoretical results. The data obtained by evolving
the process numerically in the case of returns at constant
speed and constant acceleration agree with the same stationary
distribution, except for large values of |x|. We trace back such
disagreement to two main reasons: The first is the contribution
of the singular part of p(x, t ), i.e., the part containing the delta
functions in Eq. (33), which represents those walks that do not
experience any velocity reversal up to time t ; see Ref. [29].
This contribution is described by two ballistic peaks at x =
±ct , whose height is proportional to the probability that a
particle performs ballistic motion up to time t . The ballistic
peaks are relevant also in the presence of resetting, even if
their probability decays in time as exp[−(r + γ )t], while for
the resetting-free process, the probability of the ballistic peaks
decays as exp(−γ t ). More details are given in Appendix C.
This fact is responsible for the deviations of the data points
at the boundaries of the spatial domain, which indeed are
peaked with respect to neighboring points. The second reason
for the disagreement for large |x| is that, as observed for
other systems [18,61,62], the process for large but finite t
relaxes to the steady state inside a spatial region delimited by

a time-dependent threshold ±x∗, outside of which the system
persists in a transient state, representing large deviations from
the stationary distribution. By following Ref. [61], we obtain
that for large t the PDF behaves as P(x, t ) ∼ exp[−t I (x, t )],
with

I (x, t ) =
{

λr
|x|
t for |x| < |x∗|

r + γ − γ

√
1 − x2

c2t2 for |x| > |x∗|, (87)

and we can estimate |x∗| as

|x∗| =
√

r(r + 2γ )

r + γ
ct ; (88)

more detailed calculations are presented in Appendix C. Note
that for any positive γ the region (−x∗, x∗) is included in
(−ct, ct ), which is the maximum extension of the PDF for
finite t (the system propagates with finite speed c).

C. Harmonic return motion

A sample trajectory depicting this situation is showed in
Fig. 4. In this case, by assuming that the return phase starts
with v0 = 0, we have the following equation of motion:

x(x0, θ ) = x0 cos (ωθ )

v(x0, θ ) = −ωx0 sin (ωθ ),

where ω is the radial frequency. The time to travel to the
origin is a fixed value independent of the starting point

θ = π

2ω
, (89)

so that the Laplace transform of the duration of a subprocess
is easy to obtain, see Appendix B, and can also be inverted
explicitly:

φ̂(s) = r

r + s
e− πs

2ω (90)

φ(t ) = re−r(t− π
2ω )�

(
t − π

2ω

)
. (91)
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FIG. 4. A sample trajectory of the telegraphic process undergo-
ing stochastic Poissonian resetting and harmonic return motion.

The mean duration of a subprocess is trivially

η = 1

r
+ π

2ω
. (92)

The PDF can be computed following the same procedure
of the previous sections. The contribution Ĝ1(x, s) of the dis-
placement phase remains evidently unchanged. For the return
phase, we have

ϑ (x0, x) = 1

ω
arccos

( x

x0

)
, (93)

|v(x0, θ )| = ω

√
x2

0 − x2, (94)

and thus the integral defining Ĝ2(x, s), for all x, reads

Ĝ2(x, s) = r

ω

∫ ∞

|x|

e− s
ω

arccos(|x|/x0 )√
x2

0 − x2
p̂(x0, r + s)dx0, (95)

where we used the fact that p̂(x0, r + s) = p̂(−x0, r + s). It is
convenient to consider the rescaled variable z = x0/|x|. Then,
in virtue of Eq. (15), the complete PDF is

P̂(x, s) =
1
2λr+s

s + r
(
1 − e− πs

2ω

){
e−|x|λr+s

+ r

ω

∫ ∞

1

exp [−z|x|λr+s − s/ω arccos(1/z)]√
z2 − 1

dz

}
.

(96)

In the small-s limit, this expression yields

P̂(x, s) ∼ 1

s

1
1
r + π

2ω

(
λr

2r
e−|x|λr + λr

2ω

∫ ∞

1

e−z|x|λr

√
z2 − 1

dz

)
,

(97)

where the integral on the right-hand side can be written in
terms of the modified Bessel function of the second kind of
order 0 [60]. The stationary distribution is thus

P(x) =
λr
2r e−|x|λr + λr

2ω
K0(λr |x|)

1
r + π

2ω

, (98)

and we observe that P(x) this time depends explicitly on
the parameter ω of the return motion. The moments of the
distribution can be computed explicitly. We first note that∫ ∞

0
xqK0(λx)dx = 1

λq+1

∫ ∞

0
dz

∫ ∞

1
dt

e−zt

√
t2 − 1

(99)

= �(1 + q)

λq+1

∫ ∞

1

dt

t1+q
√

t2 − 1
, (100)

where �(·) is the Gamma function. The last integral can
be transformed by considering the change of variable 1/t =
cos φ, yielding

∫ π
2

0
cosq φdφ = 2q−1 �2

( 1+q
2

)
�(1 + q)

; (101)

see Eq. (3.621(1)) in Ref. [63]. Therefore, the qth moment
reads

〈|x|q〉 =
[
2ω�(1 + q) + r2q�2

( 1+q
2

)]
2ω + πr

λ−q, (102)

and in particular the expression for the mean square displace-
ment is

〈x2〉 = 4ω + πr

2ω + πr

c2

r(r + 2γ )
. (103)

Figure 5 shows the agreement of numerical simulations
with the theoretical results. In particular, we observe that the
convergence of the numerical data to the stationary distribu-
tion is slower for lower values of the resetting rate. Indeed, by
the time of our simulations the data corresponding to smaller
r present important deviations from P(x), especially for large
|x|. This suggests that the relaxation to the steady state may
present similar features to those discussed in the previous
cases, such as the dependence on the resetting rate and the
separation of the spatial domain in a inner core region where
the NESS has been established and an outer region where
the system is transient. However, contrary to the cases of
returns at constant v or a, the simulations also suggest that
the approach to the NESS depends on the parameter ω of the
deterministic phase: The data corresponding to smaller values
of ω present more noticeable deviations with respect to P(x),
in particular for large |x|.

