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Application of cell models to the melting and sublimation lines
of the Lennard-Jones and related potential systems
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Harmonic cell models (HCMs) are shown to predict the melting line of the Lennard-Jones (LJ) but not
the sublimation line. In addition, even for the melting line, the HCMs are found to be physically unrealistic
for inverse power potential systems near the hard-sphere limit, and for the Weeks-Chandler-Andersen system
at extremely low temperatures. Despite this, the HCM accurately predicts the LJ mean-square displacement
(MSD) from molecular-dynamics (MD) simulations along both lines after simple scaling corrections, to include
the effects of anharmonicity and correlated dynamics of the atoms, are applied. Single caged atom molecular
dynamics and Monte Carlo simulations provide further quantitative characterization of these additional effects,
which go beyond harmonicity. The melting indicator and a modification of the cell model in a similar form
are shown to be approximately constant along the melting line, which indicates an isomorph. The less well
studied LJ sublimation line is shown not to be an isomorph, yet it still can be represented analytically very
accurately by the relationship kBT = aρ4 + bρ2, where a and b are constants (kB is Boltzmann’s constant,
T is the temperature, and ρ is the number density). This relationship has been found previously for the melting
line, but the two constants have opposite signs for the sublimation and melting lines. This simple formula is also
predicted using a nonharmonic static lattice expression for the pressure. The probability distribution function of
the melting factor indicates departures from harmonic or Gaussian behavior in the lower wing. Nevertheless, the
mean melting factor is shown to follow a simple MSD Debye-Waller factor dependence along both the melting
and sublimation lines. This work combining HCM and MD simulations provides a comparison of the melting and
sublimation lines of the LJ system, which could provide the foundations for a more unified statistical mechanical
description of these two solid boundary lines.

DOI: 10.1103/PhysRevE.104.044119

I. INTRODUCTION

It has proven difficult to predict the freezing and melting
coexisting densities of small molecule systems by statistical
mechanics [1]. For about 50 years, molecular simulation has
been used to determine these lines (see, e.g., Refs. [2–4])
starting from the pioneering work of Alder and Wainwright,
who showed by molecular-dynamics (MD) simulation that
hard spheres undergo a fluid-solid transition [5]. In addition,
there are a number of approximate empirical single-phase
“freezing rules” that only require information about the fluid
side of coexistence (see, e.g., Refs. [6–8]).

Cell models (CMs) provide an analytically tractable highly
simplified representation of liquids and solids [9–11]. The cell
theory assumes that each atom or molecule is located in a
cage formed from its first coordination shell of atoms in a
liquid or crystalline arrangement. Each atom in the system is
statistically equivalent, so only the mean-field properties of
a single representative particle need be considered to repre-
sent the whole macroscopic sample, albeit at a significantly
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approximate level. Cell models of liquids were applied to
hard-sphere and inverse power (IP) potential systems in the
1960s and 1970s [12,13], and they are now finding increasing
applications in the field of complex liquids [14], including
proteins [15] and soft matter [16]. They are a computationally
efficient way to map out approximately the phase diagram of a
model system in which there are many adjustable parameters.

In recent years, accurate data for the melting lines of
Lennard-Jones (LJ) [17,18] and related potential systems have
become available. The predictions from a CM of the melting
line (ML) can be compared with these data for validation
purposes. Also, the CM results can be framed in the con-
text of more recent theoretical advances, such as isomorph
scaling [19], and hard-sphere based low-temperature limiting
expressions [20,21]. In this work, the term “cell model” will
refer to the situation in which the atoms are placed on a reg-
ular lattice and are either static or deemed to execute simple
harmonic motion about the lattice sites, which is character-
ized principally in terms of the mean-square displacement
(MSD) of each atom from its average position. MD simula-
tions give essentially the exact MSD as they automatically
take into account the anharmonicity of the potential energy
surface experienced by the atoms and correlated atom mo-
tion. Apart from a few notable exceptions (see, for example,
Refs. [22–24]), the CM usually neglects the consequences
of anharmonicity and correlated atom motion on the MSD,

2470-0045/2021/104(4)/044119(16) 044119-1 ©2021 American Physical Society

https://orcid.org/0000-0002-4439-4828
https://orcid.org/0000-0002-6874-217X
https://orcid.org/0000-0001-9577-5586
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.044119&domain=pdf&date_stamp=2021-10-19
https://doi.org/10.1103/PhysRevE.104.044119
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although, as was shown in Ref. [23] and also in this study,
their effects can be reproduced by scaling the harmonic CM
MSD values in a systematic way.

It is shown here that for the Lennard-Jones potential sys-
tem, the MSD can be represented accurately using a simple
scaling correction to a static lattice CM formula for the MSD,
and even better from the finite-temperature force constant
determined as an average during an MD simulation. We find
that there are some potentials and state point limits where the
(harmonic) CM is not a physically reasonable model for the
melting line, however. It is shown that the CM is physically
unrealistic for steeply repulsive inverse power potential sys-
tems, and for the Weeks-Chandler-Andersen (WCA) system
[25], at extremely low temperatures, where it behaves like a
hard sphere.

