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Interaction-generated frustration in the ferromagnetic spin system on the kagome lattice:
Exact analysis on the star kagomelike recursive lattice
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Frustration effects caused by the presence of the six-site interaction in the ferromagnetic spin-1/2 Ising system
on the kagome lattice are investigated in detail using the star kagomelike recursive lattice approximation. It is
shown that although the model always exhibits the existence of only two standard phases (the ferromagnetic
phase and the paramagnetic one) separated by the curve of the second-order phase transitions, depending on
the value of the multisite interaction, the ferromagnetic phase splits into three different ground states in the
zero-temperature limit with different magnetization and thermodynamic properties. The free energy of the model
is derived, the residual entropies of all ground states are determined, and it is shown that the presence of the
six-site multisite interaction leads to the formation of two highly macroscopically degenerated ground states in
the studied ferromagnetic system, one of which is realized only for unique ratio of the six-site interaction to
the ferromagnetic interaction. It is demonstrated that the existence of this highly macroscopically degenerated
single-point-like ground state leads to appearance of the Schottky anomaly in the low-temperature behavior of
the specific heat capacity in the vicinity of this ground state. It is also shown that the simultaneous presence of the
frustration and of the second-order phase transitions in the studied model is responsible for the existence of even
three local maxima in the temperature behavior of the specific heat capacity.
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I. INTRODUCTION

Among the most intensively experimentally as well as
theoretically studied phenomena in the framework of con-
densed matter physics for a long time now belongs the
phenomenon of frustration in various magnetic systems (see,
e.g., Refs. [1–7] and references cited therein). This unquench-
able interest is given by the existence of various peculiar
magnetic and thermodynamic properties of such magnetic
systems, among which the most interesting are the forma-
tion of different discrete systems of highly macroscopically
degenerated ground states or the existence of the anoma-
lous low-temperature behavior of the specific heat capacity
that leads, e.g., to huge magnetocaloric effects. Moreover,
these special properties of frustrated magnetic systems are
interesting not only from pure fundamental point of view
but can also have nontrivial applications, e.g., in adiabatic
(de)magnetization cooling processes (see, e.g., Refs. [8–16]
as well as references cited therein).

The phenomenon of the magnetic frustration is usually
associated with the antiferromagnetic systems on regular lat-
tices with elementary cycles formed by odd number of sites
(most frequently formed by three sites), i.e., for instance,
on the kagome, triangular, pyrochlore, or Shastry-Sutherland
lattice [17]. However, more than 20 years ago the exis-
tence of geometric frustration in a ferromagnetic system was
observed for the first time that was generated by the single-
ion anisotropy in the ferromagnetic pyrochlore Ho2Ti2O7

[18], which are known as the spin-ice systems (see, e.g.,
Refs. [18–20]). Another possibility how to obtain strong frus-
tration in ferromagnetic systems (even on bipartite lattices)

is inclusion of additional antiferromagnetic interactions (see,
e.g., Refs. [21,22]). This is, however, quite expected situation
since, e.g., the presence of a strong enough next-nearest-
neighbor antiferromagnetic interaction can naturally caused
geometric frustration in the nearest-neighbor ferromagnetic
system even on the square or cubic lattices.

On the other hand, it was shown quite recently that nontriv-
ial frustration effects can also be generated by the presence
of a multisite interaction in the pure ferromagnetic system
[23]. There the systematic investigation of the influence of
the multisite interaction among three spin variables of each
elementary triangle of the kagome lattice on the properties
of the ferromagnetic system was performed in the framework
of the exactly solvable model on the kagomelike Husimi lat-
tice, i.e., on the recursive lattice that takes into account basic
triangular structure of the regular kagome lattice (see, e.g.,
Refs. [24–33] and references cited therein). However, it was
also shown that, in such a system, the frustration appears only
when strong-enough external magnetic field is applied. On
the other hand, in zero external magnetic field, regardless of
the strength and sign of the multisite interaction, the system
behaves as a ferromagnetic system. Thus, it turns out that the
presence of only the interaction of this kind is not enough to
cause frustration in the ferromagnetic system on the kagome
lattice when magnetic field is not applied. Therefore, the open
question is whether there exists another nontrivial interaction
on the kagome lattice (except a pure antiferromagnetic one)
that could cause frustration in the ferromagnetic system even
without the presence of the external magnetic field, i.e., with-
out the help of the explicit symmetry breaking caused by the
magnetic field.
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As we shall see in the present paper, such a nontrivial
interaction really exists, namely the six-site interaction
among all sites of each elementary hexagon of the kagome
lattice. Thus, in what follows, we intend to investigate
in detail the magnetic and thermodynamic properties of
the ferromagnetic system on the kagome lattice with the
presence of the aforementioned six-site interaction in the
framework of the spin-1/2 ferromagnetic Ising model on
the star kagomelike recursive lattice that takes into account
not only the basic triangular structure and the coordination
number of the real two-dimensional kagome lattice but also
its typical starlike structure [34]. Let us note that the star
kagomelike recursive lattice approximation is the simplest
recursive lattice approximation of the regular kagome lattice
that allows one to consider systematically the presence of
this six-site interaction. As will be shown, the presence of the
six-site interaction in the model leads to the frustration effects
(e.g., the formation of nontrivial system of macroscopically
degenerated ground states or the existence of anomalies in the
low-temperature behavior of the specific heat capacity) even
without the presence of the external magnetic field. This is
a nontrivial fact that, on the one hand, demonstrates serious
qualitative differences between various multisite interactions
and, on the other hand, allows one potentially to use such
kind of interactions for the explanation of properties of some
frustrated magnetic systems, which exhibit simultaneously
ferromagnetic and typical frustrated properties.

Last, let us note that the studied model is also interesting
from pure theoretical point of view since is exactly solvable
and therefore enlarges rather restricted set of exactly solvable
models of the statistical mechanics. Moreover, it also enlarges
the spectrum of nontrivial results obtained in the framework of
investigations of various magnetic systems on the kagome and
kagomelike lattices (see, e.g., Refs. [35–41] and references
cited therein).