V. MEAN FIRST-PASSAGE TIME

Due to the constraint of a finite speed of propagation, the
first-passage properties of the telegraphic process are rather
peculiar and show a much richer behavior with respect to
those of Brownian motion. Let us consider a particle starting
from the origin with equal probability of moving initially to
the right or left, and suppose that a target is placed at position
b > 0. Then the first-passage time distribution reads [58,64]

f (b, t ) = e−γ t

2
δ(t − b/c) + b

2

γ e−γ t

ct + b
�(t − b/c)

×
{

I0(z) + I1(z)

ζ

[
1 + cζ 2

γ b

]}
, (104)
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FIG. 5. Agreement of the numerical results with the stationary distribution, given by Eq. (98). (a) Distributions for fixed ω and several r.
The data are the results of 107 simulations with step duration dt = 0.01. (b) Distributions for fixed r and a few ω. For each ω we considered
108 processes with dt = 0.01. For all simulations, we took γ = c = 1. Note that in both panels the data have been shifted to enhance the
readability of the plots.

where we called

z = γ

c

√
c2t2 − b2, (105)

ζ =
√

ct − b

ct + b
. (106)

By translating this expression in Laplace space, one obtains
[30,58,64]

f̂ (b, s) = 1

2γ

[
s + 2γ −

√
s(s + 2γ )

]
e−bλs , (107)

where λs is defined by Eq. (42). This yields a diverging first
derivative around s = 0, which implies an infinite mean first-
passage time, as in the case of Brownian motion. However,
contrary to Brownian motion where, independently of the
initial distance, for any t > 0 there is a finite probability of
hitting the target, for the telegraphic process the probability
vanishes for t < b/c. The standard result is recovered in the
diffusive limit, i.e., by taking both c → ∞ and γ → ∞, with
c2/2γ = D kept constant. By retaining only the leading terms
in the asymptotic expansion of the Bessel functions, one in-
deed finds

f (b, t ) ∼ b√
4πDt3

e− b2

4Dt . (108)

In the opposite situation instead, i.e., in the ballistic limit γ →
0, one may easily verify that only the term proportional to the
delta function is nonvanishing, reflecting the fact that a wave
propagating in the right direction with speed c surely hits the
target at time t = b/c.

In order to study the first-passage properties of the pro-
cess undergoing noninstantaneous Poissonian resetting, it is
particular convenient to adopt the approach of Ref. [20]. Let
us call a subprocess successful if the particle hits the target
placed at b > 0 at time t during the displacement phase, and
unsuccessful if the particle is reset to the initial position before
reaching the target. Let us denote with F (t ) the probability
density of hitting the target for the first time at time t , � (t ) the

probability density of hitting the target at time t after the start
of the successful subprocess, and ϕ(t ) the probability density
of the duration of an unsuccessful subprocess. Then F (t ) is
equal to the probability that the nth unsuccessful ended at time
t ′ < t and the target is then reached in a time t − t ′, summed
over all possible values of n:

F (t ) = � (t ) +
∞∑

n=1

∫ t

0
dt ′� (t − t ′)ϕn(t ′), (109)

where ϕn(t ) is the probability density of ending the nth un-
successful subprocess at time t . This equation can be written
more conveniently in Laplace space

F̂ (s) = �̂ (s)
∞∑

n=0

ϕ̂n(s) = �̂ (s)

1 − ϕ̂(s)
, (110)

from which one is able to obtain the mean first-passage time
as

〈T 〉 = − dF̂ (s)

ds

∣∣∣∣
s=0

= − �̂ ′(0)

1 − ϕ̂(0)
− �̂ (0)ϕ̂′(0)

[1 − ϕ̂(0)]2 . (111)

Note that the quantities we have defined thus far also depend
on the position of the target, but we drop the dependence in
order to have cleaner expressions.

The probability � (t ) is equal to the first-passage probabil-
ity of the displacement phase, which we denote as f (t ) times
the probability of not having been reset up to time t . Thus, we
can write for the Laplace transform �̂ (s)

�̂ (s) =
∫ ∞

0
e−st�(t ) f (t )dt, (112)

meaning that for Poissonian resetting, i.e., �(t ) = exp(−rt ),
the Laplace transform is simply equal to

�̂ (s) = f̂ (s + r). (113)

Hence, �̂ (s) only depends on f̂ (s), which is a property of
the displacement phase. In the case of the telegraphic process,
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the function f̂ (s) is given by Eq. (107). The duration of an
unsuccessful subprocess instead can be expressed as

ϕ(t ) =
∫ ∞

0
dτψ (τ )

∫ b

−∞
dxδ[t − τ − θ (x)]q(x, τ ), (114)

where q(x, t ) is the survival probability density function,
namely, the PDF of being at position x at time t and having
not hit the target up to time t . The corresponding Laplace
transform then can be computed in the following way:

ϕ̂(s) =
∫ b

−∞
dxe−sθ (x)

∫ ∞

0
dτe−sτψ (τ )q(x, τ ), (115)

where θ (x) is the time needed to return to the origin from x,
determined by the law of the return motion. We observe that
for exponential resetting, ψ (t ) = r exp(−rt ), the result of the
time integration can be written in terms of q̂(x, s):

ϕ̂(s) = r
∫ b

−∞
e−sθ (x)q̂(x, s + r)dx. (116)

The computation of q(x, t ) for the telegraphic process is a
challenging problem, because the standard method of the
images [65] used in the case of Brownian motion does not
yield the correct result. This is due to finite-memory effects
of the driving noise; see the discussion in the introduction of
Ref. [66]. When approaching the problem from the point of
view of the Fokker-Planck equation, one has to deal with non-
trivial boundary conditions [67]. The solution is considered
for example in Refs. [57,66] and we present our derivation in
Appendix D, wherein we obtain

q̂(x, s) = λs

2s
e−λs|x| − λs

2γ s
(s + γ − cλs)e−λs (2b−x). (117)

This expression can be inserted in Eq. (116) to compute ϕ̂(s)
after we specify the return motion and determine the return
time θ (x). Note that by integrating Eq. (117) one gets the
survival probability in Laplace space:

Q̂(b, s) =
∫ b

−∞
q̂(x, s)dx (118)

= 1

s
− 1

2γ s
(s + 2γ − cλs)e−bλs . (119)

Furthermore, by using the following relation between the sur-
vival and first-passage probability f̂ (b, s)

f̂ (b, s) = 1 − sQ̂(b, s), (120)

one also gets the expression for f̂ (b, s) given by Eq. (107).
In the following, we present our results for the three cases of
return motion previously considered.

