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Maximal fluctuation exploitation in Gaussian information engines
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Understanding the connections between information and thermodynamics has been among the most visible
applications of stochastic thermodynamics. While recent theoretical advances have established that the second
law of thermodynamics sets limits on information-to-energy conversion, it is currently unclear to what extent
real systems can achieve the predicted theoretical limits. Using a simple model of an information engine that has
recently been experimentally implemented, we explore the limits of information-to-energy conversion when an
information engine’s benefit is limited to output energy that can be stored. We find that restricting the engine’s
output in this way can limit its ability to convert information to energy. Nevertheless, a feedback control that
inputs work can allow the engine to store energy at the highest achievable rate. These results sharpen our
theoretical understanding of the limits of real systems that convert information to energy.
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I. INTRODUCTION

At the dawn of statistical mechanics 150 years ago,
Maxwell proposed a thought experiment that has come to be
known as “Maxwell’s demon,” a device that harnesses ther-
mal fluctuations to extract work seemingly without incurring
any of the dissipative costs mandated by the second law of
thermodynamics [1]. This thought experiment challenged our
understanding of the role observations and information play
in thermodynamics.

Seventy years later, Leo Szilard proposed a simpler imple-
mentation of Maxwell’s demon consisting of a single particle
in a box, connected to a thermal reservoir at temperature T
[2]. A partition is inserted into the middle of the box, and the
demon measures the location of the particle within the box,
thereby collecting information about the particle. A weight is
then appropriately attached to the partition via a pulley. By
letting the gas slowly expand to its original volume, it exerts
a force against the partition, extracting kBT log 2 of useful
work. Thus the information collected about the particle is
used to extract work via an isothermal process. Such a device
functions as an information engine [3]. Later it was realized
that this apparent violation of the second law can be resolved
by recognizing the unavoidable cost of the information pro-
cessing [4,5].

Since the first formulation of Maxwell’s demon, physicists
and engineers have sought to create experimental realiza-
tions. Many of the proposed designs have been impractical
because rectifying thermal fluctuations requires resolving sys-
tem dynamics on small length and time scales. Nonetheless,
successful implementations have recently been demonstrated
[6–10] and have been used to probe the estimated thermo-
dynamic cost of information processing and the efficiency
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of information-to-work conversion. These technological ad-
vances, aided by simultaneous advances in our theoretical
understanding of stochastic thermodynamics [11–13], have
stimulated interest in exploring the connections between in-
formation and thermodynamics [14].

Recently, we experimentally realized an information en-
gine based on a colloidal particle which successfully extracts
energy from a thermal reservoir and stores this energy by
raising a weight against gravity [15]. We systematically op-
timized this information engine under the constraint that no
external work be done on the particle, finding that there is an
optimal particle mass that maximizes the energy-storage rate
(the output power).

In this article we generalize the design of our engine by
relaxing the no-work constraint and explore the broader range
of its performance—as quantified by the net rate of energy
extraction (net output power)—made possible by allowing the
input of external work. We use multiobjective optimization
to identify feedback rules that maximize the tradeoff between
output and input of the information engine. We elucidate the
physical mechanism underlying these optimal feedback rules;
we further compare the performance of information engines
that can extract and store all of the particle’s energy to those
engines whose output is restricted to only stored free energy.

We find that there is an upper bound to the rate of en-
ergy extraction, even when information about the particle’s
position is collected continuously and with perfect accuracy,
and all of the particle’s potential energy can be stored. We
further show that restricting the information engine’s output
to stored free energy limits the maximal rate of net energy
extraction. However, for sufficiently heavy particles, we show
that an appropriate feedback-control rule ensures the maximal
rate. We find that these feedback rules use work input into
the system to reduce the duration of unproductive excursions,
thereby enhancing the overall output power of the engine.

The paper is organized as follows: In Sec. II we lay out
the model, detailing the potential energy and correspond-
ing equilibrium distribution in Sec. II A and the dynamical
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FIG. 1. Schematic of information-engine operation in the labo-
ratory frame. (a) The particle in the trap potential before and after
a ratchet event. (b) The particle in the corresponding total (trap plus
gravity) potential before (purple curve) and after (teal curve) a ratchet
event. The particle evolves under the total potential with same color.

equations of motion in Sec. II B. We establish the thermo-
dynamics of the information engine in Sec. II C and the
associated constraints in Sec. II D. Section II E introduces the
measure of information-engine performance that we optimize
under various constraints in Sec. III. Specifically, Sec. III A
examines the case where energy can be extracted both as
a free-energy change and as work from the trap; Sec. III B
investigates the case where the engine is restricted to extract
energy only as a free-energy change. Section IV summarizes
the results and provides future outlooks for this information
engine.

II. MODEL

A. Potential energy and equilibrium distribution

As a model for an information engine, we use the setup
from our previous work [15], where a particle with effective
mass m immersed in a fluid medium diffuses while under
the influence of gravity and a harmonic potential (Fig. 1),
henceforth the trap potential. The particle experiences a to-
tal potential V ′ that is the sum of the trap and gravitational
potentials,

V ′(x′, λ′) = 1
2κ (x′ − λ′)2︸ ︷︷ ︸

trap

+ mgx′︸︷︷︸
gravity

, (1)

where x′ is the particle position (in dimensional units), λ′
is the position of the minimum of the trap potential, κ is
the curvature (stiffness) of the trap potential, and g is the
acceleration due to gravity. The particle’s effective mass m ≡
(4/3)πr3�ρ depends on the relative density �ρ ≡ ρparticle −
ρmedium and accounts for buoyancy. For a static potential, the
system evolves to a Gibbs-Boltzmann equilibrium distribution
of position x′ that is a Gaussian, N (x′; μ, σ 2), with mean
μ = λ′ − mg/κ and variance σ 2 = kBT/κ:

π eq(x′|λ′) ∼ N
(

x′; λ′ − mg

κ
,

kBT

κ

)
. (2)

Here, kB is the Boltzmann constant and T is the temperature
of the surrounding thermal reservoir. The standard deviation
σ of this distribution defines a natural length scale, while
the curvature κ of the harmonic potential and the friction
coefficient γ together determine the relaxation time τR ≡ γ /κ

within the trap potential. To simplify expressions, we rescale
all times by τR, all lengths by σ , and all energies by kBT . With
this scaling, the equilibrium distribution simplifies to

π eq(x|λ) ∼ N (x; λ − δg, 1), (3)

with δg ≡ mg/(κσ ) the scaled effective mass. Note that δg =
1 corresponds to an effective mass that in equilibrium under
gravity sags a distance σ . The corresponding scaled quantities
are denoted without primes.

B. Equations of motion

The dynamics of the particle within the trap is described by
the stochastic equation of motion

ẋ = −(x − λ) − δg +
√

2 η(t ). (4)

Here, η(t ) is a Gaussian white noise with zero mean and
covariance 〈η(t )η(s)〉 = δ(t − s), and dots above a variable
denote a time derivative.

We measure the particle’s position periodically at fre-
quency fs (or equivalently, with period ts = 1/ fs). Integrating
(4) from time t to time t + ts gives the discrete-time stochastic
equation of motion [16, Chap. 4.5.4] for time step k, where
xk ≡ x(kts) and λk ≡ λ(kts):

xk+1 = xke−ts + (1 − e−ts )(λk − δg) + σts ξk. (5)

The ξk are independent Gaussian random variables with zero
mean and unit variance, and σ 2

ts = 1 − e−2ts is the sampling-
period-dependent variance. In response to this measurement,
we instantaneously move the trap center an increment �λk

[17]:

λk+1 = λk + �λk. (6)

For theoretical convenience, we consider the particle dy-
namics in the relative frame of the trap potential (Fig. 2),
henceforth the trap frame. The relevant degrees of freedom
in this reference frame are the relative particle position imme-
diately after measurement, r+

k ≡ xk+1 − λk , and immediately
following the response to the measurement, rk+1 ≡ xk+1 −
λk+1. In the trap frame, the discrete-time equations of motion
(5) and (6) are

r+
k = rke−ts − (1 − e−ts )δg + σtsξk (7a)

rk+1 = r+
k − �λk . (7b)

In this frame, following measurement of particle position
(7a), the feedback shifts the particle position according to
(7b).