The statistical properties of the displacement of the atom
from its lattice site are explored using its probability dis-
tribution function (PDF), which can be represented well by
a Gaussian for not too large values of the displacement. It
is shown that the so-called melting factor (MF) or structure
factor at a specific wave vector can be represented well by
the Debye-Waller factor in which the MSD is a normalization
constant in the exponent. These trends suggest that the col-
lective motion and anharmonicity effects along the ML can
be taken into account, at least at a mean-field level for certain
properties, through the introduction of a multiplicative scaling
constant.

The sublimation line (SL), which is the boundary on the
solid side of solid-vapor coexistence (below the triple point
temperature), has been less well studied by theory and molec-
ular simulation. Its temperature density dependence has the
opposite slope to that of the melting line. The performance of
the CM approach for the SL line is assessed here also. For the
Lennard-Jones case, a simple semiempirical formula, which
only requires a single adjustable parameter, is derived based
on a static lattice formula for the pressure. This semiempirical
formula reproduces well the simulation-derived SL (i.e., the
density-temperature relationship) for the Lennard-Jones case.
It is also found that the MSD along the sublimation line
obtained by MD can be represented well by a simple scaling
of the regular lattice CM result.

Section II presents the cell models for melting and com-
pares their performance with simulation data, Sec. III is
concerned with the sublimation line, and conclusions are
made in Sec. IV.

II. THE MELTING LINE

This work mainly considers the phase diagram of systems
interacting with a pair potential, φ(r), of the Mie analytic form
[26,27]

φ(r) = φr (r) − φa(r),

φr (r) = Qε

[
σ

r

]n

,

φa(r) = Qε

[
σ

r

]m

,

Q = n

n − m

(
n

m

)[m/(n−m)]

, (1)

FIG. 1. Lennard-Jones phase diagram. The temperature is in LJ
reduced units, i.e., T in real units is replaced by kBT/ε, where ε is
the value of energy for a given molecule. The density is ρ = Nσ 3/V
for N molecules in volume V . Key: F, supercritical fluid; S, solid; L,
liquid; V, vapor. The solid colored diamond and circle represent the
critical and triple point, respectively.

where r is the center-to-center distance between the two
atoms, and ε and σ are the characteristic intermolecular inter-
action energy and molecular diameter, respectively, and where
n > m for thermodynamic stability [28]. The Lennard-Jones
(LJ) potential is a special case of Eq. (1) in which Q = 4,
n = 12, and m = 6. The quantities reported here are in the
usual reduced units of ε and σ . The melting line of the WCA
potential [25],

φWCA(r) =
{

4ε
(
[ σ

r ]12 − [ σ
r ]6

) + ε, r � 21/6σ,

0, r > 21/6σ,
(2)

is also considered. The well-characterized melting line of the
IP potential [29],

φ(r) = ε

(
σ

r

)n

, (3)

is also readily treated by the cell theory. Although both are
purely repulsive, a distinguishing feature of the WCA com-
pared to the IP potential is that all its derivatives are zero
for r > 21/6, which has consequences for its low-temperature
melting line.

Figure 1 shows the Lennard-Jones potential phase diagram
represented on the ρ-T plane. The ML and SL are separated
by the triple point density and temperature whose values for
the liquid and face-centered-cubic solid densities are 0.845
and 0.961, respectively, and 0.695 for the temperature [17].
The LJ melting line has been determined a number of times
by MD and Monte Carlo (MC) (e.g., in Refs. [29–34]) and
more recently by Schultz and Kofke [17,18].

A. Melting line theory

Apart from close to the triple point [4,19,35,36], the
LJ melting (s) and freezing ( f ) lines are represented well
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by [37–40]

kBTf (ρ) = A f ρ
4 − B f ρ

2,

kBTs(ρ) = Asρ
4 − Bsρ

2, (4)

where kB is Boltzmann’s constant, and A f and B f apply to
freezing. The constants As and Bs represent the melting line
data. The two terms in Eq. (4) are the scaling expected from
the inverse power n = 12 and 6 of the Mie potential, respec-
tively. The additivity of the repulsive and attractive terms
in a pair potential on the thermodynamic properties is the
basis of perturbation theories of liquids, and in the formu-
lations by Rosenfeld in a series of pioneering publications
[41–44].