A. Return motion at constant speed

In this case, the return time is

θ (x) = |x|
v

, (121)

where v is the speed. By inserting θ (x) in Eq. (116) and
using the expression of the survival probability, Eq. (117), we
compute the distribution of the duration of an unsuccessful

subprocess in Laplace space, ϕ̂(s); see Appendix E. The dis-
tribution �̂ (s) can be evaluated immediately from Eqs. (113)
and (107), from which we obtain �̂ (0):

�̂ (0) = e− b
c
√

r(r+2γ )

R
, (122)

where

R = 1 +
√

r

r + 2γ
. (123)

We can compute the first derivative as well, obtaining

�̂ ′(0) =
[

R

2
− 1 − b

c
(r + γ )

]
e− b

c
√

r(r+2γ )

R
√

r(r + 2γ )
. (124)

From these results and Eq. (111), it follows that the mean first-
passage time is

〈T 〉 = 1

r
(Rew − 1)

+ b

v

[
2R sinh w

w
− 1 + (R − 1)

(
2e−w − 1

w

)]
,

(125)

where w is the dimensionless variable

w = b

c

√
r(r + 2γ ). (126)

We observe that in the limit v → ∞, the second term, which
represents the contribution of the return phase, vanishes and
we recover the result for instantaneous resetting [30]. One can
verify that for small r and fixed γ , the mean first-passage time
reads

〈T 〉 ∼ 1√
2γ r

(
1 + 2γ b

c

)
+ b

c
+ c

γ v

(
1 + 2γ b

c

)
, (127)

where the last term is the contribution of the return motion.
Such a contribution can be neglected for v � c

√
2γ r/γ , and

〈T 〉 diverges as 1/
√

r. On the opposite regime, i.e., for large
r, fixed v, and γ , the second term is of the same order as the
first term and one obtains

〈T 〉 ∼ 2
(

1 + c

v

)e
br
c

r
, (128)

and hence to leading order the mean first-passage time di-
verges as in the case of instantaneous resetting, but with a
different coefficient.

It is useful to evaluate Eq. (125) in the diffusive and ballis-
tic limits. The first one is recovered for R → 1, which yields

〈T 〉 = 1

r
(ew − 1) + b

c

[
2 sinh w

w
− 1

]
, (129)

where in this case w is defined as

w = b

√
r

D
. (130)

This is indeed the result obtained in Ref. [45]. It also interest-
ing to check the opposite limit, which is recovered for R → 2.
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FIG. 6. (a) Mean first-passage time for the telegraphic process as a function of the resetting rate, with returns at constant speed and a target
placed at position b = 1. (b) The corresponding mean first-passage time in the ballistic regime and the optimal resetting rate (vertical dotted
line), independent of v. Data are obtained by simulating N = 105 processes, with time step dt = 0.01 and γ = c = 1. The theoretical curves
(solid lines) are given by Eq. (125) and the black lines represent instantaneous resetting. [(c), (d)] Optimal resetting rate as a function of the
system parameters, as obtained numerically, with b = 1. The dotted horizontal line in panel (c) represents r∗ in the case γ = 0.

One gets

〈T 〉 = 1

r
(2ew − 1)

(
1 + c

v

)
− b

v
, (131)

with

w = br

c
. (132)

In Fig. 6, we represent the mean first-passage time of the
process, described by Eq. (125), for a few values of the return
speed. We also present the same observable in the ballistic
regime, expressed by Eq. (131). Both are compared with
numerical simulations, showing good agreement with the the-
oretical behavior for all the considered values of the resetting
rate. Remarkably, in the ballistic regime the optimal resetting
rate r∗ does not depend on v. Indeed, one can verify that
Eq. (131) yields the following equation for r∗,

e−z = 2 − 2z, z = br

c
, (133)

whose solution z∗ can be obtained in terms of the Lambert W
function [68]:

z∗ = 1 + W

(
− 1

2e

)
≈ 0.76803. (134)

This is confirmed by the behavior of the optimal resetting rate
as a function of v and γ , Figs. 6(c) and 6(d). As γ decreases,
the curves representing r∗ become less dependent on v (left
panel) and converge to a constant value (right panel) given by
r∗ = cz∗/b.

B. Return motion at constant acceleration

The return time is given by

θ (x) =
√

2|x|
a

, (135)

where a is the absolute value of the acceleration. The Laplace
transform ϕ̂(s) can be then computed, yielding the expression
reported in Appendix E. Equations (122) and (124) yield the
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value of �̂ (0) and �̂ ′(0), respectively, and hence we obtain
the following mean first-passage time:

〈T 〉 = 1

r
(Rew − 1) −

√
2b

a
+

√
πb

8aw
{2R cosh w

+ Rewerf
(√

w
) + (2 − R)e−werfi

(√
w

) − 2e−w},
(136)

where erfi(z) is the imaginary error function, defined by

erfi(z) = −ierf (iz) = 2√
π

∫ z

0
et2

dt . (137)

Also in this case, we can recover the result of instantaneous
resetting by taking the limit a → ∞. For small r and fixed γ ,
we obtain

〈T 〉 ∼ 1√
2γ r

(
1+ 2γ b

c

)
+ b

c
+(2γ r)

1
4

√
πc

8aγ 2

(
1 + 2γ b

c

)
,

(138)

where the contribution of the return phase is represented by
the last term. For finite a, this term can be neglected when

a � πc

2

√
r3

2γ
, (139)

and 〈T 〉 diverges as 1/
√

r, as in the previous case. On the con-
trary, for large r, fixed γ , and a, the second term in Eq. (136)
yields the leading-order contribution and one obtains

〈T 〉 ∼
√

πc

8ar
e

br
c , (140)

meaning that the mean first-passage time grows faster with
respect to that considered in the case of returns at constant
speed.