The paper is organized as follows. In Sec. II, the model is
defined and formulated in the form of the recursion relations.
In Sec. III, the phase diagram of the model is investigated in
detail. In Sec. IV, the magnetization and entropy properties of
the model are studied and the system of all ground states is
found and described. The specific heat capacity and its low-
temperature anomalies are studied in Sec. V. In Sec. VI, the
main results of the paper are briefly summarized.

II. SPIN-1/2 FERROMAGNETIC ISING MODEL
ON THE STAR KAGOMELIKE RECURSIVE LATTICE

WITH SIX-SITE INTERACTION

Thus, in what follows, our aim is to analyze the properties
of the ferromagnetic spin-1/2 Ising model on the kagome
lattice with the presence of the six-site interaction among
all sites of each elementary hexagon in the framework of

FIG. 1. The geometrical structure of the star kagomelike recur-
sive lattice. J denotes the nearest-neighbor interaction and J ′ in the
circle denotes the six-site interaction among all sites of each elemen-
tary hexagon of the lattice. The 12 sites of the central star of the
considered recursive lattice as well as the sites of one star of the next
layer of the lattice are numbered explicitly for better understanding
of the derivation of the recursive relations of the model given in the
Appendix.

the star kagomelike recursive lattice approximation. It means
that the model will be studied on the recursive lattice shown
explicitly in Fig. 1, which represents a higher recursive lattice
approximation of the regular two-dimensional kagome lattice
(see also Ref. [34] for more details).

The Hamiltonian of the model is given as follows:

H = −J
∑
〈i j〉

sis j − J ′ ∑
〈i1...i6〉

6∏
j=1

si j , (1)

where all spin variables si acquire two possible values ±1,
J > 0 is the nearest-neighbor ferromagnetic interaction pa-
rameter and J ′ represents the interaction between six sites of
each elementary hexagon of the lattice (see Fig. 1). The first
sum in Eq. (1) runs over all nearest-neighbor spin pairs and the
second sum runs over all elementary hexagons of the recursive
lattice.

In the framework of the recursive lattice analysis of the
studied magnetic system all physical properties of the model
are driven by the stable fixed points of the corresponding
recursive relations (see, e.g., Ref. [42] for all general tech-
nical details of the recursive lattice technique). The studied
model is completely described by the stable fixed points x =
limn→∞ xn of the following single recursion relation:

xn = Y1/Y2, (2)

where

Y1 = x5
n−1(8e−6K−K ′ + 12e−2K−K ′ + 6e2K−K ′ + 6e10K−K ′ + 10eK ′−6K + 6eK ′−2K + 9e2K+K ′ + 6e6K+K ′

+ e18K+K ′
) + x4

n−1(30e−6K−K ′ + 70e−2K−K ′ + 20e2K−K ′ + 30e6K−K ′ + 10e10K−K ′ + 35eK ′−6K

+ 45eK ′−2K + 60e2K+K ′ + 10e6K+K ′ + 5e10K+K ′ + 5e14K+K ′
) + x3

n−1(60e−6K−K ′ + 104e−2K−K ′
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+ 100e2K−K ′ + 48e6K−K ′ + 8e10K−K ′ + 50eK ′−6K + 124eK ′−2K + 100e2K+K ′ + 28e6K+K ′ + 18e10K+K ′
)

+ x2
n−1(62e−6K−K ′ + 84e−2K−K ′ + 132e2K−K ′ + 36e6K−K ′ + 6e10K−K ′ + 42eK ′−6K + 144eK ′−2K

+ 72e2K+K ′ + 56e6K+K ′ + 6e10K+K ′
) + xn−1(30e−6K−K ′ + 52e−2K−K ′ + 50e2K−K ′ + 24e6K−K ′ + 4e10K−K ′

+ 25eK ′−6K + 62eK ′−2K + 50e2K+K ′ + 14e6K+K ′ + 9e10K+K ′
) + 6e−6K−K ′ + 14e−2K−K ′ + 4e2K−K ′

+ 6e6K−K ′ + 2e10K−K ′ + 7eK ′−6K + 9eK ′−2K + 12e2K+K ′ + 2e6K+K ′ + e10K+K ′ + e14K+K ′
(3)

and

Y2 = x5
n−1(6e−6K−K ′ + 14e−2K−K ′ + 4e2K−K ′ + 6e6K−K ′ + 2e10K−K ′ + 7eK ′−6K + 9eK ′−2K + 12e2K+K ′

+ 2e6K+K ′ + e10K+K ′ + e14K+K ′
) + x4

n−1(30e−6K−K ′ + 52e−2K−K ′ + 50e2K−K ′ + 24e6K−K ′ + 4e10K−K ′

+ 25eK ′−6K + 62eK ′−2K + 50e2K+K ′ + 14e6K+K ′ + 9e10K+K ′
) + x3

n−1(62e−6K−K ′ + 84e−2K−K ′ + 132e2K−K ′

+ 36e6K−K ′ + 6e10K−K ′ + 42eK ′−6K + 144eK ′−2K + 72e2K+K ′ + 56e6K+K ′ + 6e10K+K ′
) + x2

n−1(60e−6K−K ′

+ 104e−2K−K ′ + 100e2K−K ′ + 48e6K−K ′ + 8e10K−K ′ + 50eK ′−6K + 124eK ′−2K + 100e2K+K ′ + 28e6K+K ′

+ 18e10K+K ′
) + xn−1(30e−6K−K ′ + 70e−2K−K ′ + 20e2K−K ′ + 30e6K−K ′ + 10e10K−K ′ + 35eK ′−6K

+ 45eK ′−2K + 60e2K+K ′ + 10e6K+K ′ + 5e10K+K ′ + 5e14K+K ′
) + 8e−6K−K ′ + 12e−2K−K ′ + 6e2K−K ′

+ 6e10K−K ′ + 10eK ′−6K + 6eK ′−2K + 9e2K+K ′ + 6e6K+K ′ + e18K+K ′
, (4)

and where K = J/(kBT ), K ′ = J ′/(kBT ), T is the tempera-
ture, and kB is the Boltzmann constant. The detailed derivation
of the recursion relation (2) is given in the Appendix.