We consider feedback that takes the general form

�λk = 
(r+
k − XT)(αr+

k + ψ ), (8)

which is a function of the current measured particle dis-
placement r+

k from the trap center. The increments �λk are
parameterized by the proportionality α, the offset ψ , and the
threshold XT, as measured from the trap center. The Heaviside
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FIG. 2. Schematic of information-engine operation in the trap
frame. In this frame, a ratchet event (as dictated by the feedback rule)
instantaneously transports the particle from its measured position r+

k

(purple) to another position (teal) �λk away (dashed line), inputting
work W trap

k (vertical dotted line).

step function 
(·) implements the ratchet threshold condi-
tion. Specification of these parameters {α,ψ, XT} constitutes
a feedback rule. We say that a ratchet event occurs when
evaluation of (8) produces an increment �λk �= 0.

The feedback implies that if the relative particle position
from the trap center exceeds the threshold XT, then the particle
position in the trap frame (or the trap center in the labora-
tory frame) is shifted in response; otherwise, the position is
unchanged. The amount moved during a ratchet event is a
constant plus a term proportional to the displacement (i.e., an
affine transformation of the displacement).

C. Engine thermodynamics

Measurement of the particle’s displacement leads to a feed-
back response (8) that causes the trap to do work,

W trap
k = 1

2 [(rk+1)2 − (r+
k )2], (9)

on the particle [Fig. 1(a), Fig. 2]. By convention, this work
is negative when the particle’s potential energy decreases, in
which case energy is extracted from the particle as work via
the trap.

The particle’s equilibrium free energy is

F ≡ 〈V (x, λ) + ln π eq(x|λ)〉π eq (x|λ). (10)

Upon applying feedback, this free energy changes by [18]

�Fk = δg (λk+1 − λk ). (11)

The particle then diffuses for a time ts until the next measure-
ment. The rate of free-energy change, averaged over all steps
of the protocol, is

〈Ḟ 〉 = 1

tprot

Nmeas∑
k=1

�Fk (12a)

= 1

Nmeas

Nmeas∑
k=1

�Fk

ts
, (12b)

where Nmeas ≡ 	tprot/ts
 is the number of measurements
made over protocol duration tprot for sampling period ts. We

FIG. 3. Energy flows among the system, free-energy store, trap-
work reservoir, and thermal reservoir, for the unconstrained scheme.

generally consider cases where tprot � ts, resulting in many
measurements for each trajectory. Similarly, the trap does
work on the system at average rate:

〈Ptrap〉 = 1

Nmeas

Nmeas∑
k=1

W trap
k

ts
. (13)

We then define the net output power as the difference between
the rate of free-energy change and the input trap work,

〈Pnet〉 = 〈Ḟ 〉 − 〈Ptrap〉 (14a)

= 1

Nmeas

Nmeas∑
k=1

�Fk − W trap
k

ts
. (14b)

D. Accounting considerations

In general, measurement-feedback processes allow the
extraction of work from an isothermal reservoir [14]. The con-
ventional second law must be modified to explicitly include
the information gathered during the measurement [19–21],
reflecting minimal costs of operating the measuring device.
When these costs are not considered, this leads to apparent
violations of the second law,

〈W 〉 − �F < 0, (15)

including extraction of work at constant free energy (〈W 〉 < 0
and �F = 0), increased free energy without any work (〈W 〉 =
0 and �F > 0), and combinations thereof.

The unconstrained feedback scheme (8) permits positive or
negative increments for free energy (12b) and trap work (13)
and thus bidirectional energy exchange among the system,
the free-energy store, and the trap-work reservoir (Fig. 3). As
such, this feedback scheme allows energy to be stored as work
via the trap potential or as free energy in the gravitational
potential.

Although the unconstrained feedback scheme does not
present a conceptual challenge, there are practical experimen-
tal difficulties in storing work via the trap (i.e., negative trap
work). Information engines have so far been able to extract
and store energy via a flow field [8] or gravity [15]. However,
all other energy flows not directly linked to either an increase
in the system’s internal energy via the trap or an increase
in system free energy are quickly lost to the environment as
heat. We refer to feedback schemes whose output is limited to
stored free energy as practical-storage feedback schemes.
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FIG. 4. Energy flows among the system, the free-energy store,
trap-work reservoir, and the thermal reservoir, for the (a) zero-work
and (b) nonnegative-work feedback schemes.

Our setup also restricts the free-energy change. The free
energy in (10) has two contributions: an energetic one through
the equilibrium potential energy 〈V (x, λ)〉π eq (x|λ) and an en-
tropic one through −〈ln π eq(x|λ)〉π eq (x|λ). Measurement and
feedback can in principle influence both contributions; how-
ever, we choose to only change the potential energy by moving
the trap “up” or “down,” and hence (11) is defined entirely
in terms of changes in the trap minimum location. If one
did increase the trap stiffness, the system’s entropy would
decrease, increasing the free energy in response to a measure-
ment [22,23]; here we focus on free-energy storage via the
gravitational potential.

We focus on two ways to model the practical con-
straints that restrict the output to only equilibrium free-energy
changes (see Appendix A for a third way). One method com-
pletely eliminates the trap-work reservoir by forbidding any
trap work during any ratchet event via the feedback scheme

�λk = 
(r+
k − XT)2r+

k , (16)

i.e., (8) with α = 2 and ψ = 0. The threshold XT is chosen
to maximize the net output power. This scheme uses only
information (and no trap work) to lift the particle and store
free energy [Fig. 4(a)]. We call this the zero-work feedback
scheme. It was explored extensively in our previous work [15]
and is discussed in Sec. III B 1.

Another way to implement practical considerations is to
design a scheme in which the allowed increments �λk are
only those that produce a nonnegative trap work (W trap

k �
0 ∀ k):

�λ
prop
k = 
(r+

k − XT)(αr+
k + ψ ) (17a)

�λk = 

[
W trap

(
�λ

prop
k

)]
�λ

prop
k . (17b)

This feedback scheme proposes an increment �λ
prop
k based

on the most recent measurement of the particle’s position
and rejects ratchet events with negative work, corresponding
to energy extracted from the particle. As such, we call this
the nonnegative-work feedback scheme. By construction, this
scheme enforces unidirectional energy flow from the trap into
the system [Fig. 4(b)].

E. Performance metrics

Since the rate Ḟ of free-energy change and the trap power
〈Ptrap〉 cannot in general be simultaneously optimized, we
examine the Pareto frontier, the set of Pareto-optimal rules
that are not dominated by any other rule (and hence cannot
improve one objective without worsening another objective)
[24,25]. This defines the limits of (suitably defined) per-
formance. To obtain the Pareto frontier for the considered
feedback schemes, we vary the parameters {α,ψ, XT} to max-
imize the single-objective performance function

P (�) ≡ 2�〈Ḟ 〉 − 2(1 − �)〈Ptrap〉, (18)

given a value of the trade-off parameter � ∈ (0, 1). Shifting �

from 0 to 1 shifts from solely minimizing the cost (input trap
work) to solely maximizing the gain (free-energy extraction).
At intermediate �, the rate 〈Ḟ 〉 of free-energy change and
the input trap power 〈Ptrap〉 face a finite tradeoff. We include
factors of 2 on the right-hand side of (18) to ensure that
� = 1/2 equates the performance with the net output power
(14b): P (� = 1/2) = 〈Pnet〉.

III. RESULTS

A. Unconstrained feedback scheme

We first optimize the unconstrained feedback scheme by
varying the feedback parameters. Given that this scheme can
store all the potential energy from the particle, either as work
via the trap or as a free-energy change via gravitational po-
tential, it stands to reason that it would be suboptimal if the
scheme were to take advantage only of a select set of fluc-
tuations. We therefore hypothesize that the optimal feedback
scheme does not have a finite threshold, so that a ratchet event
follows every measurement, simplifying (8) to

�λk = αr+
k + ψ. (19)

We refer to this special case of the unconstrained scheme as
the no-threshold feedback scheme.