By evaluating Eq. (136) in the diffusive limit, we obtain

〈T 〉 = 1

r
(ew − 1) −

√
2b

a
+

√
πb

8aw
{2 sinh w

+ ewerf (
√

w) + e−werfi(
√

w)}, (141)

where w is defined as in Eq. (130). In the ballistic regime
instead the resulting mean first-passage time is

〈T 〉 = 1

r
(2ew − 1) −

√
2b

a
+

√
πb

2aw

[
1 + erf

(√
w

)]
ew,

(142)

where in this case the definition of w is given by Eq. (132).
The theoretical values of 〈T 〉 in both the intermediate and
ballistic regimes are depicted in Figs. 7(a) and 7(b), and
compared with our numerical simulations, showing good
agreement. Figures 7(c) and 7(d) display the value of the
optimal resetting rate with respect to the system parameters,
as obtained numerically. We note that in this case the optimal
resetting rate retains its dependence on the parameter a of the
return phase also in the ballistic limit, as depicted in Fig. 7(c).

C. Harmonic return motion

This case is almost trivial, because the return time is inde-
pendent of the position at which the resetting occurs:

θ = π

2ω
. (143)

From Eq. (116), it is quite easy to see that the computation of
ϕ̂(s) yields

ϕ̂(s) = re− πs
2ω Q(b, s + r), (144)

see Appendix E, while �̂ (0) and �̂ ′(0) are still defined as in
the previous cases. A straightforward computation leads to

〈T 〉 =
(

1

r
+ π

2ω

)
(Rew − 1), (145)

and the corresponding results for the diffusive and ballistic
limit are simply recovered by setting R = 1 or R = 2 in the
previous expression, and using the correct definition of w,
given by Eqs. (130) and (132), respectively. The limit ω → ∞
yields the result of instantaneous resetting, but for finite ω

Eq. (145) suggests that one can neglect the effect of the return
phase when ω � πr/2. However, for large r, fixed ω, and γ ,
the mean first-passage time grows exponentially,

〈T 〉 ∼ π

ω
e

br
c , (146)

displaying the fastest growth of the three cases considered in
this paper. This is due to the fact that, since the time cost to
return is constant and independent of the resetting position,
a higher number of resetting events implies a higher amount
of time spent in performing the returns, noticeably increasing
the mean first-passage time. Figure 8 displays the results of
our simulations. In particular, Figs. 8(a) and 8(b) show the dif-
ference between the γ > 0 and γ = 0 regimes. In both cases,
the numerical data show good agreement with the theoretical
predictions. In Figs. 8(c) and 8(d) we show the behavior of
the optimal resetting rate with the system parameters. As in
the case of returns at constant acceleration, r∗ is affected by
the return phase also in the ballistic limit.

VI. CONCLUSIONS

In this paper, we have considered the one-dimensional tele-
graphic process undergoing stochastic Poissonian resetting.
Unlike the standard description of models with resetting, the
return to the initial location is performed according to a deter-
ministic law of motion, so that the time cost needed to perform
the return is correlated with the position at which the resetting
occurs. This leads to interesting consequences regarding the
first-passage properties and the distribution of the process. In
the present work, we have considered three kinds of return
motion: (i) return at constant speed, (ii) constant acceleration,
and (iii) under the effect of a harmonic potential.

As it happens for Brownian motion, we have shown that
Poissonian resetting stabilizes the whole process and for each
type of return dynamics considered in this paper the system
reaches a stationary state. However, the literature suggests that
this may not hold true for different kinds of resetting proto-
cols, for example, power-law waiting times between resetting
events, in which case the process remains nonstationary in
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FIG. 7. (a) Mean first-passage time for the telegraphic process as a function of the resetting rate, with returns at constant acceleration and a
target placed at position b = 1. (b) The corresponding mean first-passage time in the ballistic regime. Data are obtained by simulating N = 105

processes, with time step dt = 0.01 and γ = c = 1. The theoretical curves (solid lines) are given by Eq. (125) and the black lines represent
instantaneous resetting. [(c), (d)] Optimal resetting rate as a function of the system parameters, as obtained numerically, with b = 1.

nature and hence possibly attracted in the domain of infinite
ergodic theory rather than standard ergodic theory. More-
over, we have also shown that Poissonian resetting improves
the first-passage properties of the system, in the sense that
while the mean first hitting time of a target is infinite for
the reset-free process, it becomes finite in the presence of
resetting.

It is worth observing that the telegraphic process displays
both similarities and differences with respect to Brownian mo-
tion. The similarities are connected to the fact that there exists
a scaling limit for the system parameters, namely the speed of
propagation c and the reversal rate γ , where the two processes
are equivalent. This explains, e.g., the fact that the station-
ary distributions for Brownian motion and the telegraphic
process display the same functional form; see the results in
Ref. [45]. The distributions are in both cases described by a
parameter λr , representing the typical resetting length—on av-
erage, a particle travels a distance � = 1/λr before being reset.
For Brownian motion, �BM = √

D/r, and hence the typical
distance is affected by the stochastic dynamics exclusively
via the diffusion coefficient D. For the telegraphic process

instead, �TP = c/
√

r(r + 2γ ), and therefore in this case the
typical distance is controlled by two different parameters of
the stochastic phase. Note that one can set �BM = �TP by satis-
fying the equality D = c2/(r + 2γ ), and therefore in principle
the telegraphic process under Poissonian resetting with rate
r can be seen as Brownian motion with a rate-dependent
diffusion coefficient, in the sense that the two systems reach
the same stationary state. However, one still observes relevant
differences due to finite-time effects, such as the presence of
ballistic peaks representing the contribution of ballistic mo-
tion. Moreover, even though the two systems show the same
dynamical transition in the temporal relaxation to the steady
state, the large deviation functions have different expressions;
compare with the results in Ref. [61]. Other differences are
due to the constraint of finite speed of propagation. For ex-
ample, in the case of Brownian motion, the typical length
decreases for large resetting rates as 1/

√
r, while in the case of

the telegraphic process it decreases faster, as 1/r, and depends
explicitly on the speed c.

Regarding the effects of the return phase, returns at con-
stant speed and acceleration display, in a sense, an opposite
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FIG. 8. (a) Mean first-passage time for the telegraphic process as a function of the resetting rate, with returns under the effect of a harmonic
potential and a target placed at position b = 1. (b) The corresponding mean first-passage time in the ballistic regime. Data are obtained by
simulating N = 105 processes, with time step dt = 0.01 and γ = c = 1. The theoretical curves (solid lines) are given by Eq. (125) and the
black lines represent instantaneous resetting. [(c), (d)] Optimal resetting rate as a function of the system parameters, as obtained numerically,
with b = 1.

behavior with respect to returns performed under the action of
a harmonic potential. Indeed, in the former case the probabil-
ity density function and the steady state reached by the process
are independent of the return dynamics, so that one obtains
the same result of the standard situation with instantaneous
resetting; in the latter case instead, the return law provides
important contributions to the resulting stationary state, which
is indeed evidently different from the aforementioned result.
Furthermore, when one investigates the first-passage prop-
erties, it becomes clear that the return phase modifies the
mean first-passage time in a highly nontrivial way. The cor-
responding contribution may be neglected only for very small
values of the resetting rate, or by taking very large values of
the parameters of the return dynamics (with respect to the
resetting rate).