In general, when more than one physically acceptable sta-
ble fixed points of the recursion relation (2) exist then, to be
able to decide which of them describes thermodynamically
stable phase of the model, the knowledge of the free energy
per site of the model is needed. Even if there is only one stable
fixed point of the recursion relation, the knowledge of the free
energy is needed for a detailed analysis of the thermodynamic

properties of the model. In this respect, the free energy per
site f of the studied model on the star kagomelike recursive
lattice can be derived, e.g., using the techniques described in
Refs. [43,44] and has the following form:

β f = 1

9
ln

F 2
1

F 3
2

, (5)

where β = 1/(kBT ) and

F1 = e−6K−K ′
[(x6 + 1)e24K+2K ′ + 6x(x4 + 1)e20K+2K ′ + 36e12K x(x2 + 1)(x + 1)2 + 6e16K (x4 + x2 + 1)(x + 1)2

+ 3x(2x4 + 9x3 + 4x2 + 9x + 2)e2(8K+K ′ ) + 6e8K (x4 + 2x3 + 20x2 + 2x + 1)(x + 1)2

+ 12e4K (x4 + 5x3 + 2x2 + 5x + 1)(x + 1)2 + 6(x6 + 9x5 + 31x4 + 48x3 + 31x2 + 9x + 1)e4K+2K ′

+ 2(3x6 + 6x5 + 21x4 + 56x3 + 21x2 + 6x + 3)e2(6K+K ′ ) + 3(3x6 + 24x5 + 50x4 + 48x3 + 50x2 + 24x + 3)e8K+2K ′

+ 2(4x4 + 10x3 + 21x2 + 10x + 4)(x + 1)2 + (10x6 + 42x5 + 75x4 + 84x3 + 75x2 + 42x + 10)e2K ′
], (6)

F2 = e−6K−K ′
[(x4 + 5)xe20K+2K ′ + (x4 + 9x3 + 6x2 + 18x + 5)xe2(8K+K ′ ) + 6e12K (x4 + 4x3 + 6x2 + 8x + 5)x

+ 2(x5 + 7x4 + 28x3 + 14x2 + 5x + 3)e2(6K+K ′ ) + (9x5 + 62x4 + 144x3 + 124x2 + 45x + 6)e4K+2K ′

+ (12x5 + 50x4 + 72x3 + 100x2 + 60x + 9)e8K+2K ′ + 2e16K (x5 + 2x4 + 3x3 + 4x2 + 5x + 3)

+ 2e8K (2x5 + 25x4 + 66x3 + 50x2 + 10x + 3) + 2e4K (7x5 + 26x4 + 42x3 + 52x2 + 35x + 6)

+ e24K+2K ′ + 6x5 + 30x4 + 62x3 + 60x2 + 30x + 8 + (7x5 + 25x4 + 42x3 + 50x2 + 35x + 10)e2K ′
], (7)

and x represents the corresponding stable fixed point of the
recursion relation (2).

To conclude this section, let us note that, having the explicit
expression for the free energy of the model as the function of
the model parameters as well as of the fixed point value x, the
present model represents an exactly solvable model, what will
be demonstrated in the subsequent sections.

III. THE PHASE DIAGRAM OF THE MODEL

Before we investigate the influence of the six-site interac-
tion on the phase transitions of the model, let us first determine
and discuss the value of the critical temperature of the pure
ferromagnetic system (J ′ = 0) on the star kagomelike recur-
sive lattice and compare it to the corresponding values of the
critical temperature obtained in the framework of two simpler
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recursive lattice approximations, i.e., in the framework of
the Bethe lattice approximation with kBTc/J ≈ 2.8856 [42]
and in the framework of the Husimi lattice approximation
with kBTc/J ≈ 2.4852 [45], as well as to its exact value
kBTc/J ≈ 2.1432 for the Ising model on the regular kagome
lattice [46].

First, it is clear that the Husimi recursive lattice ap-
proximation of the model, which takes into account more
information about the geometrical structure of the regular
kagome lattice in comparison to the Bethe lattice approxima-
tion, gives also far better approximative value for the critical
temperature. Therefore, it can be expected that the critical
temperature of the model on the star kagomelike recursive
lattice will again be closer to its exact value on the regular
kagome lattice. The open question is how significant is this
correction.

The critical temperature of the spin-1/2 ferromagnetic
Ising model on the star kagomelike recursive lattice is given
by the unique real positive solution yc of the following poly-
nomial equation of the six order:

−76 − 187y − 171y2 − 70y3 − 10y4 + y5 + y6 = 0, (8)

with

kBTc

J
= 4

ln yc
≈ 2.4431. (9)

This result shows that transition from the Husimi lattice
approximation to the star kagomelike recursive lattice approx-
imation of the model on the kagome lattice slightly improves
the value of the critical temperature.

However, as was discussed in the Introduction, the main
advantage of the star kagomelike recursive lattice approx-
imation of the model is the possibility to include further
interactions and study their influence on the model properties.

In this respect, the analysis shows that the presence of the
six-site interaction in the model preserves the existence of
the second-order phase transitions between the ferromagnetic
phase and the paramagnetic one, regardless of its strength and
sign. The corresponding phase diagram in the α = J ′/J versus
kBT/J plane is shown in Fig. 2. At the same time, the curve
of the critical temperatures in Fig. 2 is given by the following
equation:

− 47 − 29e2αKc − 119e2(α+2)Kc − 65e2(α+4)Kc

− 34e2(α+6)Kc − 11e2(α+8)Kc + e2(α+10)Kc + e2(α+12)Kc

− 68e4Kc − 106e8Kc − 36e12Kc + e16Kc = 0, (10)

where kBTc/J = K−1
c can be calculated for given value of the

parameter α ∈ (−∞,∞).
Note also that Eq. (10) can be solved with respect to α.