1. No-threshold steady-state derivation

Since both the diffusive particle dynamics and the feedback
rule are linear, the relative positions (7) are both Gaussian
processes. Consequently, the steady-state distributions arising
from (19) are also Gaussian. Deriving self-consistent equa-
tions (see Appendix B for details), we find that the steady-state
distribution for the relative coordinate r+

k immediately after
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measurement is

π (r+
k ) = N (r+

k ; μr+
k
, σ 2

r+
k

) (20a)

μr+
k

= −δg + (ψ − δg)e−ts

1 + (α − 1)e−ts
(20b)

σ 2
r+

k
= 1 − e−2ts

1 − (α − 1)2e−2ts
, (20c)

while the steady-state distribution of the relative coordinate rk

immediately after feedback is

π̃ (rk ) = N
(
rk; μrk , σ

2
rk

)
(21a)

μrk = (1 − e−ts )(α − 1)δg − ψ

1 + (α − 1)e−ts
(21b)

σ 2
rk

= (1 − e−2ts )(α − 1)2

1 − (α − 1)2e−2ts
. (21c)

The variances of both these distributions must remain non-
negative, constraining α to

1 − ets < α < 1 + ets . (22)

Outside this range, the system is unstable, never settling down
into a steady-state distribution.

Since at steady state μrk+1 = μrk , the rate of free-energy
change (11) is proportional to the difference of the means of
the steady-state distributions,

〈Ḟ 〉 = δg

ts

(
μr+

k
− μrk

)
. (23)

Similarly, the trap power (9) is proportional to the difference
of the second moments [26]. Here we have used that at steady
state 〈(rk+1)2〉 = 〈(rk )2〉:

〈Ptrap〉 = 1

2ts
[〈(rk )2〉 − 〈(r+

k )2〉] (24a)

= 1

2ts

(
σ 2

rk
− σ 2

r+
k

+ μ2
rk

− μ2
r+

k

)
. (24b)

2. No-threshold feedback scheme for finite sampling frequency

We vary the parameters α and ψ to optimize the per-
formance function (18) for input power (24) and rate of
free-energy change (23), averaged over distributions (20) and
(21). Equivalently, we choose the distributions parametrized
by α and ψ that maximize the general performance function,

arg max
α,ψ

{
2�〈Ḟ 〉NT − 2(1 − �)〈Ptrap〉NT

}
. (25)

Here, the subscript “NT” denotes that these quantities are
computed for the “No-Threshold” feedback scheme (19). We
obtain the optimal parameters

α∗ = 1 (26a)

ψ∗ = � + (1 − �)e−ts

(1 − �)(1 + e−ts )
δg. (26b)

Substituting (26) into (19), the optimal no-threshold feedback
rule for finite sampling frequency is

(�λ∗
k )NT = r+

k + � + (1 − �)e−ts

(1 − �)(1 + e−ts )
δg, (27)

producing optimal performance

P∗
NT = (1 − e−2ts )

ts
(1 − �) + tanh 1

2 ts
ts

4
(
� − 1

2

)2

1 − �
δ2

g . (28)

For continuous sampling (sampling period ts → 0, equiv-
alently sampling frequency fs → ∞), the average rate of
free-energy change (23) and trap power (24) simplify to

〈Ḟ 〉∞NT = −δ2
g + δg

(
ψ

α

)
, (29)

〈Ptrap〉∞NT = −1 − δg

(
ψ

α

)
+

(
ψ

α

)2

. (30)

The ∞ superscripts denote that these results are for infinite
sampling frequency. For fixed δg and tradeoff �, varying pa-
rameters α and ψ to maximize (18),

arg max
α,ψ

{
2�〈Ḟ 〉∞NT − 2(1 − �)〈Ptrap〉∞NT

}
, (31)

gives arbitrary α and

(ψ∗)∞ = δg

2(1 − �)
α. (32)

Optimizing for the feedback scheme under the assumption of
continuous sampling formally leaves undetermined the op-
timal α; however, we choose α = 1 to ensure consistency
with the ts → 0 limit of the finite-sampling parameters (26).
Thus the optimal rule obtained from the continuous-sampling
no-threshold feedback scheme (19) is

(�λ∗
k )∞NT = α

[
r+

k + δg

2(1 − �)

]
, (33)

producing

〈Ḟ 〉∞NT = � − 1
2

1 − �
δ2

g (34)

〈Ptrap〉∞NT = � − 1
2

2(1 − �)2 δ2
g − 1. (35)

Figure 5 displays these relations parametrically over the range
10−3 < � < 1 for different values of δg. This continuous-
sampling optimal rule (33) yields the performance

(
P∞

NT

)∗ = 2

[
1 − � +

(
� − 1

2

)2

1 − �
δ2

g

]
. (36)

3. Performance bounds under full extraction

We now show that performance for the no-threshold feed-
back scheme at finite sampling frequency is upper bounded by
its value for continuous sampling, independent of the trade-off
parameter �. In the optimal finite-sampling-frequency perfor-
mance function (28), the factor (1 − e−2ts )/ts in the first term
monotonically decreases with the sampling period ts and goes
to a maximum of unity in the continuous-sampling limit ts →
0. Similarly, tanh(ts/2)/ts in the second term monotonically
decreases with the sampling period, from a maximum of 1/2
in the limit of ts → 0. Put together, this yields

P∗
NT � (P∗

NT)∞. (37)
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FIG. 5. Pareto performance frontiers for continuous-sampling
unconstrained feedback schemes with no threshold (34), (35) (solid
curves) or permitting finite threshold and optimized using numerical
gradient ascent (triangles). Gold dotted line: diffusion bound on the
net output power of 〈Pnet〉 = 1.

4. Verifying the optimality of the no-threshold scheme

To confirm that feedback schemes of the form (19)
(i.e., with no threshold) are optimal, we now maximize the
finite-sampling-frequency performance function (18) using
the unconstrained feedback scheme (8), explicitly allowing
a finite threshold XT. A finite threshold presents analytical
difficulties, as (7a) and (7b) produce non-Gaussian steady-
state distributions with no tractable closed-form expressions.
We therefore numerically simulate many realizations of (5)
for each set of feedback parameters {α,ψ, XT} and the un-
constrained feedback scheme (8) to estimate the rate of
free-energy change (12b) and trap power (13). We then use
stochastic gradient ascent [27] in the space of feedback pa-
rameters to find the optimal set that maximizes performance
(18) for fixed trade-off parameter �. (Appendix C provides
numerical details.) As we have already seen that performance
is generally maximized for high sampling frequencies, we use
fs = 1000 in the simulations.

The squares in Fig. 5 show 〈Ḟ 〉 and 〈Ptrap〉 for the rules
obtained by gradient ascent. These values generally agree well
with the frontiers of the no-threshold feedback scheme. This
finding is consistent with the conclusion that the dominant
strategy, for any tradeoff between 〈Ḟ 〉 and 〈Ptrap〉, is one
that uses all of the available fluctuations and hence has no
threshold.

5. Feedback cooling

Under the unconstrained feedback scheme, for each δg

the Pareto frontier at trade-off parameter � = 1/2 (where
performance equals net output power) passes through
(〈Ḟ 〉 = 0, 〈Ptrap〉 = −1). For this case, the optimal finite-
sampling-frequency feedback rule (27) dictates that ψ = δg,

implying

�λk = r+
k + δg (38a)

λk+1 − δg = xk+1. (38b)

In the second line we used the definitions for �λk (6) and
r+

k (7a). This feedback rule moves the minimum of the total
potential (located at λk+1 − δg) to the last measured particle
position xk+1, thereby extracting at each measurement the
particle’s total potential energy.