We think that our work may be useful for those situations
where it has been recognized that the telegraphic process
provides a more suitable description with respect to Brownian
motion, e.g., the run-and-tumble dynamics of Escherichia coli
bacteria, in which some sort of resetting mechanism must be

taken into account and for which the time cost to return cannot
be neglected.
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APPENDIX A: NORMALIZATION OF THE PROBABILITY
DENSITY FUNCTION

In order to prove the normalization of the PDF describing
the complete process, it is sufficient to show that∫ +∞

−∞
Ĝ(x, s)dx = 1 − φ̂(s)

s
, (A1)

where φ̂(s) is the Laplace transform of the subprocess
duration. Indeed, the normalization condition in Laplace
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space reads ∫ +∞

−∞
P̂(x, s)dx = 1

s
, (A2)

and hence the condition of Eq. (A1) follows from Eq. (15) in
the main text.

We first consider Ĝ1(x, s). We have∫ +∞

−∞
Ĝ1(x, s)dx =

∫ +∞

−∞
dx

∫ ∞

0
dte−st�(t )p(x, t ) (A3)

=
∫ ∞

0
e−st�(t )dt (A4)

= �̂(s), (A5)

where we changed the order of integration between x and t
and used the normalization of p(x, t ). Here �̂(s) is

�̂(s) =
∫ ∞

0
dte−st

∫ ∞

t
dt ′ψ (t ′) = 1 − ψ̂ (s)

s
. (A6)

We now write Ĝ2(x, s) as in Eq. (18) and integrate over x,
obtaining∫ +∞

−∞
Ĝ2(x, s)dx =

∫ ∞

0
dt ′e−st ′

ψ (t ′)

×
∫ +∞

−∞
dx0 p(x0, t ′)

×
∫ ∞

0
due−su�(θ (x0) − u). (A7)

The integral in u yields∫ ∞

0
e−su�(θ (x0) − u)du = 1

s
− e−sθ (x0 )

s
, (A8)

and therefore the remaining calculation can be seen as the sum
of two contributions. The first contribution comes from the
term 1/s and reads

1

s

∫ ∞

0
dt ′e−st ′

ψ (t ′)
∫ +∞

−∞
dx0 p(x0, t ′) = ψ̂ (s)

s
. (A9)

The second contribution is written as

1

s

∫ +∞

−∞
dx0e−sθ (x0 )

∫ ∞

0
dt ′e−st ′

ψ (t ′)p(x0, t ′), (A10)

which is, a part from the prefactor 1/s, the definition of φ̂(s);
see Eq. (3) in the main text. Hence, we obtain∫ +∞

−∞
Ĝ2(x, s)dx = ψ̂ (s) − φ̂(s)

s
. (A11)

By adding the contributions of Ĝ1(x, s) and Ĝ2(x, s), we fi-
nally obtain Eq. (A1).

APPENDIX B: LAPLACE TRANSFORM OF THE
SUBPROCESS DURATION

In order to evaluate the Laplace transform of the dura-
tion of a subprocess, Eq. (3) in the main text, a preliminary

computation requires the solution of the integral:

I (x) = r

2

∫ ∞

0
e−(s+γ+r)τ

{
δ(x − cτ ) + δ(x + cτ )

+ γ

c

[
I0(z) + γ t I1(z)

z

]
�(cτ − |x|)

}
dτ. (B1)

The part containing the delta functions yields

r

2

∫ ∞

0
e−pτ [δ(x − cτ ) + δ(x + cτ )]dτ = r

2c
e− p

c |x|, (B2)

where p = s + r + γ . The remaining part can be computed
by first considering the change of variable y = cτ , so that one
obtains

γ r

2c2

∫ ∞

0
e− s+γ+r

c y

[
I0

(γ

c

√
y2 − x2

)
+ yI1

(
γ

c

√
y2 − x2

)
√

y2 − x2

]

�(y − |x|)dy, (B3)

which takes the form of a Laplace transform involving mod-
ified Bessel functions of the first kind. We make use of the
explicit formulas [69]∫ ∞

x
e−st I0

(
α
√

t2 − x2
)

dt = e−x
√

s2−α2

√
s2 − α2

, (B4)

and ∫ ∞

x
e−st t√

t2 − x2
I1

(
α
√

t2 − x2
)

dt

= s

α
√

s2 − α2
e−x

√
s2−α2 − e−xs

α
, (B5)

both valid for x > 0 and Re(s) > |Re(α)|; therefore, by con-
sidering also the first part, we arrive at

I (x) = r

2c

√
2γ + r + s

r + s
e− |x|

c

√
(2γ+r+s)(r+s). (B6)

Hence, we get

φ̂(s) =
∫ +∞

−∞
e−sθ (x)I (x)dx, (B7)

and more explicit expressions can be obtained once we specify
the deterministic motion. In the case of returns at constant
speed, we have

θ (x) = |x|
v

, (B8)

so that the integration is straightforward and it is left to the
reader. In the case of returns at constant acceleration we have

θ (x) =
√

2|x|
a

, (B9)

and we can use the formula∫ x2

x1

e−α
√

x−βxdx = 1

β

{
e−βx1−α

√
x1 − e−βx2−α

√
x2

− e
α2

4β

√
πα2

4β

[
erf

(√
βx2 + α

2
√

β

)

− erf

(√
βx1 + α

2
√

β

)]}
, (B10)

044126-15



MATTIA RADICE PHYSICAL REVIEW E 104, 044126 (2021)

where α, β, x1, and x2 are non-negative parameters and erf (z)
is the error function:

erf (z) = 2√
π

∫ z

0
e−t2

dt . (B11)

By applying this formula with α = s
√

2/a, β = λr+s, x1 = 0,
and taking the limit x2 → ∞, we obtain

φ̂(s) = r

r + s

{
1 − √

πξeξ 2
[1 − erf (ξ )]