Thus, it is possible to determine directly the critical value
αc of the parameter α for given value of the reduced critical
temperature K−1

c , namely

αc = 1

2Kc
ln

A

B
, (11)

where

A = 47 + 68e4Kc + 106e8Kc + 36e12Kc − e16Kc (12)

FIG. 2. The phase diagram of the model in the α = J ′/J versus
kBT/J plane in the star kagomelike recursive lattice approximation.
The curve represents the reduced critical temperatures kBTc/J of the
second-order phase transitions of the model between the ferromag-
netic phase (F) and the paramagnetic phase (P).

and

B = − 29 − 119e4Kc − 65e8Kc − 34e12Kc − 11e16Kc

+ e20Kc + e24Kc (13)

Here the values of the critical temperatures K−1
c are restricted

to the interval 1.0935 < K−1
c < 2.7057 (see Fig. 2), where

the lower value is given by the real positive solution of the
following equation:

A = 0. (14)

Since this equation is a polynomial equation of the fourth
order with respect to e4Kc , the explicit analytic expression for
the critical temperature in the limit α → −∞ exists, namely

kBTc

J

∣∣∣∣∣
α→−∞

= 4

ln y
≈ 1.0935, (15)

where

y = 9 + 2

b
+ 1

2

√
16

3

(
148 + 13

a
+ a

)
+ 3904b (16)

and

b =
√

3

74 − 13/a − a
, a = (235 − 6

√
1473)1/3. (17)

On the other hand, the upper bound of the critical temperatures
is defined as the corresponding real positive solution of the
equation

B = 0. (18)

As follows from Fig. 2, the presence of the six-site inter-
action in the model with the positive sign of the parameter
J ′ leads to the increasing of the value of the critical tempera-
ture of the pure ferromagnetic model. At the same time, the
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corresponding dependence is relatively weak. On the other
hand, significantly stronger dependence of the critical tem-
perature on the strength of the six-site interaction is observed
for its negative sign. In this case, the presence of the six-site
interaction strongly reduces the value of the critical temper-
ature especially for its relatively small absolute values in
comparison to the nearest-neighbor ferromagnetic interaction.
However, it is also worth mentioning that, regardless of the
sign of the six-site interaction, the position of the critical
temperatures of the model very slightly depend on its strength
already for not very large absolute values of the parameter α.

Thus, at the first sight, it seems that the presence of the six-
site interaction in the spin-1/2 ferromagnetic Ising model on
the kagome lattice has only quantitative impact on the critical
behavior but nothing is changed qualitatively. However, as
we shall see in the next section, the six-site interaction has
nontrivial impact on the low-temperature thermodynamics of

the model. Its presence introduces the frustration into the pure
ferromagnetic system for negative values of the parameter
α with the appearance of a well-defined system of highly
macroscopically degenerated ground states.

IV. MAGNETIZATION AND ENTROPY OF THE MODEL:
GROUND-STATE ANALYSIS AND RESIDUAL ENTROPIES

First, let us analyze in detail the behavior of the magne-
tization and entropy of the model. The magnetization of the
studied model on the star kagomelike recursive lattice can
be derived in the standard way [42] and has the following
form:

m = 1

3

M1

M2
, (19)

where

M1 = x6(2e4K+2K ′ + 15e8K+2K ′ + 10e12K+2K ′ + 3e24K+2K ′ + 12e4K + 6e8K + 14e16K + 2e2K ′
) + x5(16e4K+2K ′

+ 72e8K+2K ′ + 16e12K+2K ′ + 8e16K+2K ′ + 16e20K+2K ′ + 24e4K + 16e8K + 56e12K + 24e16K + 8)

+ x4(58e4K+2K ′ + 50e8K+2K ′ + 18e12K+2K ′ + 47e16K+2K ′ − 12e4K + 50e8K + 88e12K + 12e16K − 13e2K ′ + 22)

+ x2(−58e4K+2K ′ − 50e8K+2K ′ − 18e12K+2K ′ − 47e16K+2K ′ + 12e4K − 50e8K − 88e12K − 12e16K + 13e2K ′

− 22) + x(−16e4K+2K ′ − 72e8K+2K ′ − 16e12K+2K ′ − 8e16K+2K ′ − 16e20K+2K ′ − 24e4K − 16e8K − 56e12K

− 24e16K − 8) − 2e4K+2K ′ − 15e8K+2K ′ − 10e12K+2K ′ − 3e24K+2K ′ − 12e4K − 6e8K − 14e16K − 2e2K ′
(20)

and

M2 = x6(6e4K+2K ′ + 9e8K+2K ′ + 6e12K+2K ′ + e24K+2K ′ + 12e4K + 6e8K + 6e16K + 10e2K ′ + 8) + x5(54e4K+2K ′

+ 72e8K+2K ′ + 12e12K+2K ′ + 6e16K+2K ′ + 6e20K+2K ′ + 84e4K + 24e8K + 36e12K + 12e16K + 42e2K ′ + 36)

+ x4(186e4K+2K ′ + 150e8K+2K ′ + 42e12K+2K ′ + 27e16K+2K ′ + 156e4K + 150e8K + 72e12K + 12e16K + 75e2K ′

+ 90) + x3(288e4K+2K ′ + 144e8K+2K ′ + 112e12K+2K ′ + 12e16K+2K ′ + 168e4K + 264e8K + 72e12K + 12e16K

+ 84e2K ′ + 124) + x2(186e4K+2K ′ + 150e8K+2K ′ + 42e12K+2K ′ + 27e16K+2K ′ + 156e4K + 150e8K + 72e12K

+ 12e16K + 75e2K ′ + 90) + x(54e4K+2K ′ + 72e8K+2K ′ + 12e12K+2K ′ + 6e16K+2K ′ + 6e20K+2K ′ + 84e4K

+ 24e8K + 36e12K + 12e16K + 42e2K ′ + 36) + 6e4K+2K ′ + 9e8K+2K ′ + 6e12K+2K ′ + e24K+2K ′ + 12e4K + 6e8K

+ 6e16K + 10e2K ′ − 8. (21)

On the other hand, the entropy per site s of the model can be
calculated directly from the free energy per site of the model
(5) using the well-known definition s = −∂ f /∂T .