Approximate expressions for the melting line constants
in Eq. (4) are given by Lindemann’s cell model of melt-
ing, referred to here as the Lindemann melting rule (LMR)
[6,45–47]. Only interactions with the first coordination shell
are taken into account in the LMR. The LMR assumes the
atoms are arranged on a perfect or regular lattice, and that the
crystal melts when the root-mean-square amplitude of thermal
vibration of an atom increases with temperature to a certain
fraction of the nearest-neighbor distance, r1. The melting
temperature follows by assuming that an atom independently
vibrates harmonically about its average position. Despite its
simplicity, the LMR has proved reasonably successful in var-
ious fields [6,45–47], notably in establishing relative values
of the melting temperature for a range of solids in the same
chemical class. The Lindemann parameter used in the theory
is δ = 〈�r2〉1/2/r1, where 〈�r2〉 is the MSD of the atom about
its average position in the lattice (the time average is indicated
by the angular brackets). The parameter δ used in predicting
Ts should not be much greater than about 0.1 for the LMR
model to be physically realistic.

The LMR cell model is a limiting case of a more general
harmonic model in which (in effect) all the interacting atoms
in the lattice are taken into account as forming the cage.
The LMR analysis described below builds on that reported
in Ref. [48] for bounded potential systems.

It is useful to consider first some basic thermodynamic
properties of this perfect lattice approximation (e.g., for the
pressure, which is used in the formula for the sublimation line
in Sec. III).

1. Potential energy and pressure

Consider a perfect or regular lattice where the nearest-
neighbor distance from a given atom is r1, the next-nearest-
neighbor distance is r2, and so on. The numbers of atoms at
shells defined through r1, r2, . . . are denoted by N1, N2, . . . .
The lattice vector from the central atom is expressed as r =
r1R, where R is a dimensionless vector. If U is the potential
energy of a cubic microcrystal of the lattice containing N
atoms, then in the N → ∞ limit,

u = U/N = 1

2

′∑
φr (r) − 1

2

′∑
φa(r)

= 1

2rn
1

′∑ Q

Rn
− 1

2rm
1

′∑ Q

Rm

= An

rn
1

− Am

rm
1

,

Ak = Q

2

(
N1 + N2

Rk
2

+ N3

Rk
3

+ · · ·
)

, (5)

where the factor of 1/2 is added to avoid double counting
in the potential energy per atom of the lattice. The sum-
mation in Eq. (5) is over the lattice vectors, and the prime
denotes the omission of the central atom interacting with
itself, which would contribute an infinite positive energy for
n > m Mie potentials. The summation is continued until the
desired precision is obtained. The last line of Eq. (5) displays
the first three terms of the lattice constant on the distance
from the central atom. For a face-centered-cubic (fcc) lattice,
r1 = c/ρ1/3, where c = 21/6, and R1, R2, and R3 are 1,

√
2, and√

3, respectively. The numbers in the first three coordination
shells, N1, N2, and N3, are 12, 6, and 24, respectively. For the
bcc lattice, c = 31/2/41/3, R1, R2, and R3 are 1, 2/

√
3, and

2
√

2/
√

3, and N1, N2, and N3 are 8, 6, and 12, respectively.
The corresponding expression for the pressure, P, is similar

to that of the potential in Eq. (5) as the virial term (the inter-
action part of P), −ρrφ′(r)/3, has the same powers of ri as
the potential energy and only differs from u in the prefactors.
The pressure has a kinetic Pk = ρkBT component and an
interaction, Pc, part, which can be calculated using the lattice
constants used for u defined in Eq. (5),

Pc

ρ
= n

3

An

rn
1

− m

3

Am

rm
1

. (6)

Equations (5) and (6) can be written in the density-dependent
form, which bears some similarity to Eq. (4),

u = Aρ,nρ
n/3 − Aρ,mρm/3,

Pc

ρ
= n

3
Aρ,nρ

n/3 − m

3
Aρ,mρm/3, (7)

where Aρ,k = Ak/ck . Accurate values for Aρ,12 and Aρ,6 for
the LJ potential were calculated in Ref. [49]. Table I contains
a list of the Aρ,k for a range of k within the Mie framework
[note the variable Q value in each case depends on n and
m, as specified in Eq. (1)]. This static lattice approach can
be extended to include the effects of atom vibration within a
harmonic approximation, which is described next.

2. Harmonic lattice

The force constant K associated with the potential energy
surface experienced by an atom is [23]

K ≡ M�2
E = 1

3
∇2	

= 1

3

′∑∑
α

(
φ′(r)

r

[
1 − α2

r2

]
+ α2

r2
φ′′(r)

)

= 1

3

′∑(
2

r
φ′(r) + φ′′(r)

)

= 1

3

(
Bn

r (n+2)
1

− Bm

r (m+2)
1

)
,
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TABLE I. The lattice summation constants for the fcc lattice of the Mie n : m potential for various values of n and m. The parameters An

and Am are defined in Eq. (5). Equation (7) specifies Aρ,n and Aρ,m, and Bn and Bm are given in Eq. (8).