}
, (B12)

where

ξ =
√

s2

2aλr+s
. (B13)

Finally, in the case of harmonic motion, the time cost to return
is independent of the starting position

θ = π

2ω
, (B14)

and one trivially gets

φ̂(s) = r

r + s
e− πs

2ω . (B15)

APPENDIX C: LARGE DEVIATION FORM OF THE PDF
FOR THE TELEGRAPHIC PROCESS UNDER

STOCHASTIC RESETTING

We have shown in the main text that when the return
motion is performed at constant velocity or acceleration, the
resulting PDF is the same as the case of instantaneous returns,

P(x, t ) = e−rt p(x, t ) + r
∫ t

0
e−rt ′

p(x, t ′)dt ′, (C1)

where p(x, t ) is given by

p(x, t ) = e−γ t

2

{
δ(x − ct ) + δ(x + ct ) + γ

c

[
I0(z) + γ t I1(z)

z

]
�(ct − |x|)

}
. (C2)

Here the variable z is

z = γ

c

√
c2t2 − x2. (C3)

By using the relation I ′
0(y) = I1(y), we can rewrite the integral on the right-hand side of Eq. (C1) as∫ t

0
e−rt ′

p(x, t ′)dt ′ = e−(r+γ )t

2c
I0(z)�(ct − |x|) + r + 2γ

2c

∫ t

|x|/c
e−(r+γ )t ′

I0

(γ

c

√
c2t ′2 − x2

)
dt ′, (C4)

and therefore Eq. (C1) may be rewritten as

P(x, t ) = e−(r+γ )t

2

{
δ(x − ct ) + δ(x + ct ) + 1

c

[
(r + γ )I0(z) + γ 2t I1(z)

z

]
�(ct − |x|)

}

+ r(r + 2γ )

2c

∫ t

|x|/c
e−(r+γ )t ′

I0

(γ

c

√
c2t ′2 − x2

)
dt ′. (C5)

We observe that the PDF can be split in a singular part and a regular part. The singular part is that containing the delta functions,
namely

Psing(x, t ) = e−(r+γ )t

2
[δ(x + ct ) + δ(x − ct )], (C6)

which describes the contribution of ballistic motion, i.e., those walks that do not experience any velocity reversal up to time
t . Note that for the resetting-free process, the probability of this contribution decays as exp(−γ t ), while in this case the decay
rate is increased by the positive parameter r, and P ∝ exp[−(r + γ )t]. The regular part instead describes the contribution of the
diffusive part of P(x, t ), which can be written in large deviation form. By using the asymptotic expansion of the Bessel functions
and considering the change of variable t ′ = ut in the integral on the right-hand side of Eq. (C5), we may rewrite for large t

Preg(x, t ) ∼ r(r + 2γ )

√
t

8πγ c2

∫ 1

|x|/ct

du√
u

e−tH (u, x
ct ) + r + 2γ√

8πγ c2t
e−tH(1, x

ct ), (C7)

where

H (u, y) = (r + γ )u − γ u

√
1 − y2

u2
. (C8)

For fixed y, the function H (u, y) has a single minimum at

u0 = |y|
α

= r + γ√
r(r + 2γ )

|y|, (C9)

which occurs within the integration limits as long as u0 < 1.
Hence for u0 < 1 the integral can be estimated by the saddle-
point method and one obtains

Preg(x, t ) ∼ e− |x|
c

√
r(r+2γ ). (C10)

On the other hand, if u0 > 1 the main contribution to the in-
tegral is given by the region around u = 1, thus the estimated
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term is of the same order as the first term, i.e.,

Preg(x, t ) ∼ e
−t

(
r+γ−γ

√
1− x2

c2t2

)
. (C11)

Therefore, the regular part of the PDF has the large deviation
form Preg(x, t ) ∼ exp[−t I (x, t )], with

I (x, t ) =
{ |x|

ct

√
r(r + 2γ ) for |x| < αct

r + γ − γ

√
1 − x2

c2t2 for |x| > αct .
(C12)

APPENDIX D: SURVIVAL PDF FOR THE
TELEGRAPHIC PROCESS

It is convenient to begin with the discrete description of the
telegraphic process provided by the model of the persistent
random walk [29]. Let us consider a particle moving with
nearest-neighbor jumps on a discrete lattice. Each jump is
performed in a time δt with speed c, so that the lattice spacing
is δx = cδt ; suppose that at each step there is a probabil-
ity r of reversing the direction of motion and a probability
t = 1 − r of jumping in the same direction of the previous
step. Call R(x, t ) the probability of being at position x = iδx,
i ∈ Z, at time t = nδt , n ∈ N, with momentum directed to the
right, and L(x, t ) the corresponding probability for momenta
directed to the left. Then R(x, t ) and L(x, t ) obey the following
evolution equations [70]:

R(x, t + δt ) = tR(x − cδt, t ) + rL(x + cδt, t ), (D1)

L(x, t + δt ) = tL(x + cδt, t ) + rR(x − cδt, t ). (D2)

Now suppose that an absorbing barrier is placed at b > 0, so
that no particle can arrive from b + cδt . By evaluating the
dynamics at the boundary, the previous system reduces to

R(b, t + δt ) = tR(b − cδt, t ), (D3)

L(b, t + δt ) = rR(b − cδt, t ). (D4)

The evolution equations of the telegraphic process can be
recovered from Eqs. (D1) and (D2) by performing the con-
tinuum limit. We consider infinitesimal time steps, δt → dt ,
set

R(x, t ) ≈ r(x, t )dx, (D5)

L(x, t ) ≈ l (x, t )dx, (D6)

and scale the transmission probability as [29]

t = 1 − γ dt, (D7)

which corresponds to Poissonian statistics with rate γ for
the velocity reversals. These choices lead to the system of
equations

r(x, t + dt ) = (1 − γ dt )r(x − cdt, t ) + γ dt l (x + cdt, t ),

l (x, t + dt ) = (1 − γ dt )l (x + cdt, t ) + γ dt r(x − cdt, t ),

accompanied by the following dynamics at the boundary:

r(b, t + dt ) = (1 − γ dt )r(b − cdt, t ), (D8)

l (b, t + dt ) = γ dt r(b − cdt, t ). (D9)