The temperature dependence of the magnetization of the
model for various values of the parameter α is shown ex-
plicitly in Fig. 3. As follows from this figure, the model
exhibits the existence of the spontaneous magnetization below
the corresponding values of the critical temperatures with
formation of three different ground states with well-defined
magnetization values in the zero-temperature limit. Moreover,
the spontaneous magnetization is realized in the restricted area
bounded by the corresponding magnetization curves obtained
in the limits α → ∞ [the upper dashed (red) curve in Fig. 3]
and α → −∞ [the lower dashed (red) curve in Fig. 3].

The formation of three different ground states of the model
indicates that the six-site interaction for the negative values

of the interaction parameter J ′ generates in fact nontrivial
frustration in the studied ferromagnetic system. The presence
of the frustration is also clearly visible in the entropy behavior
of the model since two of three model ground states exhibit
nonzero residual entropies, i.e., they are highly macroscop-
ically degenerated. This is explicitly demonstrated in Figs. 4
and 5, where the dependence of the magnetization (Fig. 4) and
the entropy (Fig. 5) on the parameter α is shown for various
values of the reduced temperature. At the same time, the
magnetization and entropy properties of three ground states of
the model are also demonstrated in the corresponding bottom
figures in Figs. 4 and 5.

Thus, as follows from Figs. 4 and 5, the model exhibits
the existence of two plateaulike ground states, which are
realized for α > −4 and α < −4, respectively. One of them
(α > −4) represents the standard ferromagnetic ground state
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FIG. 3. The absolute value of the spontaneous magnetization of
the model as the function of the reduced temperature for various val-
ues of the parameter α. The formation of three different ground states
is visible. The dashed (red) curves correspond to the spontaneous
magnetizations obtained in the limits α → ∞ (the upper bound) and
α → −∞ (the lower bound).

FIG. 4. The absolute value of the magnetization of the model as
the function of the parameter α for various values of the reduced
temperature with the explicit formation of three different ground
states. The ground-state magnetizations are shown in the bottom
figure.

FIG. 5. The entropy per site of the model as the function of the
parameter α for various values of the reduced temperatures. The
residual entropies of three different ground states of the model are
demonstrated in the bottom figure.

with |m| = 1 and s = 0. On the other hand, the negative six-
site interaction, which is more than four times stronger than
the nearest-neighbor ferromagnetic interaction, causes strong
frustration and leads to the formation of highly macroscopi-
cally degenerated ground state with the absolute value of the
magnetization

|m| = 1

9

√
98

√
13 − 307

3
≈ 0.4367 (22)

and with the residual entropy

s = kB

9
ln

13
√

13 + 35

9
≈ 0.2453. (23)

These two ground states are separated by the well-defined
single-point-like ground state realized at α = −4 with the
residual entropy

s = kB

9
ln

19
√

57 + 87

24
≈ 0.2513 (24)

and with the absolute value of the magnetization

|m| = 1

2439

√
19(124193

√
57 − 731045)

2
≈ 0.5744. (25)

This ground state is most macroscopically degenerated since
it has the largest value of the residual entropy and, as we shall
see in the next section, its existence leads to the nontrivial
thermodynamics in its vicinity.
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FIG. 6. The temperature dependence of the entropy per site of the
model for various values of the parameter α. The dashed (red) curves
corresponds to the entropies obtained in the limit α → ∞ (the lower
dashed curve) and α → −∞ (the upper dashed curve).

The formation of three different ground states of the model
is also clearly demonstrated in Fig. 6, where the temperature
dependence of the entropy per site is shown for various values
of the parameter α. Again, one can see the low-temperature
behavior of the entropy with formation of hierarchy of resid-
ual entropies of the system of ground states, which is typical
for frustrated magnetic systems [47,48]. At the same time,
the temperature dependence of the entropy of the model ap-
proaches those given by the dashed (red) curves in the limits
α → ∞ (the lower dashed curve) and α → −∞ (the up-
per dashed curve). For clarity, the formation of the residual
entropies of two degenerated ground states of the model is
shown in detail once more in Fig. 7 since the difference
between these residual entropies is very small [see Eqs. (23)
and (24)].

On the other hand, the second-order character of the phase
transitions is also clearly visible from the continuous behavior
of the entropy at the critical temperatures (see Figs. 5 and 6).
The behavior of the entropy on the curve of the critical points
is explicitly shown in Fig. 8. As follows from this figure, the
critical entropy obtains its maximum values in the vicinity of
α = 0. At the same time, the negative values of the parameter
α reduce the value of the entropy together with the reducing
of the critical temperature value. On the other hand, with
the increasing of the positive values of the parameter α, the
critical entropy also decreases (although not so strongly as in
the case of negative values of α) but the value of the critical
temperature increases.

Finally, note that the existence of the system of ground
states with nonzero residual entropies in the studied model has
a nontrivial impact on its thermodynamics, e.g., on the low-
temperature properties of the specific heat capacity, which, as
we shall see in the next section, exhibits anomalous behavior
typical for the frustrated magnetic systems.

FIG. 7. The detailed figure of the formation of two different
residual entropies for the single-point-like ground state at α = −4
and for the plateaulike ground state for α < −4. The dashed (red)
curve denotes the entropy obtained in the limit α → −∞.