This feedback rule gives μr+
k

= μrk , meaning a zero
steady-state average rate of free-energy change (〈Ḟ 〉NT = 0).
Since (38) forces the minimum of the total potential to fol-
low the particle at each time step, the particle is as likely
to fluctuate up or down in the subsequent interval between
measurements. The minimum of the total potential therefore
undergoes similar unbiased Brownian motion, on average pro-
ducing no free-energy output.

This feedback scheme only extracts work via the trap and
mimics an overdamped version of feedback cooling [28,29]
in which the variance of the particle distribution is reduced
relative to the equilibrium distribution. [In fact, (38) im-
poses that 〈(rk )2〉 = 0.] Additionally, 〈(r+

k + δg)2〉 = σ 2
ts =

1 − e−2ts , which implies steady-state average power

〈Ptrap〉NT = −1 − e−2ts

2ts
. (39)

The net output power in the limit of continuous sampling is
then upper bounded by

〈Pnet〉∞NT = −〈Ptrap〉∞NT = 1. (40)

In dimensional units, the rule that extracts all available en-
ergy at each measurement produces finite net output power
〈Pnet〉NT = 1 kBT/τR, even with continuous measurements.
This limit is independent of δg; as a result, all Pareto frontiers
(across different δg’s) in Fig. 5 cross at the same point where
〈Ḟ 〉∞NT = 0 and 〈Ptrap〉∞NT = −1.

B. Practical-storage feedback schemes

We now restrict ourselves to the case where negative
trap work cannot be stored. We therefore consider feedback
schemes, either with the constraint that no trap (input) work be
done (16) (zero-work feedback scheme) or with the modified
rule set (17) (nonnegative-work feedback scheme) allowing
nonnegative trap work.

1. Zero-work feedback scheme

In [15], we optimized net output power when the engine is
constrained to operate as a “Maxwell demon” that does no
trap work. The constraint W trap

k = 0 was imposed for each
ratchet event, thus requiring (16). This rule enforces a sym-
metry on the process that makes the self-consistent equation
for the steady-state distributions π (r+

k ) and π̃ (rk ) numerically
solvable [15, SI Appendix E].

The net output power for this scheme is simply the rate of
free-energy change and can be computed from (23), where
the means μr+

k
and μrk are computed by averaging over

the steady-state joint distribution π (r+
k , rk ) of the relative
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FIG. 6. Net output power 〈Pnet〉 as a function of sampling fre-
quency and threshold for zero-work feedback scheme. (a) 〈Pnet〉 as a
function of sampling frequency fs for δg = 0.84 and XT = 0. Dashed
gray line: near-equilibrium prediction (41). (b) 〈Pnet〉 as a function
of threshold XT for δg = 0.84 and fs = 1000. Dotted horizontal gray
line: predicted continuous-sampling power (46).

coordinates. Figure 6(a) shows that the output power satu-
rates at large sampling frequency. That net output power is
maximized at high sampling frequencies is consistent with
the more general finding of Sec. III A 3 that performance is
maximized for continuous sampling.

In the limit of low sampling frequency, the system equili-
brates between each measurement/feedback step, reaching the
Gibbs-Boltzmann position distribution (3). In this limit, the
average work extracted is determined from the feedback rule
(16),〈

Pnet
fs→0

〉 = fs

{√
2

π
δge−δ2

g/2 + δ2
g

[
erf

(
δg√

2

)
− 1

]}
. (41)

The power is linear in the sampling frequency, as shown in
Fig. 6(a).

The maximal net power in Fig. 6(a) is achieved in the limit
of large sampling frequency (vanishing sampling time). (Al-
though experimental sampling times are always finite, these
times can be much faster than system timescales.) Sending
sampling time to zero eases calculation of the diffusive parti-
cle’s mean first-passage time (MFPT), the time to first cross
the threshold XT when starting at −XR [30,31],

〈τFP〉 =
∫ XT

−XR

dx′
∫ x′

−∞
dx′′ exp [V (x′) − V (x′′)], (42)

for total potential V (x) = 1
2 x2 + δgx. The feedback rule (16)

sets the threshold to the start position, XR = XT, giving net
output power

〈Pnet〉∞ = 2XT

〈τFP〉δg. (43)

Figure 6(b) shows that empirically the net output power is
maximized as XT → 0. Thus the optimal zero-work feedback
rule is

�λk = 
(r+
k )2r+

k . (44)

FIG. 7. Net output power 〈Pnet〉 as a function of scaled effective
mass δg for the optimal zero-work feedback rule (44). Solid curve:
theoretical approximation in the � → 0 limit (46). Stars: δg’s shown
in Fig. 8. Dotted vertical gray line: δg ≈ 0.84 that maximizes 〈Pnet〉.
Horizontal dashed gray line: maximal 〈Pnet〉∗ ≈ 0.294.

Inspired by the empirically observed maximal net output
power and vanishing threshold, we make a small-XT expan-
sion in (42), giving

〈τFP〉∞XT→0 ≈
√

2πeδ2
g/2

[
1 + erf

(
δg√

2

)]
XT (45)

to first order in the threshold, yielding net output power

〈Pnet〉∞XT→0 =
√

2

π
δge−δ2

g/2

[
1 + erf

(
δg√

2

)]−1

. (46)

This result for the net output power reprises the derivation in
[15] and has also been found previously [32] via a different
method.

Having optimized the net output power with respect to
the sampling frequency and the threshold, we now optimize
with respect to the scaled effective mass δg. Figure 7 shows
a maximum net extraction power 〈Pnet〉∗ ≈ 0.294 at interme-
diate δ∗

g ≈ 0.84. This maximum arises from the competition
between increased scaled effective mass increasing potential
energy yet also increasing the time required to fluctuate be-
yond the threshold.

2. Nonnegative-work feedback scheme

As with the unconstrained feedback scheme, the nonlin-
earities in the nonnegative-work feedback scheme (17) make
analysis difficult; consequently, we numerically estimate
Pareto frontiers using stochastic gradient ascent (Appendix C)
on the space of parameters {α,ψ, XT}. Guided by the analysis
in Sec. III A 3, which revealed an advantage to frequent sam-
pling, and similar to Sec. III A 4, we use sampling frequency
fs = 1000. (Appendix D explores the effect of varying sam-
pling frequency.) Figure 8 shows the Pareto frontiers found by
gradient ascent.

In the limit of small trade-off parameter (� → 0), the
performance (18) becomes independent of the average
rate of free-energy change 〈Ḟ 〉 and proportional only to
the negative of the trap power, P ∝ −〈Ptrap〉: maximizing
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FIG. 8. Pareto frontiers (solid curves) under the nonnegative-
work (practical-storage) feedback scheme for different scaled
effective masses δg (different colors). Stars: optimal zero-work feed-
back rule (Fig. 7). Thin solid lines: net output power 〈Pnet〉 equal to
corresponding star. Dotted gray line: 〈Pnet〉 = 0.

performance is equivalent to minimizing the trap input power.
The practical-storage schemes impose that 〈Ptrap〉 � 0 and
thus include as a special case the zero-work feedback scheme
from Sec. III B 1, which imposes 〈Ptrap〉 = 0. There is there-
fore a correspondence (denoted by the colored stars in Figs. 7
and 8) between the optimized zero-work scheme and the opti-
mized nonnegative-work feedback scheme for � → 0. (� =
0 presents complications: for a given δg, all XT > 0 admit
optimal solutions that achieve 〈Ptrap〉 = 0, with 〈Ḟ 〉 varying
between 0 and the optimal value at finite-but-small �.)

For δg < δ∗
g ≈ 0.84, Fig. 8 shows that other rules, generally

with nonzero trap work, do not increase the net output power
beyond that for � → 0. In contrast, for δg > δ∗

g , net output
power can be increased with an input of trap power, with
the Pareto frontiers upper bounded by the net output power
associated with the zero-work feedback scheme (46) evaluated
for the optimal mass δ∗

g . That is, for heavier particles with
effective mass m leading to δg > δ∗

g , investing work as input is
more than compensated by increasing the free-energy change
extracted as output.