Equation (D9) imposes that l (b, t ) vanishes in the limit dt →
0, and hence by Taylor expanding the evolution equations
for r(x, t ) and l (x, t ) we obtain in such a limit the following
system of partial differential equations:

∂r

∂t
= −c

∂r

∂x
− γ (r − l ), (D10)

∂l

∂t
= c

∂l

∂x
+ γ (r − l ), (D11)

subject to the boundary condition

l (b, t ) = 0. (D12)

In order to solve the problem, we introduce the functions
q = r + l and w = r − l , and write the corresponding equa-
tions which are obtained by summing and subtracting (D10)
and (D11):

∂q

∂t
= −c

∂w

∂x
, (D13)

∂w

∂t
= −c

∂q

∂x
− 2γ w. (D14)

The function q(x, t ) just defined is the survival PDF. The
boundary condition on l (x, t ) corresponds to a boundary
condition on q(x, t ). Note that since l (x, t ) vanishes at the
boundary, it follows from their definition that q(b, t ) and
w(b, t ) are equal. Therefore, by evaluating Eq. (D14) at x = b
and putting w(b, t ) = q(b, t ) we obtain the boundary condi-
tion for q(x, t ):

2γ q(b, t ) + ∂q(b, t )

∂t
+ c

∂q(x, t )

∂x

∣∣∣∣
x=b

= 0. (D15)

One can show that the system of coupled equations (D13)
and (D14) can be transformed in a system of decoupled tele-
grapher’s equations [29]. Hence the function q(x, t ) is the
solution of the problem:

∂2q

∂t2
+ 2γ

∂q

∂t
= c2 ∂2q

∂x2

q(x, 0) = δ(x)

∂q(x, t )

∂t

∣∣∣∣
t=0

= 0

2γ q(b, t ) + ∂q(b, t )

∂t
+ c

∂q(x, t )

∂x

∣∣∣∣
x=b

= 0.

This may be solved in Laplace space, by seeking solutions
q̂(x, s) which are linear combinations of the free problem and
moreover satisfy the boundary condition. Hence, we put

q̂(x, s) = p̂(x, s) + A(s)e−λs (2b−x), (D16)

where

p̂(x, s) = λs

2s
e−|x|λs , λs =

√
s(s + 2γ )

c
, (D17)

is the solution of the free problem, while the other term does
not yield contributions in the interval (−∞, b] for t < b/c.
The boundary condition in Laplace space is

(s + 2γ )q̂(b, s) + c
∂ q̂(x, s)

∂x

∣∣∣∣
x=b

= 0, (D18)
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and hence by plugging our ansatz into this equation we get the
expression for the unknown coefficient A(s):

A(s) = − λs

2γ s
(s + γ − cλs). (D19)

As a double check, we can compute the total survival proba-
bility we obtain from this expression. It is easy to see that

Q(b, s) =
∫ b

−∞
q̂(x, s)dx (D20)

= 1

s
− 1

2γ s
(s + 2γ − cλs)e−bλs , (D21)

which is indeed the survival probability already obtained in
the literature [30,64].

APPENDIX E: LAPLACE TRANSFORM OF THE
DURATION OF AN UNSUCCESSFUL SUBPROCESS

The Laplace transform of the duration of an unsuccessful
subprocess can be computed from Eq. (116) of the main text:

ϕ̂(s) = r
∫ b

−∞
e−sθ (x)q̂(x, s + r)dx, (E1)

where

q̂(x, s) = λs

2s

[
e−|x|λs − 1

γ
(s + γ − cλs)e−λs (2b−x)

]
, (E2)

and θ (x) depends on the return motion. We recall that λs is
defined as

λs =
√

s(s + 2γ )

c
. (E3)

In the following, it is convenient to define the variable

p = s + r. (E4)

In the case of returns at constant speed v, the return time is θ (x) = |x|/v and thus we get

ϕ̂(s) = rλp/p

s/v + λp
+

r
( p+2γ

c2

)( p+2γ−cλp

2γ

)
e−b(s/v+λp) + rsλp

vp

[ p−cλp

2γ
e−b(s/v+λp) − p+γ−cλp

γ
e−2bλp

]
(s/v + λp)(s/v − λp)

. (E5)

For the returns at constant acceleration a, we have θ (x) = √
2|x|/a. By defining the variables

w = bλp, (E6)

ξ = s√
2aλp

, (E7)

and the function

F (z) = 2√
π

∫ z

0
et2−2ξ t dt, (E8)

we can write the Laplace transform as

ϕ̂(s) = r

p

(
1 − p + 2γ − cλp

2γ
e−w−2ξ

√
w

)

− rξ

p

√
π

4

{
eξ 2[

1 + erf
(√

w + ξ
) − 2erf(ξ )

] − p + γ − cλp

γ
eξ 2−2w

[
F

(√
ξ
) + erf (ξ ) − 1

]}
. (E9)

Finally, when the return motion is performed under the action of a harmonic potential, the return time is θ (x) = π/2ω and thus
the Laplace transform is simply

ϕ̂(s) = re− πs
2ω

[
1

p
− 1

2γ p
(p + 2γ − cλp)e−bλp

]
. (E10)

APPENDIX F: SIMULATION METHOD

In order to perform the simulations of the telegraphic process, we took advantage of Kac’s representation

x(t ) = c0

∫ t

0
(−1)N (t ′ )dt ′, (F1)

where N (t ) is the number of events up to time t of a homogeneous Poisson process of rate γ . It follows that for small time steps
dt we can write

x(t + dt ) ≈ x(t ) + c0dt (−1)N (t ). (F2)
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Instead of considering N (t ), we can take instead a signal σ (t ) switching between the values 0 and 1 with rate γ . In other words,
the probability that σ (t ) changes state in the time interval (t, t + dt ) is γ dt , and the position in all our simulations was evolved
according to

x j+1 = x j + c0dt (−1)σ (t ). (F3)
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[44] A. Pal, Ł. Kuśmierz, and S. Reuveni, Phys. Rev. Research 2,
043174 (2020).

[45] A. S. Bodrova and I. M. Sokolov, Phys. Rev. E 101, 052130
(2020).

[46] A. S. Bodrova, A. V. Chechkin, and I. M. Sokolov, Phys. Rev.
E 100, 012119 (2019).