n m An Am Aρ,n Aρ,m Bn Bm Q

288 6 6.65374 8.01734 2.36388 ×10−14 4.00867 1.09994 ×106 425.911 1.10896
144 6 7.18859 8.66181 4.2847 ×10−7 4.33090 296055 460.147 1.19810
72 6 8.20441 9.88580 2.00303 ×10−3 4.94290 83881.9 525.170 1.36740
36 6 10.3030 12.4145 0.160984 6.20723 25963.5 659.502 1.71716
24 6 12.7008 15.3018 0.793800 7.65088 14020.8 812.886 2.11653
18 6 15.6053 18.7831 1.95067 9.39156 9545.13 997.829 2.59808
12 6 24.2638 28.9185 6.06594 14.4593 6367.15 1536.26 4.00000
11 6 27.7763 32.9176 7.79447 16.4588 6054.10 1748.71 4.55315
10 6 33.1120 38.8892 10.4296 19.4446 5873.32 2065.94 5.37914
9 6 42.1625 48.8000 14.9067 24.4000 5929.65 2592.44 6.75000
8 6 60.6917 68.5476 24.0855 34.2738 6536.82 3641.50 9.48148
7 6 117.915 127.613 52.5253 63.8065 9261.48 6779.27 17.6514
36 18 24.0000 24.0260 0.375001 3.00325 60480.1 14695.7 4.00000
24 12 24.0030 24.2638 1.50019 6.06594 26497.7 6367.15 4.00000

Bk = Qk(k − 1)
′∑ 1

R(k+2)

= Qk(k − 1)

(
N1 + N2

R(k+2)
2

+ N3

R(k+2)
3

+ · · ·
)

, (8)

where M is the mass of the atom, �E is the Einstein frequency
[50], φ′ ≡ dφ(r)/dr, and φ′′ ≡ d2φ(r)/dr2. The second sum-
mation is over the three Cartesian coordinates, α, of the atoms.

For harmonic motion, and using Eq. (8),

kBT = 1

3
〈�r2〉K = 1

3
δ2r2

1K,

δ =
√

〈�r2〉
r1

,

kBT = 1

9
δ2

(
Bn

rn
1

− Bm

rm
1

)

= 1

9
δ2

(Bn

cn
ρn/3 − Bm

cm
ρm/3

)
, (9)

where a value of δ can be chosen to signify melting (i.e.,
T = Ts). The LMR expression is the first (nearest neighbor)
or “N1” term in the expansion of Bk , and the converged value
is referred to here as the harmonic lattice rule (HLR) approx-
imation, which is the default model employed in this study
unless stated otherwise. The last line in Eq. (9) is of the same
form as in Eq. (4). The constants As and Bs in Eq. (4) in the
harmonic approximation are from Eq. (9),

As = 1

9
δ2

[
Bn

cn

]
, Bs = 1

9
δ2

[
Bm

cm

]
. (10)

If δ is a constant along the melting line, the LMR/HLR
models are consistent with isomorphic scaling [36].

The constants defined in Eqs. (5), (7), and (8) for the
attractive part of the potential are slower to converge with the
shell index than those for the repulsive part. For the LJ (12:6)
potential, for example, A12 for the first shell (Lindemann
approximation) is only ∼1% smaller than the limiting value,
whereas B6 is 17% too low.

3. Force-constant definitions

Equation (8) applied to a regular or perfect lattice at any
density (temperature) along the melting or sublimation lines
is referred to as Kp (“p” for “perfect” lattice). The thermal
average value of Eq. (8) computed during the simulation at
a given density (temperature) is denoted by KT , which takes
into account the departures of the atoms from their regular
lattice sites. The force constant, KT , can be obtained from two
formally equivalent formulas,

KT = 1

3

〈 ′∑ (
2

r
φ′(r) + φ′′(r)

)〉
T,ρ

≡ KT,1,

KT = 〈F2〉T,ρ

3kBT
≡ KT,2, (11)

where again the angular brackets denote a time average. The
second definition in the last line of Eq. (11) is what is obtained
for a harmonic oscillator, and also from the more generally
applicable definition of the configurational temperature, Tconf

[see, e.g., Eq. (21) in Ref. [51]]. It was confirmed numerically
by MD simulations along the melting and sublimation lines
that the two definitions of KT [i.e., KT,1 and KT,2 in Eq. (11)]
were statistically the same. The mean-square displacement
computed directly from the MD simulations provides another
route to an effective force constant, which is denoted by “KD”,

KD = 3kBT

〈(�rMD)2〉 ,

δ2
D = 3

r2
1

kBT

KD
. (12)

The KT and Kp will be different as Kp does not include
cooperative motion and anharmonic effects which are present
in the MD-modeled system. The difference between KT and
KD has its origin in the fact that although KT includes the
effects of anharmonicity and cooperative motion through the
distribution of configurations generated in the simulation,
the HLR harmonic approximation formula is ap-
plied. Using these definitions of the force constants,
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the corresponding δ2 are