To understand the physical mechanism underlying op-
timal feedback rules that maximize the net output power
(i.e., for � = 1/2), we map the process imposed by the
nonnegative-work feedback scheme to the optimal zero-work
feedback rule: we choose the parameters {α,ψ, XT} such that
the nonnegative-work feedback scheme is equivalent to that
of the optimal zero-work rule. To do this we rewrite the
nonnegative-work feedback scheme (17) and optimal zero-
work feedback rule (44) in the frame that is comoving with
the total potential. By comparing the nonnegative-work feed-
back scheme to the optimal zero-work feedback rule, we

identify the parameters for the nonnegative-work feedback
scheme that makes the resulting feedback rules the same (see
Appendix E for details), yielding

α∗ = 2 (47a)

ψ∗ = 2(δg − δ∗
g ) (47b)

X ∗
T = − 1

2ψ∗. (47c)

This choice of parameters also reproduces the maximum value
of the net output power (46),

〈Pnet〉∗ ≡
√

2

π
δ∗

ge−(δ∗
g )2

/2

[
1 + erf

(
δ∗

g√
2

)]−1

, (48)

for all δg > δ∗
g (Appendix E).

To confirm this analysis, we fix α = 2, and, for a variety
of δg, perform stochastic gradient ascent to find ψ and XT

that (locally) optimize net power (i.e., performance with � =
1/2). Figure 9(a) shows that the resulting net power repro-
duces the output of the optimal zero-work feedback scheme
(46) when δg < δ∗

g [Fig. 7], further supporting that input
trap power cannot compensate for a small effective mass.
However, when δg � δ∗

g , the numerically optimized net power
uniformly achieves the maximal (over all δg) net output power
〈Pnet〉∗ ≈ 0.294 (48). Figures 9(b) and 9(c) verify that the op-
timal nonnegative-work feedback rules produce steady-state
distributions of the (shifted) relative coordinates that match
those of the optimal zero-work feedback rule.

We show (Appendix F) that this empirical equality between
steady-state distributions, shown in Figs. 9(b) and 9(c), im-
plies that the net output power distributions of the optimal
nonnegative-work feedback rule and the optimal zero-work
feedback rule are also equal. Thus this mapping recovers not
only the mean net output power but the full distribution of the
net output power as well.

Furthermore, when its rules are optimized for net output
power, if the nonnegative-work feedback scheme does re-
alize the same process as the optimal zero-work feedback
scheme, then (47) should allow characterization of the optimal
parameters resulting from this restricted (fixed-α) stochastic
gradient ascent. Indeed, the empirical optimal values of ψ∗ in
Fig. 10(a) are indistinguishable from the theoretical expecta-
tion (47b) for δg > δ∗

g . Figure 10(b) shows that (47c) provides
an upper bound for the possible thresholds XT, which is ex-
pected due to the extra constraints of the nonnegative-work
feedback scheme (17). Specifically, the Heaviside function
in the proposal (17a) imposes XT � r+

k , while the Heaviside
function imposing nonnegative trap work in (17b) requires
−|rk| � r+

k � |rk|; hence, nonnegative-work feedback rules
with XT < −|rk| have the same performance as those with
XT = −|rk|.

Figures 8 and 9 show a sharp transition in optimal strate-
gies at δg = δ∗

g , from strategies that do not input work when
δg < δ∗

g to strategies that input work for δg > δ∗
g . To under-

stand this transition, we apply to the unconstrained feedback
scheme (8) the rules obtained from mapping the nonnegative-
work scheme to the optimal zero-work feedback rule (47)
and compute the corresponding net output powers. Figure 11
shows that the unconstrained scheme can uniformly recover
the maximum 〈Pnet〉∗ of the optimal zero-work feedback
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FIG. 9. Mapping the nonnegative-work scheme to the optimal
zero-work feedback rule reproduces the performance bound for δg �
δ∗

g . (a) Optimal net output power 〈Pnet〉 as a function of scaled ef-
fective mass δg. Blue wide curve: nonnegative-work feedback. Black
thin curve: zero-work feedback from Fig. 7. Circles: net output power
associated with the steady-state distributions in (b), (c). Gray dashed
vertical line: scaled effective mass δ∗

g that maximizes the output
power in the optimal zero-work rule. (b), (c) Steady-state distribu-
tions of shifted relative coordinates r+

k + δg and rk + δg, respectively.
Dashed black curve: shifted steady-state distribution of the optimal
zero-work feedback scheme for δg = δ∗

g .

scheme for all values of δg. Conversely, as seen previously
in Fig. 9, the rules (47) applied to the nonnegative-work feed-
back scheme recover the maximum net output power only for
δg > δ∗

g : for δg < δ∗
g , there are no nonnegative-work-scheme

strategies that increase the net output work without nega-
tive trap work. Thus the restrictions of the nonnegative-work
feedback scheme prevent it from realizing the maximum net
output power.

Supplying input work shifts the total potential such that the
particle experiences stronger upward forces, which should re-
duce the time to diffuse past the threshold. To confirm this, we
measure the ratchet-time distribution (i.e., the time between
ratchet events tratchet) during a long simulated trajectory of (5)
[33]. We collect measurements at a sampling frequency fs =

FIG. 10. Nonnegative-work-scheme parameters associated with
maximal net output power. Optimal offset ψ∗ (a) and threshold X ∗

T

(b) for nonnegative-work feedback scheme with � = 1/2 and fixed
proportionality α∗ = 2 as a function of scaled effective mass δg. Blue
points: optimal parameters found numerically by gradient ascent.
Solid blue lines: theory (47) from mapping the nonnegative-work
feedback scheme to the optimal zero-work (ZW) feedback rule.
Dashed gray vertical line: scaled effective mass δ∗

g ≈ 0.84 optimizing
ZW performance.

1000, approximating the continuous-sampling limit. As such,
we can view the ratchet-time distributions as approximately
equivalent to the first-passage time distributions, since at this
fast-sampling limit, we accurately detect when the particle
first passes the threshold XT.

FIG. 11. Net output power of the unconstrained and nonnegative-
work feedback schemes, both using (47), as well as the optimal
zero-work feedback rule. Black thin curve and blue wide curve: same
as in Fig. 9(a). Orange curve: unconstrained feedback rule obtained
by mapping the nonnegative-work feedback scheme to the optimal
zero-work feedback rule (47). Dashed gray vertical line: same as in
Fig. 9(a).
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FIG. 12. Ratchet-time distributions, each computed for a trajec-
tory with protocol duration tprot = 5000 and sampling frequency fs =
1000. Different colors denote different δg. Squares and solid connect-
ing curves: distributions for the optimal zero-work (ZW) feedback
rule (44). Points and dashed connecting curve: distribution for the
optimal nonnegative-work (NNW) feedback rule (47). Error bars
denote standard error of the mean. The ratchet-time distribution for
optimal ZW feedback rule with δg = 0.84 is indistinguishable from
the ratchet-time distribution for the NNW feedback scheme using
the rules (47) with δg = 1.68. Inset: mean first-passage time (com-
puted from trajectories) as a function of scaled effective mass δg,
for optimal ZW feedback scheme (squares) and for NNW feedback
scheme (points). Dashed vertical line denotes δ∗

g ≈ 0.84 optimizing
ZW performance.

Figure 12 shows the ratchet-time distributions for the op-
timal zero-work feedback rule (44) that does not input work
and for the optimal nonnegative-work feedback rule (47) that
does input work. For the optimal zero-work feedback rule, the
proportion of events associated with very long first-passage
times increases with scaled effective mass δg. However, for a
given δg, the proportion of these long excursions away from
the threshold can be reduced by an input of work. This causes
the first-passage time distribution for higher δg to match that
of the optimal δ∗

g , thus equalizing the mean first-passage times
as seen in the inset of Fig. 12. Thus the input of work serves
to reduce the mean first-passage time for scaled effective
masses δg > δ∗

g , thereby enhancing the net output power of
the optimal nonnegative-work feedback rules relative to the
optimal zero-work feedback rule [Figs. 9(a) and 11].