[47] D. A. Kessler and E. Barkai, Phys. Rev. Lett. 105, 120602
(2010).

[48] A. Dechant, E. Lutz, E. Barkai, and D. A. Kessler, J. Stat. Phys.
145, 1524 (2011).

[49] A. Vezzani, E. Barkai, and R. Burioni, Phys. Rev. E 100, 012108
(2019).

[50] N. Leibovich and E. Barkai, Phys. Rev. E 99, 042138 (2019).
[51] M. Radice, M. Onofri, R. Artuso, and G. Pozzoli, Phys. Rev. E

101, 042103 (2020).
[52] E. Aghion, D. A. Kessler, and E. Barkai, Chaos Solit. 138,

109890.
[53] E. Barkai, G. Radons, and T. Akimoto, Phys. Rev. Lett. 127,

140605 (2021).
[54] O. Farago, Phys. Rev. E 104, 014105 (2021).
[55] M. Kac, Rocky Mt. J. Math. 4, 497 (1974).
[56] E. Orsingher, Stochastic Process. Appl. 34, 49 (1990).
[57] J. Masoliver, J. M. Porrà, and G. H. Weiss, Phys. Rev. A 45,

2222 (1992).
[58] E. Orsingher, Random Oper. Stoch. Equ. 3, 9 (1995).
[59] R. Garra, E. Orsingher, and F. Polito, J. Stat. Phys. 155, 777

(2014).
[60] M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions (Dover, New York, 1974).

044126-19

https://doi.org/10.1088/1751-8121/ab7cfe
https://doi.org/10.1073/pnas.1318122111
https://doi.org/10.1103/PhysRevE.92.060101
https://doi.org/10.1103/PhysRevE.93.062411
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1103/PhysRevLett.88.178701
https://doi.org/10.1103/PhysRevE.99.052119
https://doi.org/10.1103/PhysRevE.87.012116
https://doi.org/10.1103/PhysRevE.93.022106
https://doi.org/10.1103/PhysRevE.96.012126
https://doi.org/10.1140/epjb/e2017-80348-4
https://doi.org/10.1103/PhysRevE.101.062117
https://doi.org/10.1103/PhysRevLett.113.220602
https://doi.org/10.1103/PhysRevE.92.052127
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1088/1367-2630/18/3/033006
https://doi.org/10.1103/PhysRevE.93.060102
https://doi.org/10.1088/1751-8113/49/22/225001
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevLett.121.050601
https://doi.org/10.1088/1751-8113/47/28/285001
https://doi.org/10.1103/PhysRevLett.100.218103
https://doi.org/10.1007/BF02476407
https://doi.org/10.1103/PhysRevE.48.2553
https://doi.org/10.1088/0253-6102/62/4/10
https://doi.org/10.1063/1.5027734
https://doi.org/10.2307/3213286
https://doi.org/10.1016/S0378-4371(02)00805-1
https://doi.org/10.1088/1751-8121/aae74e
https://doi.org/10.1103/PhysRevE.99.012121
https://doi.org/10.1088/1742-5468/abc7b7
https://doi.org/10.1103/PhysRevResearch.2.032029
https://doi.org/10.1021/acs.jpclett.0c02122
https://doi.org/10.1088/1742-5468/abc1d9
https://doi.org/10.1088/1751-8121/ac12a0
https://doi.org/10.1088/1751-8121/abcf0b
https://doi.org/10.3389/fphy.2019.00112
https://doi.org/10.1088/1742-5468/ab02f3
https://doi.org/10.1088/1751-8121/aaf080
https://doi.org/10.1088/1367-2630/ab5201
https://doi.org/10.1103/PhysRevE.100.040101
https://doi.org/10.1103/PhysRevE.100.042104
https://doi.org/10.1103/PhysRevResearch.2.043174
https://doi.org/10.1103/PhysRevE.101.052130
https://doi.org/10.1103/PhysRevE.100.012119
https://doi.org/10.1103/PhysRevLett.105.120602
https://doi.org/10.1007/s10955-011-0363-z
https://doi.org/10.1103/PhysRevE.100.012108
https://doi.org/10.1103/PhysRevE.99.042138
https://doi.org/10.1103/PhysRevE.101.042103
https://doi.org/10.1016/j.chaos.2020.109890
https://doi.org/10.1103/PhysRevLett.127.140605
https://doi.org/10.1103/PhysRevE.104.014105
https://doi.org/10.1016/0304-4149(90)90056-X
https://doi.org/10.1103/PhysRevA.45.2222
https://doi.org/10.1515/rose.1995.3.1.9
https://doi.org/10.1007/s10955-014-0976-0


MATTIA RADICE PHYSICAL REVIEW E 104, 044126 (2021)

[61] S. N. Majumdar, S. Sabhapandit, and G. Schehr, Phys. Rev. E
91, 052131 (2015).

[62] D. Gupta, J. Stat. Mech. (2019) 033212.
[63] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,

and Products (Elsevier Academic, Amsterdam, 2007).
[64] K. Malakar, V. Jemseena, A. Kundu, K. Vijay Kumar, S.

Sabhapandit, S. N. Majumdar, S. Redner, and A. Dhar, J. Stat.
Mech. (2018) 043215.

[65] S. Redner, A Guide to First-Passage Processes (Cambridge
University Press, Cambridge, UK, 2001).

[66] P. Le Doussal, S. N. Majumdar, and G. Schehr, Phys. Rev. E
100, 012113 (2019).

[67] G. H. Weiss, J. Stat. Phys. 37, 325 (1984).
[68] F. W. J. Olver, D. M. Lozier, R. F. Boisvert, and C. W. Clark,

NIST Handbook of Mathematical Functions (Cambridge Uni-
versity Press, Cambridge, UK, 2010).

[69] H. Bateman, Tables of Integral Transforms (McGraw-Hill, New
York, 1954), Vol. 1.

[70] R. Artuso, G. Cristadoro, M. Onofri, and M. Radice, J. Stat.
Mech. (2018) 083209.

044126-20

https://doi.org/10.1103/PhysRevE.91.052131
https://doi.org/10.1088/1742-5468/ab054a
https://doi.org/10.1088/1742-5468/aab84f
https://doi.org/10.1103/PhysRevE.100.012113
https://doi.org/10.1007/BF01011837
https://doi.org/10.1088/1742-5468/aad822