δ2
p = 3

r2
1

kBT

Kp
, δ2

T = 3

r2
1

kBT

KT
. (13)

B. MD results along the melting line

Molecular-dynamics simulations were carried out of the
solid phase along the LJ melting and sublimation lines. The
state points were obtained from the analytic expressions given
by Schultz and Kofke [17,18]. Simulations were also carried
out along the P = 0 isobar approximation for the sublimation
line discussed in Sec. III. These calculations were conducted
by starting from a perfect lattice at the density given by the
formula in Refs. [17,18] for each temperature. An equilibra-
tion stage of ∼50 000 time steps was conducted in which the
density was gradually adjusted each time step by a highly
damped feedback formula, of the form ρ−κ (〈P〉−Ptarg)→ρ,
where ρ is the instantaneous density, 〈P〉 is the average pres-
sure up to the current time step, Ptarg is the target pressure
(here = 0), and κ = 0.0001. The average of this feedbacked
density was taken for the production simulation run.

The MD time step was �t = 0.004/
√

T , and for the LJ
potential the interaction truncation distance rc was half the
simulation box sidelength (see Ref. [55]). The number of
particles in the simulation cell, N , was typically 500, 864,
and 1372 to assess the N-dependence. The production phase
computations at each state point on the solid side of the
melting and sublimation line curves were conducted for typ-
ically 1 − 2 × 105 time steps. Thermostatting was conducted
using NV T dynamics with the Nosé-Hoover (NH) thermostat
[56,57], employing a time constant of three LJ time units
and also by velocity rescaling [55], which were found to give
statistically indistinguishable results. All the codes used were
written in-house in FORTRAN.

Figure 2(a) compares the melting temperature of the LJ
system from simulation in Refs. [17,18] with the HLR pre-
diction formula given in Eq. (9). On the scale of the figure,
the value of δ = 0.105 predicts quite well the actual melting
line obtained by simulation for the whole temperature range
considered, apart from close to the triple point. Data for the
same quantities for the IP n = 12 system melting line are also
shown (where density has been converted to the Q = 4 LJ
units). There is a vertical difference between the IP and LJ
data, which only slowly decreases with increasing density.

The sensitivity of the degree of agreement to the value of
δ is shown in the Supplemental Material [58]. Figure 2(b)
shows the density dependence of the constants, As and Bs,
defined in Eq. (4) fitted to the ML ρ(T ) parametrized formula
presented in Ref. [18]. For temperatures 0.694, 1.00, 1.50,
and 2.0, the values of As are 3.165, 2.327, 2.083, and 2.009,
respectively. The corresponding Bs are 2.169, 1.371, 1.111,
and 1.0215. The high-temperature limiting values of As and
Bs are 1.8985 and 0.8126, respectively, whose data points are
given in Fig. 2(a), which shows that the simulation derived
curve only noticeably departs from this formula in the figure
for densities below about 1.1. The HLR values of As and Bs

according to Eq. (10) with δ = 0.105 (1.950 and 0.941) are
shown in the figure, and so are the IP values from Ref. [35]
(1.872 and 0.7248). For densities in excess of about ρ = 3.0

FIG. 2. (a) The melting temperature of the LJ system from sim-
ulation (“SK”) in Refs. [17,18] compared with the prediction of
HLR from Eq. (9) using δ = 0.105 is shown. The melting line iso-
morph (“ISO”) of the analytic form, kBT = 1.8985ρ4 − 0.8126ρ2, is
shown. (b) The density dependence of the constants, As and Bs, de-
fined in Eq. (4) is shown using the ρ, T parametrized formula given
in Table I, line 2 in Ref. [18] (SK, continuous line). The symbols are
HLR from Eq. (10) with δ = 0.105; “IP” are the separate values from
Ref. [35]. The LJ melting line invariants from Ref. [54] are denoted
by “CSD”. These symbols are arbitrarily placed at ρ = 3.

(or T > 147), the Bs value is within about 1% of the high den-
sity (temperature) limiting value, and 0.0003% for As (which
converges more rapidly). With increasing density, the values
of As and Bs approach the limiting (“isomorphic”) values.
From a practical point of view, one might reasonably take the
transition from nonisomorphic to isomorphic state density to
be in the density range of 2–3. The deviation from the melting
line from an isomorph was accounted for quantitatively by the
theory developed in Ref. [36], which predicted the variation
of, for example, the Lindemann ratio along the melting line
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with no free parameters (once a simulation at T = 2 has been
carried out).

The contribution from the Bs term becomes in relative
terms smaller that the As term with increasing density because
of the additional ρ2 and ρ4 factors in Eq. (4). The contribution
of Bs at all physically reasonable densities and temperatures
cannot be ignored, however, and it is responsible for the offset
between the IP and LJ curves in Fig. 2(a).