IV. CONCLUSION

We have examined the performance limits of a simple
realization of an information engine comprised of a massive

colloidal particle immersed in an isothermal reservoir and dif-
fusing in a harmonic potential under gravity. This information
engine can perform work against gravity and thus store free
energy that can be harnessed later. Guided by practical consid-
erations, we studied this engine’s performance under different
feedback schemes, each with a different constraint on the
allowable energy extraction. Table I provides a summary of
our results.

Our analysis of the unconstrained scheme, where the infor-
mation engine can store all of the potential energy (both as
work and as free-energy change) that is input into the particle
by thermal fluctuations, shows that the net rate of energy
extraction (net output power) is limited to 1 kBT/τR across
all values of scaled effective mass δg (Fig. 5). Closer analysis
of the unconstrained rule (38) that achieves this bound reveals
that energy extraction happens entirely via the trap potential
(40). This limit is independent of the sampling frequency; thus
continuously collecting information provides diminishing re-
turns. Furthermore, we find that the optimal unconstrained
rules (19) do not use a threshold to selectively filter for a
subset of fluctuations.

Conversely, in cases where the information engine cannot
store energy as work via the trap (and thus does not benefit
from negative trap work), the net output power is uniformly
bounded (48) by ≈0.294 kBT/τR in physical units (Fig. 11).
This bound is more restrictive than the bound on the uncon-
strained schemes. Thus, storing energy as work via a nonlinear
potential (the quadratic trap) is more effective than storing
energy as a free-energy change via a linear potential (the
gravitational potential).

In practical-storage schemes, there is a sharp transition
in optimal strategies (Fig. 8) between optimal strategies for
δg < δ∗

g that do not input work but cannot reach the maximal
〈Pnet〉∗ = 0.294 kBT/τR, and optimal strategies for δg > δ∗

g
that do input work and realize the bound on the maximum
net output power. This sharp change in optimal strategy as a
function of system parameters is a common phenomenon in
control theory [24,34].

We find that the input of work, for δg > δ∗
g , is used to

reduce the proportion of trajectories that wander away from
the threshold for a long time, thus speeding up the overall
engine operation (Fig. 12). We also find that the inability for
the practical-storage schemes to store energy from the trap
severely limits engine output when δg < δ∗

g , as the strategies
available to increase net output power in this regime require
storing energy via the trap (Fig. 11).

The limit on output power for the practical-storage feed-
back schemes arises because the engine can only rectify “up”
fluctuations. Information collected about the “down” fluctu-
ations is wasted, since there is no feedback response. This
contrasts with the unconstrained scheme, where the engine
acts on both “up” and “down” fluctuations, thus exploiting all
the information it gathers and producing a much higher net
power that is limited only by diffusion (entering through the
relaxation time τR).

Our observation that input energy can increase
information-engine performance has been seen in other
systems. Schmitt et al. [35] study an information engine
similar to ours, with an overdamped particle diffusing freely
in a piecewise-linear potential coupled to a feedback-control
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TABLE I. Summary of results for the unconstrained (8), the zero-work (16), and the nonnegative-work (17) feedback schemes (rows):
permissible trap-work increments W trap

k , δg range that optimizes 〈Pnet〉, maximal net output power 〈Pnet〉∗, and qualitative behavior under
optimal rules (columns).

Scheme W trap
k

arg max
δg

〈Pnet〉 〈Pnet〉∗

(kBT/τR )
Behavior under optimal rules

Unconstrained Any ∀ δg 1
• Captures all fluctuations
• All output via trap

Zero work = 0 ≈ 0.84
≈ 0.294

Greater mass trades off greater
work with longer 〈τFP〉Rectifies all “up” fluctuations

and only “up” fluctuations

Nonnegative work � 0 � 0.84 Input work to reduce 〈τFP〉

system that rectifies fluctuations by moving the potential
a fixed distance L if the particle is measured beyond some
predefined threshold XT. In the parameter space they explored,
they find—as we do—that performance is maximized when
the engine both uses information and inputs work.

We primarily focused on maximizing engine performance,
as quantified by the tradeoff between rate of free-energy
change and trap input power. We have not specified any details
of the apparatus processing the measurements (the measure-
ment device) and evaluating the feedback rule (the feedback
controller); however, we assume that continuous-sampling
(i.e., the ability to sample much faster than characteristic
dynamical timescales) and noise-free measurements are pos-
sible. In practice, the latter amounts to requiring that the
uncertainty of position measurements be significantly less
than the trap length scale σ . While there are a variety of
ways of estimating the thermodynamic costs of information
processing [29], all lead to vanishing efficiency when applied
to our setup. It would be interesting to explore what optimal
feedback rules arise when the information cost is included in
the performance function.

Finally, although we were inspired by the recent exper-
iment in [15], our results should hold more generally for
systems under the influence of a joint quadratic-plus-linear
potential. Recent experiments [36], for example, have realized
electronic circuits that can be configured such that the charge
dynamics in the circuit are governed by (4). With such a setup,
one could implement the feedback schemes we have outlined
here and test our predicted performance limits.
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APPENDIX A: DISSIPATIVE FEEDBACK SCHEME

Another way to address the practical considerations, in
addition to the zero-work (Sec. III B 1) and nonnegative-work
(Sec. III B 2) feedback schemes discussed in the main text,
is to modify the accounting of the trap input work for the
case where the energy which flows from the system to the
trap-work reservoir is not storable and thus is ultimately dissi-
pated into the thermal reservoir (Fig. 13), providing no direct
performance improvement to the engine. To reflect this we
modify the definition of the trap input power to

〈Ptrap〉 = 1

tprot

∑
k



[
W trap

k

]
W trap

k . (A1)

This differs from (13) in that the Heaviside function inside
the summation ensures that only positive contributions are
counted towards the total trap input power. This dissipative
scheme therefore dissipates the energy associated with moves
that have negative trap work.

We perform gradient ascent of the performance func-
tion to find the Pareto frontier for this feedback scheme.
Figure 14 shows that there is negligible difference between
the Pareto frontier found for the nonnegative-work scheme
and the dissipative scheme. Thus there is no added benefit to
allowing moves with negative trap work, as they give up free
energy that could have been extracted by an alternative move
with zero trap work. Thus it is advantageous not to propose
negative trap work moves at all if the objective is to maximize
net output power.

FIG. 13. Schematic of the energy flows associated with the dis-
sipative feedback scheme, among the system, the free-energy store,
the trap-work reservoir, and the thermal reservoir.
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FIG. 14. Comparison of Pareto frontiers for nonnegative-work
and dissipative feedback schemes, for different scaled effective
masses δg (different colors). Light wide curves: Pareto frontiers for
the nonnegative-work feedback scheme, same as in Fig. 8. Dark nar-
row curves: Pareto frontiers for the dissipative feedback scheme. The
Pareto frontiers for the two feedback schemes are indistinguishable.
Stars: optimal zero-work feedback rule (Fig. 7).

To further emphasize this point, Fig. 15 compares the
optimal rules found for the dissipative scheme when the per-
formance function equals the net output power (i.e., for � =
1/2). This shows even better agreement between the empiri-
cally found rules and the theoretical expectation (E4) than for

FIG. 15. Dissipative-scheme parameters maximizing net output
power. Optimal offset ψ∗ and threshold X ∗

T for dissipative feedback
scheme with � = 1/2 and fixed proportionality α∗ = 2 as a function
of scaled effective mass δg. Diamonds: optimal parameters found by
gradient ascent. Solid lines: theory (E4). Dashed vertical line: scaled
effective mass δ∗

g ≈ 0.84 optimizing ZW performance.

the nonnegative-work scheme (Fig. 10). In particular, rather
than providing an upper bound on the feedback threshold XT,
for the dissipative feedback scheme our theoretical analysis
(E4) reproduces exactly the empirically found rules when
δg > δ∗

g . As the dissipative feedback scheme does not have the
additional constraint imposed by requiring that all trap moves
have an associated non-negative trap work, the threshold XT

is not a redundant variable. The excellent agreement then
illustrates that the dissipative feedback schemes maximizing
net output power do not propose any moves with negative trap
work.