V. FRUSTRATION EFFECTS IN THE SPECIFIC HEAT
CAPACITY BEHAVIOR OF THE MODEL

Having the explicit expression for the free energy per site
of the model (5), the properties of the specific heat capacity
cH of the model at the constant magnetic field H = 0 (studied
in the present paper) can be directly investigated by using the
standard relations

cH ≡ T
∂s

∂T
= −T

∂2 f

∂T 2
. (26)

FIG. 8. The entropy per site of the model (the black curve) on
the curve of the second-order phase transitions (the red curve in the
plane kBTc/J versus αc) together with its projections onto the planes
kBTc/J versus s/kB (the green curve) and αc versus s/kB (the blue
curve).
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FIG. 9. The temperature dependence of the specific heat capacity
for the nonnegative values of the parameter α. The dashed (red)
curves correspond to the limit case α → ∞.

First, let us discuss the temperature behavior of the specific
heat capacity of the model separately for various positive
and negative values of the parameter α. As follows from
Fig. 9, where the temperature dependence of the specific heat
capacity is shown for various nonnegative values of α, the
presence of the six-site interaction with positive values of
J ′ preserves the ferromagnetic character of the basic model
with very similar behavior of the specific heat capacity in the
vicinity of the critical temperatures. Thus, in this case, the
presence of the six-site interaction has no qualitative and only
weak quantitative impact on the model thermodynamics.

On the other hand, the situation is completely different
when negative six-site interaction is considered, i.e., when
α < 0. First, as follows from Fig. 10, in this case, the discon-
tinuous jumps in the temperature behavior of the specific heat
capacity at the critical temperatures are significantly reduced
with the increasing of the strength of the six-site interaction
with the minimal jump obtained in the limit α → −∞ [see
the dashed (red) curves in the detailed inset in Fig. 10].
Moreover, as can also be seen in Fig. 10, in addition to the
discontinuous behavior of the specific heat capacity at the
corresponding critical temperatures, the anomalous second
peak appears at low temperatures for values of α from the
vicinity of α = −4, where the unique highly macroscopically
degenerated single-point-like ground state is realized in the
zero-temperature limit (see curves α = −3,−3.4, and −3.8
in Fig. 10). This low-temperature behavior of the specific heat
capacity is directly related to the frustration of the system
represented by the presence of the residual-entropy hierarchy
of three different ground states (see the previous section).

Note that, although the existence of the anomalous (Schot-
tky) peak in the low-temperature behavior of the specific heat
capacity is shown in Fig. 10 only for the right vicinity of
α = −4, i.e., for α > −4, these frustration effects also exist
in the left vicinity of α = −4, i.e., for α < −4. However, due
to the small difference between the residual entropies of the

FIG. 10. The temperature dependence of the specific heat capac-
ity for the negative values of the parameter α with explicit formation
of the anomalous second peak in the low-temperature specific heat
capacity behavior in the vicinity of α = −4. The dashed (red) curves
in the inset correspond to the limit case α → −∞.

single-point-like ground state at α = −4 and the plateaulike
ground state realized for α < −4 (see the previous section),
the corresponding frustration effects in the low-temperature
specific heat capacity behavior are considerably less visible as
is demonstrated in Figs. 11 and 12, where the low-temperature
behavior of the specific heat capacity is compared for α =

FIG. 11. The comparison of the low-temperature behavior of the
specific heat capacity for α = −4 (the black curves), for which the
unique highly-macroscopically degenerated single-point-like ground
state is realized in the zero-temperature limit, with the corresponding
behavior of the specific heat capacity for α = −4.2 (the red curves)
and α = −3.8 (the blue curves), i.e., for representative values from
its right and left vicinity with presence of the Schottky-type anomaly.
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FIG. 12. The same curves of the specific heat capacity as in
Fig. 11 presented separately for clarity.

−4.2,−4, and −3.8. Here it is also worth mentioning that
the specific heat capacity exhibits even three maxima in its
temperature dependence in the vicinity of α = −4 (see the
curves for α = −3.8 and −4.2 in Figs. 11 and 12). In addition
to the standard maximum formed at high temperatures, two
other maxima are related to the simultaneous presence of the
frustration effects (the formation of the Schottky peak at low
temperature) and of the second-order phase transition at the
corresponding critical temperature.

Finally, let us investigate in detail the behavior of the
specific heat capacity as the function of the parameter α for
various values of the reduced temperature. Here, depending on
the temperature values, one can observed three qualitatively
different situations. First, as is demonstrated in Fig. 13, the
specific heat capacity behaves as a slowly changing function
of α for high-enough temperatures (kBT/J � 2.7057), i.e.,
for temperatures much higher than temperatures for which
the second-order phase transitions exist for the corresponding
values of α. On the other hand, for the reduced temperatures
from the interval 1.0935 < kBT/J < 2.7057, for which the
second-order phase transitions exist (see the discussion in
Sec. II), the specific heat capacity exhibits discontinuity with
finite jump at the corresponding critical value αc of the pa-
rameter α. This behavior is explicitly shown in Fig. 14, where
is also shown that the specific heat capacity again becomes
the continuous function of α for kBT/J < 1.0935 (see the
curve for kBT/J = 1 in Fig. 14). This figure also demon-
strates the fact that the jump in the specific heat capacity is
rapidly reduced when the temperature decreases in the interval
1.0935 < kBT/J < 2.7057.