The solid-fluid coexistence melting lines of the n : 6 Mie
potential system where 7 � n � 12 obtained by MD and MC
techniques are reported in Refs. [31,59], respectively. Using
this simulation data in Eq. (9), the HLR value for δ by exam-
ples of the 7 : 6, 8 : 6 are similar in shape but slightly lower
than that of 12 : 6, as shown in the Supplemental Material
[58].

For any n > 3, each IP curve on the ρ-T plane, including
the melting line, is an exact isomorph, and, for this reason,
the Lindemann criterion is rigorously obeyed, i.e., δ must be
a constant. This can be proved by writing r1 and K in iso-
morph units (written for property X by “X̃ ”), i.e., r1 = r̃1ρ

−1/3

and K = K̃kBT ρ2/3 in the first line of Eq. (9). The fact that
the value of the mean-square displacement at melting may
depend on the IP exponent does not formally invalidate the
Lindemann criterion for that system. Whether the value of δ

is physically realistic is another matter, which is considered
immediately below.

Equation (9) applied to the IP potential system gives a for-
mula for δIP (which makes use of the known melting density
and temperature [29]),

δIP =
(

9kBTscn

Bnρ
n/3
s

)1/2

. (14)

In the large n limit, Bn can be replaced with insignificant error
by its LMR approximation, i.e., Bn = 12n(n − 1) (note here
Q = 1), which when substituted in Eq. (14) gives

lim
n→∞ δIP =

(
3

4

cn

n(n − 1)

[
kBTs

ρ
n/3
s

])1/2

(15)

for the fcc lattice. Then in the hard-sphere limit (i.e.,
n → ∞), ρ → 1.0376 for Ts = 1 (exploiting the exact re-
lationship that ρn/3

s /Ts = const), and the dominant term in
Eq. (15) for large n is cn, which is 2n/6 for the fcc lattice. The
value of δIP in Eq. (15) diverges in the n → ∞ limit because
the ratio 21/6/ρ

1/3
HS = 1.109 > 1 for the fcc lattice. The data in

Fig. 3 show that δIP increases dramatically for ∼n > 40 due
to the dominance of the cn term in Eq. (15). This indicates
that δIP used in the LMR and HLR treatments diverges in the
hard-sphere limit, which is unphysical as then δ � 1.

Figure 4 presents data for the melting line of the
WCA fluid from several sources. The LMR prediction with
δ = 0.105 is reasonable at liquidlike densities but overesti-
mates the melting temperature for extremely low tempera-
tures. Stillinger [21,49] showed that particles interacting with
a repulsive Gaussian pair potential behave increasingly like
hard spheres in the low-temperature limit (i.e., T << 1 in
reduced units). The low-temperature part of the melting line
can be reproduced increasingly accurately by equating the
Boltzmann factor, B f , to a number ∼1/2. The same procedure

FIG. 3. The root-mean-square displacement parameter, δIP, de-
fined in Eq. (15) with HLR. Key: Ref. [29], “fcc-fcc” is the δIP

predicted from the fcc lattice formula using the calculated ρfcc, and
“bcc-bcc” is the δIP predicted for the bcc lattice using the calculated
ρbcc.

applied to the WCA potential gives

B f = e−βφWCA(r) = 1/2,

r−3 =
(

[1 + √
T ln 2]

2

)1/2

= (σ/σHS)3,

ρHS = N

V
σ 3

HS,

N

V
σ 3 = N

V
σ 3

HS(σ/σHS)3,

FIG. 4. The melting temperature of the WCA [i.e., see Eq. (2)
and Ref. [25]] system compared with the prediction of HLR from
Eq. (9). The simulation melting temperature-density data from
Refs. [60,61] (AS) and Ref. [62] (KSM) are shown as symbols. The
black line (HS) is the prediction of Eq. (16) using the hard-sphere
melting density. The curve IP is for IP δ = 0.105. The brown vertical
arrow indicates the limiting value of ρWCA = 1/

√
2 in the T → 0

limit.
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FIG. 5. The density dependence of the force constants along
the LJ melting line. Kp is evaluated from Eq. (8) applied to a
perfect lattice at the given density. KT is defined in Eq. (11),
and KD is in Eq. (12). The T values are from left to right:
0.7, 0.85, 1.0, 2.0, 3.5, 5.0, 10, 20, and 40.

ρWCA = ρHS

(
[1 + √

T ln 2]

2

)1/2

, (16)

where β = 1/kBT , ρHS = 1.0376 is the hard-sphere melting
density [63], and ρWCA is the predicted number density in LJ
units of the solid along the melting line. The pair separation
distance r in Eq. (16) is that value of the center-to-center dis-
tance between the two atoms which satisfies the relationship
in the first line of this equation. Because of the finite nonzero
range of the WCA potential, r � 21/6, it follows from Eq. (16)
that ρWCA � 1/

√
2 in the low-temperature limit, which is

confirmed in Fig. 4 by comparison with literature simulation
ML data.