APPENDIX B: DERIVING STEADY-STATE DISTRIBUTION
FOR NO THRESHOLD

Here we derive the steady-state distributions for the uncon-
strained feedback scheme used for calculations in Sec. III A of
the main text. From Eqs. (7a) and (7b), the particle’s dynamics
(for fixed trap center λk) are an Ornstein-Uhlenbeck process
with propagator

p(xk+1|xk, λk ) = N
(
xk+1; μxk+1|xk , σ

2
ts

)
, (B1)

with mean μxk+1|xk = xke−ts + (1 − e−ts )(λk − δg) and vari-
ance σ 2

ts = 1 − e−2ts . The trap potential moves determin-
istically in response to a measurement of the particle’s
displacement r+

k from the trap center, with transition density

p(λk+1|xk+1, λk ) = δ[λk+1 − (λk + αr+
k + ψ )], (B2)

for the Dirac delta function δ[·].
A coordinate transformation from the laboratory frame to

the trap frame with relative coordinates

r+
k ≡ xk+1 − λk (B3a)

rk ≡ xk − λk (B3b)

gives

p1(r+
k |rk ) = N

(
r+

k ; μr+
k |rk

, σ 2
ts

)
, (B4)

with mean μr+
k |rk

= rke−ts − (1 − e−ts )δg. Similarly, using
rk+1 = xk+1 − λk+1, the transition density of the trap is trans-
formed in this frame to

p2(rk+1|r+
k ) = δ[rk+1 + (α − 1)r+

k + ψ]. (B5)

The steady-state solutions for the distributions π (r+
k ) and

π (rk ) lead to the self-consistent equations

π (r+
k ) =

∫
dv

{∫
du p1(r+

k |u)p2(u|v)

}
︸ ︷︷ ︸

≡ T (r+
k |v)

π (v) (B6a)

π̃ (rk ) =
∫

du

{∫
dv p2(rk|v)p1(v|u)

}
︸ ︷︷ ︸

≡ T̃ (rk |u)

π̃ (u). (B6b)

The propagator T (r+
k |v) simplifies to

T (r+
k |v) = N

(
r+

k ; μr+
k |v, σ

2
ts

)
, (B7)

with mean

μr+
k |v = −[(α − 1)ve−ts + (1 − e−ts )δg + ψe−ts ]. (B8)
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Similarly, the propagator T̃ (rk|u) is

T̃ (rk|u) = N
(
rk; μrk |u, (1 − α)2 σ 2

ts

)
, (B9)

with mean

μrk |u = −(α − 1)ue−ts + (α − 1)(1 − e−ts )δg − ψ. (B10)

The steady-state distributions for both of these coordinates
are Gaussian,

π (r+
k ) = N

(
r+

k ; μr+
k
, σ 2

r+
k

)
(B11a)

π̃ (rk ) = N
(
rk; μrk , σ

2
rk

)
, (B11b)

each satisfying its corresponding self-consistent steady-state
equation (B6).

Multiplying these equations by powers of the respec-
tive variables and integrating gives self-consistent equations
for the mean and variance. Multiplying (B6a) by r+

k , using
(B11a), and integrating yields

μr+
k

= −(α − 1)μr+
k

e−ts + (1 − e−ts )δg − e−tsψ.

Solving for the mean gives

μr+
k

= −δg + (ψ − δg)e−ts

1 + (α − 1)e−ts
. (B12)

The variance is computed similarly, yielding

σ 2
r+

k
= σ 2

ts + σ 2
r+

k
(α − 1)2e−2ts . (B13)

Solving for the variance gives

σ 2
r+

k
= 1 − e−2ts

1 − (α − 1)2e−2ts
. (B14)

These define the distribution (20) in the main text.
Performing the same procedure for rk , using (B6b) and

(B11b), gives mean

μrk = (1 − e−ts )(α − 1)δg − ψ

1 + (α − 1)e−ts
(B15)

and variance

σ 2
rk

= (1 − e−2ts )(α − 1)2

1 − (α − 1)2e−2ts
. (B16)

These define the distribution (21) in the main text.

APPENDIX C: STOCHASTIC GRADIENT ASCENT

Here we describe the details of the stochastic gradient-
ascent procedure that we use throughout this article. Starting
from an initial guess for the parameters, �0 = {α,ψ, XT}0,
the mean rate of free-energy change 〈Ḟ 〉 and the mean trap
input power 〈Ptrap〉 are estimated using (12b) and (13) from
an ensemble of 1000 particle-trap trajectories evolving ac-
cording to the discrete-time Langevin equation (5) integrated
from time t = 0 to t = 1000 (in units of relaxation time τR).
All simulations use fs = 1000, guided by our finding (in
Sec. III A 3, Fig. 6, and Appendix D) that performance is gen-
erally maximized for high sampling frequencies. A change in
the parameters �i+1 = �i + �̂ · ξ is then proposed, with ξ a
Gaussian random vector with zero mean and unit variance and
�i j = δi jσi a diagonal matrix with gradient-ascent parameters

FIG. 16. Pareto performance frontiers for the nonnegative-work
feedback scheme for different values of the sampling frequency fs

with scaled effective mass δg = 0.84. Dotted orange line: net out-
put power 〈Pnet〉 ≈ 0.294 of the optimal nonnegative-work feedback
scheme. Dotted gray line: 〈Pnet〉 = 0.

σi = 1/2 ∀ i ∈ {α,ψ, XT}. The proposed move is accepted if
the performance P (18) improves; otherwise, it is rejected.
(This is equivalent to basin-hopping optimization [27] at zero
temperature with objective function −P .) The ascent proceeds
for 800 proposed moves in parameter space.

In the unconstrained scheme, the initial guess is �0 =
{α = 1, ψ = XT = 0}, while for the nonnegative-work and
dissipative schemes, the initial guess is the parameter set of
the optimal zero-work feedback scheme, �0 = {α = 2, ψ =
XT = 0}.

APPENDIX D: PERFORMANCE AS A FUNCTION
OF SAMPLING FREQUENCY

Here we investigate how sampling frequency affects the
Pareto performance frontiers of the optimal nonnegative-work
feedback rules. Figure 16 shows that the Pareto frontiers of
the nonnegative-work feedback scheme associated with lower
sampling frequencies are dominated (i.e., do worse in one
objective without improving the other) by the frontiers as-
sociated with higher sampling frequencies. Lower sampling
frequencies lead to both missed observations of the particle’s
first crossing of the threshold and threshold re-crossings, re-
sulting in an overall reduced rate of energy extraction.

APPENDIX E: MAPPING DYNAMICS UNDER
THE ZERO-WORK SCHEME TO DYNAMICS UNDER
THE NONNEGATIVE-WORK FEEDBACK SCHEME

Here we “map” the stochastic process imposed by
the nonnegative-work feedback scheme to that under the
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optimal zero-work feedback rule, thereby yielding the choice
of parameters (47) in the main text. We first use the coordinate

�xtot
k+ = r+

k + δg (E1a)

= xk+1 − (λk − δg) (E1b)

to rewrite the optimal zero-work (ZW) feedback rule (44) in
the frame that is comoving with the total potential, obtaining

(�λ∗
k )ZW = 


(
�xtot

k+ − δ∗
g

)
2
(
�xtot

k+ − δ∗
g

)
, (E2)

where δ∗
g ≈ 0.84. Now we compute the optimal nonnegative-

work (NNW) scheme (17) in this comoving frame and obtain

(�λ∗
k )NNW = 


(
�xtot

k+ − δg − X ∗
T

)[
α∗(�xtot

k+ − δg
) + ψ∗].