In the end, the qualitatively different behavior of the spe-
cific heat capacity as the function of the parameter α appears
for low-enough temperatures (kBT/J � 1), where frustra-
tion effects take place. They lead to the formation of the

FIG. 13. The behavior of the specific heat capacity as the func-
tion of the parameter α for various values of the reduced temperatures
kBT/J > 2.7057, below which the second-order phase transitions
appear for the corresponding values of α (see Sec. III).

typical double-peak structure in the specific heat capacity
centered at α = −4, at which the highly macroscopically
degenerated single-point-like ground state is formed in the
zero-temperature limit. This behavior of the specific heat
capacity is demonstrated in Fig. 15. At the same time, as
was discussed, e.g., in Ref. [49], the heights of the formed
peaks are usually different since they are directly related to
the differences between the residual entropies of the single-
point-like ground state and the corresponding neighboring
plateaulike ground states. This is the reason why, on the one

FIG. 14. The behavior of the specific heat capacity as the func-
tion of the parameter α for various values of the reduced temperatures
from the interval 1.0935 < kBT/J < 2.7057 with discontinuous
behavior at the corresponding critical points. In addition, the con-
tinuous behavior of the specific heat capacity for kBT/J < 1.0935 is
demonstrated by the curve kBT/J = 1.
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FIG. 15. The behavior of the specific heat capacity as the func-
tion of the parameter α for various values of the reduced temperatures
kBT/J � 1 with explicit formation of the typical double-peak struc-
ture centered at α = −4, at which the highly macroscopically
degenerated single-point-like ground state is formed in the zero-
temperature limit. The fact that quite indistinct peak is form in the
left vicinity of α = −4 is related to the slight difference between the
residual entropies of the neighboring ground states of the model.

hand, the formed peak in the right vicinity of α = −4 at
low temperatures is distinctive (there is significant difference
between the residual entropies of the ground state formed at
α = −4 and of the ground state observed for α > −4) and
that, on the other hand, the peak formed in the left vicin-
ity of α = −4 is very small as a result of the fact that the
difference between residual entropies of the corresponding
neighboring ground states is also very small (see the previous
section).

To conclude our analysis let us stress that the behavior
of the specific heat capacity at low temperatures with the
existence of an additional anomalous (Schottky-type) peak in
its temperature dependence as well as with the formation of
the typical double-peak structure in the α-dependence clearly
demonstrates the frustrated character of the model caused by
the presence of the six-site interaction in initially unfrustrated
pure ferromagnetic system.

VI. CONCLUSION

In the end, let us summarize briefly the main results ob-
tained in the present paper.

We have investigated in detail the influence of the presence
of the six-site interaction among all sites within each elemen-
tary hexagon on the properties of the ferromagnetic spin-1/2
Ising model on the kagome lattice using the star kagomelike
recursive lattice approximation. The recursion relation, fixed
points of which describes possible model phases, is derived
and the explicit expression for the free energy per site of the
model is found. The influence of the six-site interaction on
the critical temperature of the pure ferromagnetic system is
analyzed. It is shown that, regardless of the strength and sign

of the added six-site interaction, the model preserves its fer-
romagnetic character in the sense that it exhibits the existence
of only two phases (the ferromagnetic and the paramagnetic)
separated by the curve of the second-order phase transitions.
The equation for the critical temperatures of the model as the
function of the ratio α of the six-site and the nearest-neighbor
interaction is found. Analysis shows that the value of the
critical temperature increases with increasing of the strength
of the six-site interaction for positive values of the interaction
parameter J ′, i.e., for α > 0. On the other hand, the increasing
of the strength of the six-site interaction for J ′, i.e., for α < 0,
leads to the reduction of the critical temperature value, which
is significantly more pronounced than its growth for positive
values of J ′. This behavior is related to the fact that the six-
site interaction with the positive parameter J ′ prefers the
configurations with even number of spin variables oriented
in both directions, i.e., gives additional ferromagnetic effect
(the increasing of the value of the critical temperature). On
the other hand, the negative sign of the six-site interaction
prefers the odd number of spin variables to be oriented in
both direction, i.e., behaves as an interaction with antiferro-
magnetic effects in the geometrically frustrated system that
act against the ferromagnetic character of the original system.
As a result the value of the critical temperature decreases in
this case. Nevertheless, the general features of the six-site
interaction cause that the presence of the second-order phase
transitions is preserved even in the limit α → −∞, i.e., that
the ferromagnetic character of the model is not completely
suppressed.

However, the antiferromagnetic properties of the six-site
interaction for negative values of J ′ completely reveal them-
selves at low temperatures, where the formation of two highly
macroscopically degenerated ground states with well-defined
magnetization and thermodynamic properties is observed.
Namely, it is shown that the unique ferromagnetic phase
that exists below the curve of the critical temperatures splits
into three different ground states in the zero-temperature
limit. One of these ground states is the standard ferromag-
netic ground state with the saturated absolute value of the
magnetization |m| = 1 and zero entropy s = 0 realized for
α > −4. The existence of the two additional aforementioned
ground states with nontrivial values of their magnetizations
and residual entropies, which are formed at α = −4 and for
α < −4 (see Figs. 4–7), is the result of the geometric frus-
tration caused by the presence of the six-site interaction on
the kagome lattice represented here by the star kagomelike
recursive lattice.

It is also shown that the existence of three different ground
states in the model with the standard hierarchy of their
residual entropies, i.e., the existence of the single-point-like
ground state at α = −4 with the highest macroscopic de-
generation that separates two plateaulike ground states for
α < −4 and α > −4 with smaller residual entropies, leads to
the anomalous low-temperature behavior of the specific heat
capacity with the appearance of the second (Schottky) peak
(see Figs. 10–12), heights of which are directly related to
the corresponding differences between the residual entropies
of the neighboring single-point-like and plateaulike ground
states. Therefore, the Schottky peak formed in the right vicin-
ity of α = −4 is distinctive but the Schottky peak observed
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in the left vicinity of α = −4 is almost invisible (see Figs. 11
and 12).

The frustration effects caused by the presence of the six-
site interaction is also demonstrated in the formation of a
typical double-peak structure behavior of the specific heat ca-
pacity as the function of the parameter α at low temperatures
centered at α = −4, where the highly macroscopically degen-
erated single-point-like ground state is formed (see Fig. 15).
Again, due to the small difference between the residual en-
tropies of the corresponding neighboring ground states, the
height of the peak formed in the left vicinity of α = −4 is
significantly suppressed.