Figure 5 shows that Kp, KT , and KD, as defined in Eqs. (8),
(11), and (12), respectively, increase with density along the
melting line. The order of magnitude is KT > Kp > KD at
each density (temperature). The reason for this is that Kp just
gives the perfect lattice harmonic value, but with increasing
temperature the anharmonic term (the fourth-order derivative
of the effective potential experienced by the atoms) becomes
increasingly important. The anharmonic term acts as an extra
source of “confinement” of the atom in its cage. There have
been many publications quantifying anharmonic effects on the
lattice dynamics of crystals [23,64–72]. This additional term
in the effective potential increases the effective force constant
to a greater extent as temperature increases, and therefore
KT > Kp. In addition to the effects of the anharmonic poten-
tial term on the dynamics, the cooperative motion between
the atoms causes an additional “softening” of the confining
cage, which has the biggest effect on KD, and not KT . The
force constants KT obtained from 500 and 864 particle system
simulations are statistically indistinguishable. KD, in contrast,
does exhibit a small but noticeable systematic N-dependence,
as would be expected for a quantity derived from a fluctu-
ation property, which is here the average atom mean-square
displacement.

FIG. 6. As for Fig. 5 except that the corresponding scaled mean-
square displacements or δ2 are shown. D refers to MD using
Eq. (12) for N = 864. The temperatures used from left to right were
0.7, 0.85, 1.0, 2.0, 3.5, 5.0, 10, 20, and 40. Equation (13) was
employed to obtain δ2

p (“p”) and δ2
T (“T ”). Data using the CMD,

CMDR, and CMC methods are also shown.

Figure 6 presents the values of δ2 along the melting curve
as a function of density. The quantities δ2

p and δ2
T were cal-

culated from Kp and KT using Eq. (13), and δ2
D directly

from the MD computations with Eq. (12). Figure 6 reveals
that δ2

D > δ2
p > δ2

T as expected from the order of the force
constants in Fig. 5. The cell-based approaches founded on
the simplest harmonic or Einstein model approximation yield
δ or K , which differ considerably in magnitude from those
calculated directly from MD. As discussed and shown by
Holian [23], this is to be expected as the anharmonic and
atom-atom correlation effects are absent in Kp. In fact, these
additional factors are only partially included in KT . Their con-
tributions are not negligible at melting. The results in Fig. 6
suggest that the main differences between δ2

p and δ2
T from

δ2
D may be corrected for by a simple constant multiplicative

factor applied to all the data points. Debye took into account
long-wavelength correlations between the atoms in a solid,
which lead [23,73,74] to a correction factor to the (“Einstein”)
force constant, Kp, or equivalently multiplication of δ2

p by 1.8.
Figure 6 shows that the Debye modification gives remarkably
good agreement with the MD δ2 along the melting line, as
was also commented on and proved by Holian in Ref. [23].
However, there are still qualitative discrepancies, in particular
that 1.8 × δ2

p decreases more sharply in the density region
1.0–1.4 than δ2

D. The shape of δ2
D is closer to that of δ2

T .
Figure 6 also shows that 3.15 × δ2

T follows well δ2
D, even

better than the δ2
p scaling.

To explore further the effects of anharmonicity and coop-
erative motion, a variant of the MD simulation was used in
which each atom was surrounded by a rigid fcc regular lattice
at that density. The mobile atom interacted with the rigid
atoms through the LJ potential. This procedure eliminated
any cooperative motion, as each atom was only allowed to
explore its own ideal rigid crystal cage. This modification of
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HEYES, PIEPRZYK, AND BRAŃKA PHYSICAL REVIEW E 104, 044119 (2021)

the usual procedure was a simulation realization of the cell
model but which also included the anharmonic terms in the
potential energy landscape. This cell MD modification is re-
ferred to as “CMD.” In addition, another variant, “CMDR,” in
which the surrounding rigid lattice was formed from a frozen
equilibrated configuration at the used density and tempera-
ture, was used. This has the effect of smearing out the cage
wall atom locations to make the model more realistic. Each
mobile atom experienced a different fixed randomized lattice
arrangement. Also METROPOLIS Monte Carlo [57] versions of
the cell simulation techniques were implemented, denoted by
CMC and CMCR for the regular and randomized cage forms,
respectively.