(E3)

The Heaviside function in (17b) imposing positive trap in-
put work is implicitly accounted for in the allowed choices
of the parameters. Feedback rules (E2) and (E3) would be
identical for

α∗ = 2, (E4a)

ψ∗ = 2(δg − δ∗
g ), (E4b)

X ∗
T = δ∗

g − δg = − 1
2ψ∗. (E4c)

Choosing the parameters as above amounts to fixing
different starting position XR and threshold position XT.
Consequently, this choice—similar to what was seen in
Sec. III B 1—affects its mean first-passage time, i.e., the time
it takes for the particle to traverse the distance between its
starting position and the threshold. In particular, this choice
shifts the respective optimal start and threshold locations XR

and XT of the optimal zero-work feedback rule, yielding

XR = X ∗
R + (δg − δ∗

g ) (E5a)

XT = X ∗
T − (δg − δ∗

g ). (E5b)

The net output work associated with the optimal parameters is
then

W net (δg, XR, XT) = W grav(δg, XR, XT) − W trap(XR, XT)

(E6a)

= δg(XT + XR) − 1
2

(
X 2

R − X 2
T

)
(E6b)

= δ∗
g (X ∗

T + X ∗
R ) − 1

2

(
X 2

R − X 2
T

)
(E6c)

= W net
(
δ∗

g , X ∗
R, X ∗

T

)
. (E6d)

The mean first-passage time (42), using x′ = y − δg + δ∗
g and

x′′ = y′ − δg + δ∗
g , yields [30,31]

〈τFP〉(XR, XT) =
∫ XT+(δg−δ∗

g )

−[XR−(δg−δ∗
g )]

dyeV ∗(y)
∫ y

−∞
dy′e−V ∗(y′ ),

(E7)

where V ∗(x) = 1
2 x2 + δ∗

gx is the total potential associated with
the optimal scaled effective mass δ∗

g . Computing the net output

power,

〈Pnet〉 = W grav(XR, XT) − W trap(XR, XT)

〈τFP〉(XR, XT)
, (E8)

and taking the limit as the optimal reset and threshold loca-
tions approach one another (as in Sec. III B 1) recovers

lim
XR→(δg−δ∗

g )
lim

XT→(δ∗
g−δg )

〈Pnet〉

=
√

2

π
δ∗

ge−(δ∗
g )2/2

[
1 + erf

(
δ∗

g√
2

)]−1

. (E9)

Therefore this choice of parameters for the nonnegative-work
feedback scheme does return the maximum value of the net
output power (48) obtained in the optimal zero-work rule for
any δg > δ∗

g .

APPENDIX F: OPTIMAL NONNEGATIVE-WORK
FEEDBACK SCHEME HAS THE SAME NET OUTPUT

WORK DISTRIBUTION AS THE ZERO-WORK SCHEME

We show in Fig. 9 that the stationary distribution of the
nonnegative-work scheme under the choice of parameters (47)
is equivalent to that of the optimal zero-work scheme (44)
with δg = δ∗

g . Here we show that this result implies the net
output power distribution must also be the same for the two
feedback schemes.

To calculate the distribution for the net output work for one
step of the dynamics, we require the joint distribution of the
relative coordinates

p(r+
k , rk ) = πNNW(r+

k ; δg){
(−[r+
k − X ∗

T ])δ(rk − rk+1)

+
(r+
k − X ∗

T )δ(rk − [r+
k − (α∗r+

k + ψ∗)])}
(F1)

= πNNW(r+
k ; δg){
(−[r+

k + δg − δ∗
g ])δ(rk − rk+1)

+
(r+
k + δg − δ∗

g )δ(rk − [−r+
k − 2(δg − δ∗

g )])},
(F2)

where the superscript NNW on the stationary distribution
πNNW emphasizes that this is the stationary distribution of the
nonnegative-work scheme. The parameters α∗, ψ∗, and X ∗

T are
found in (47). We transform this distribution from the trap-
potential frame to the total-potential frame with coordinates
�xtot

k+ ≡ r+
k + δg and �xtot

k ≡ rk + δg:

p
(
�xtot

k+ ,�xtot
k

) =
∫

d�xtot
k+ d�xtot

k

{
p
(
�xtot

k+ ,�xtot
k

)
× δ

(
�xtot

k+ − r+
k − δg

)
δ
(
�xtot

k − rk − δg
)}

(F3a)

= πNNW
(
�xtot

k+ − δg; δg
){



(−�xtot

k+ + δ∗
g

)
× δ

(
�xtot

k − �xtot
k+

) + 

(
�xtot

k+ − δ∗
g

)
× δ

(
�xtot

k + �xtot
k+ − 2δ∗

g

)}
. (F3b)

The dependence of this expression on the scaled mass δg is
contained entirely in the stationary distribution πNNW; the

044122-14



MAXIMAL FLUCTUATION EXPLOITATION IN GAUSSIAN … PHYSICAL REVIEW E 104, 044122 (2021)

sum in the braces is entirely independent of δg. Figure 9(b)
shows empirically that

πNNW(r+
k − δg; δg) = πZW(r+

k − δ∗
g ; δ∗

g ) (F4a)

πNNW(r+
k ; δg) = πZW(r+

k + δg − δ∗
g ; δ∗

g ) (F4b)

πNNW
(
�xtot

k+ − δg; δg
) = πZW

(
�xtot

k+ − δ∗
g ; δ∗

g

)
, (F4c)

for the steady-state distribution πZW of the zero-work scheme.
Substituting this result into (F3) gives

p
(
�xtot

k+ ,�xtot
k

) = πZW
(
�xtot

k+ − δ∗
g ; δ∗

g

)
× {



(−�xtot

k+ + δ∗
g

)
δ
(
�xtot

k − �xtot
k+

)
+ 


(
�xtot

k+ − δ∗
g

)
δ
(
�xtot

k + �xtot
k+ − 2δ∗

g

)}
,

(F5)

which is now completely independent of the scaled mass
δg.

The net output power is, in the frame of the total potential,

Pnet = 1

2ts

[(
�xtot

k+
)2 − (

�xtot
k

)2]
. (F6)

Hence we compute the stationary distribution over net output
power as

p(Pnet ) =
∫

d�xtot
k+ d�xtot

k p
(
�xtot

k+ ,�xtot
k

)
× δ

(
Pnet − 1

2ts

[(
�xtot

k+
)2 − (

�xtot
k

)2])
, (F7)

independent of δg.
We have thus shown that by the empirical equality of

distributions (F4a) shown in Fig. 9(b), the nonnegative-work
scheme using the parameters (47) achieves the same net
output power distribution per measurement as that of the
optimal zero-work scheme (44) for δ∗

g .
For completeness, Fig. 17 shows the simulated distribu-

tions of the net output power Pnet, the rate of free-energy
change Ḟ , and the trap input power Ptrap. Figure 17(a)
shows that the net output power distributions for the op-
timal zero-work scheme and the optimal nonnegative-work
scheme closely match, in agreement with the above analysis.
Figures 17(b) and 17(c) show the distributions of the rate
of free-energy change Ḟ and trap input power Ptrap, respec-
tively. While the net output power distribution is preserved
in moving from the nonoptimal zero-work rule to the optimal
nonnegative-work feedback rule for scaled masses δg � 0.84,

FIG. 17. Empirical distributions of power for various feedback
schemes. (a) Net output power, (b) rate of free-energy change, and
(c) trap input power (where, by construction, the zero-work feedback
rules deterministically produce Ptrap = 0 for every measurement).
For clarity, we omit the probability of zero power. Different colors
denote different δg. Squares and solid connecting curves: optimal
zero-work (ZW) feedback rule (44). Points and dashed connecting
curves: optimal nonnegative work (NNW) feedback rule (47). Each
histogram of 10 bins is constructed from a long (t = 104τR ) trajec-
tory with sampling frequency fs = 1000.

the distributions for Ḟ and Ptrap are not. In general, the vari-
ance of these distributions increases as the scaled mass δg

increases, as well as in going from a nonoptimal zero-work
feedback rule to the optimal nonnegative-work feedback rule,
thereby allowing for the input of energy.
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