Let us also note that the antiferromagnetic effects of the
six-site interaction with negative values of J ′ is also visible
in the discontinuous jumps of the specific heat capacity at
the critical temperatures, which are significantly reduced with
increasing of its strength. Moreover, the simultaneous exis-
tence of the low-temperature frustration effects and of the
second-order phase transitions leads to the presence of three
different local maxima in the temperature dependence of the
specific heat capacity (see Figs. 11 and 12).

Finally, it is worth mentioning that similar behavior of
the specific heat capacity with the presence of the Schottky
peak as well as with the jump at the critical temperature was
observed recently, e.g., in Ref. [50], in the framework of the
antiferromagnetic material Cs2Cu3CeF12 with an anisotropic
kagomelike structure. There, the existence of ferromagnetic
effects in antiferromagnetic systems was shown. In this
respect, our analysis shows that similar thermodynamic prop-
erties can be also achieved in the ferromagnetic system on the
kagome lattice with the presence of an appropriate additional
interaction that simulates some additional antiferromagnetic
and anisotropic properties of the system.
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APPENDIX

In the Appendix, the derivation of the recursion relation
(2) is given that drives all physical properties of the studied
model. First, since the model is studied on the star kagomelike
recursive lattice (see Fig. 1), the partition function of the
model described by the Hamiltonian (1)

Z ≡
∑

s

e−βH =
∑

s

e
K

∑
〈i j〉

sis j+K ′ ∑
〈i1 ,...i6〉

6∏
j=1

si j

, (A1)

can be written in the following explicit recursive form (see
Fig. 1 as for numbering of the twelve sites of the central star
of the studied recursive lattice):

Z =
∑

s1,...s12

e
K

5∑
j=1

[s j (s j+6+s j+7 )+s j+6s j+7]

× e
K[s6(s7+s12 )+s7s12]+K ′ 12∏

j=7
s j

6∏
i=1

un(si ), (A2)

where it is supposed that the corresponding star kagomelike
recursive tree has n layers (n → ∞) and un(si ), i = 1, . . . , 6
represent partition functions of six independent branches of
the corresponding whole recursive tree with base sites with
spin variables si (see Fig. 1). They have the following general
form:

un(si ) =
∑

si,1,...si,11

e
K

5∑
j=1

[si, j (si, j+5+si, j+6 )+si, j+5si, j+6]

× e
K[si (si,6+si,11 )+si,6si,11]+K ′ 11∏

j=6
si, j

5∏
j=1

un−1(si, j ), (A3)

where the sites of the layer n − 1 of the recursive tree are
numbered in the way as explicitly demonstrated in Fig. 1 for
i = 1. Further, the explicit form of un(si) for si = −1 and
si = +1 [denoted as un(−) and un(+), respectively] is

un(−) = e−K ′−6K
{
[10e2K ′ + 6e2(K ′+6K ) + 6e2K ′+4K + 9e2K ′+8K + e2K ′+24K + 12e4K + 6e8K + 6e16K + 8]

× u5
n−1(−) + 5[7e2K ′ + 2e2(K ′+6K ) + e2(K ′+8K ) + 9e2K ′+4K + 12e2K ′+8K + e2K ′+20K + 14e4K + 4e8K

+ 6e12K + 2e16K + 6]u4
n−1(−)un−1(+) + 2[25e2K ′ + 14e2(K ′+6K ) + 9e2(K ′+8K ) + 62e2K ′+4K + 50e2K ′+8K

+ 52e4K + 50e8K + 24e12K + 4e16K + 30]u3
n−1(−)u2

n−1(+) + 2[21e2K ′ + 28e2(K ′+6K ) + 3e2(K ′+8K )

+ 72e2K ′+4K + 36e2K ′+8K + 42e4K + 66e8K + 18e12K + 3e16K + 31]u2
n−1(−)u3

n−1(+)

+ [25e2K ′ + 14e2(K ′+6K ) + 9e2(K ′+8K ) + 62e2K ′+4K + 50e2K ′+8K + 52e4K + 50e8K + 24e12K + 4e16K

+ 30]un−1(−)u4
n−1(+) + [7e2K ′ + 2e2(K ′+6K ) + e2(K ′+8K ) + 9e2K ′+4K + 12e2K ′+8K + e2K ′+20K

+ 14e4K + 4e8K + 6e12K + 2e16K + 6]u5
n−1(+)

}
(A4)

and

un(+) = e−K ′−6K
{
[7e2K ′ + 2e2(K ′+6K ) + e2(K ′+8K ) + 9e2K ′+4K + 12e2K ′+8K + e2K ′+20K + 14e4K + 4e8K

+ 6e12K + 2e16K + 6]u5
n−1(−) + [25e2K ′ + 14e2(K ′+6K ) + 9e2(K ′+8K ) + 62e2K ′+4K + 50e2K ′+8K + 52e4K
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+ 50e8K + 24e12K + 4e16K + 30]u4
n−1(−)un−1(+) + 2[21e2K ′ + 28e2(K ′+6K ) + 3e2(K ′+8K ) + 72e2K ′+4K

+ 36e2K ′+8K + 42e4K + 66e8K + 18e12K + 3e16K + 31]u3
n−1(−)u2

n−1(+) + 2[25e2K ′ + 14e2(K ′+6K )

+ 9e2(K ′+8K ) + 62e2K ′+4K + 50e2K ′+8K + 52e4K + 50e8K + 24e12K + 4e16K + 30]u2
n−1(−)u3

n−1(+)

+ 5[7e2K ′ + 2e2(K ′+6K ) + e2(K ′+8K ) + 9e2K ′+4K + 12e2K ′+8K + e2K ′+20K + 14e4K + 4e8K + 6e12K

+ 2e16K + 6]un−1(−)u4
n−1(+) + [10e2K ′ + 6e2(K ′+6K ) + 6e2K ′+4K + 9e2K ′+8K + e2K ′+24K + 12e4K

+ 6e8K + 6e16K + 8]u5
n−1(+)

}
. (A5)

Finally, the only independent recursion relation of the studied model given in Eq. (2) is defined as the ratio

xn = un(+)

un(−)
. (A6)
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