Figure 6 shows the CMD δ2 values along the ML using
a global velocity rescaling thermostat to control the temper-
ature. The (global) velocity rescaling factor was determined
from all mobile but independently moving atoms combined
at each time step. The data for a CMDR simulation with
a NH thermostat evolved separately for each mobile atom
are also shown, as is a run carried out with CMC. They all
give statistically the same δ2, which indicates that a single
caged atom simulation can be reliably carried out. The cell
simulations δ2 are uniformly above δ2

T by a factor of ∼1.35,
as indicated in the figure. The difference in shape between
δ2

p and δ2
T at low densities can therefore be attributed to

the inclusion of some anharmonicity in the latter. The cell
simulation method includes additional anharmonic features
not present in the two cell model regular lattice treatments.
However, the entire anharmonic contribution is only obtained
from the MD simulations, as KD then includes the cooperative
contribution to the displacements, which affects the potential
energy surface experienced by the atoms, and this feature is
absent in CMD and CMDR.

1. Atom displacement statistics

The MD simulations provide the opportunity to explore
in more detail the nature and statistical distribution of the
departures of the atoms from their mean lattice sites, �r. This
is the vector of an atom from its mean position, i.e., it is
the displacement vector. Figure 7 shows the radially averaged
density distribution, ρ(�r) [75], for two temperatures along
the solid side of the LJ melting line (further definition details
are given in Appendix A). The data for systems consisting of
N = 500 and 864 particles gave statistically indistinguishable
profiles. The Gaussian approximation is very good, except
after ρ(�r) has decayed by about 99%, where the decay is
slower than Gaussian. This feature suggests that there were
infrequent relatively large departures of the atoms from their
average lattice sites, presumably caused by correlated motion
between nearby atoms. However, this feature has little effect
on the average value of the mean-square displacement. This
can be seen from the integrated mean-square displacement

〈[�r]2(X )〉 = 4π

∫ X

0
[�r]2ρ(�r) d�r, (17)

which is also shown in the figure. It may be seen in Fig. 7 that
〈[�r]2(X )〉 has essentially reached a plateau before noticeable
differences in ρ(r) from the Gaussian form are evident. The
accuracy of the Gaussian approximation involving δ2

D indi-

FIG. 7. The radial density function, ρ(�r), defined in Eq. (A2)
for two state points along the LJ melting line, where T = 0.7 and
10, which are indicated in the figure. The number of atoms, N , is
500 and 864, which are also given in the figure. The lines “gauss”
are the Gaussian PDFs defined in Eq. (A1) where the 〈δ2〉 are taken
from the MD simulation. A least-squares fit to the Gaussian function
in Eq. (A1) was made in each case, where αG was treated as an
adjustable parameter (the fit is for �r/r1 � 0.3) and denoted by “fit.”
The integrated root-mean-square displacement (“Irmsd”) computed
for N = 864 from Eq. (17) for the two temperatures is also shown in
the figure.

rectly suggests that KD and δ2
D could be used in mean-field

analytic approximations of solid-state behavior.
The structure factor, S(k), where k is the reciprocal-lattice

vector, forms the basis of the Hansen-Verlet freezing rule [76],
and when expressed in isomorph units, S(k/ρ1/3) is constant
along an isomorph [19]. The related melting factor MF is
[57,77]

MF =
[

1

N

N∑
i=1

cos(k · ri )

]2

+
[

1

N

N∑
i=1

sin(k · ri )

]2

, (18)

and 0 � MF � 1, which is routinely used in simulation as
a practical tool to assess when an initial lattice has melted
(ranging from 0 for a totally random arrangement of atoms to
1 for a perfect crystal). Its variation along the melting line was
calculated according to Eq. (18), for the case of k = 2π/�L,
where �L is the interlayer spacing along the 〈1, 0, 0〉 direction
of the fcc lattice. In the harmonic approximation, the melting
factor is the Debye-Waller factor (DWF) [65] when there are
no spatial and temporal correlations between the atoms, and

DWF = exp(−aδ2), (19)

where a = (2π
√

2)2/3 = 26.32 for this choice of wave vec-
tor.

The melting factor probability distribution functions
(PDFs) at several temperatures along the LJ melting line are
given in Fig. 8(a). The distribution is to a very good ap-
proximation Gaussian near the top of the PDF but is slightly
skewed to lower values in the wings, an effect that increases
with temperature. This indicates that (as was interpreted from
Fig. 7) there are some configurations in which the departures
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FIG. 8. (a) Melting factor PDF for the melting line at three tem-
peratures, T = 0.7, 2.0, and 40. MD data for N = 864 are shown.
(b) The mean melting factor against δ2

D, where a linear regression for
N = 864 gives an intercept and slope of −0.0040(3) and −25.91(1),
respectively. This demonstrates that the MD data adhere well to
Eq. (19).

of the atom average positions are particularly large due to
correlated motion. These give rise to a more disordered array
at that instant than is expected from independent harmonic
motion.

Figure 8(b) presents the mean melting factor as a function
of δ2

D along the LJ melting line, plotted on a lin-log scale.
The fact that δ2

D varies along the ML at all indicates that for
temperatures close to the triple point value, the ML departs
a little from an isomorph, at least according to the δ equal
to a constant criterion [35,36,78]. Data points along this line
are evidence of varying degrees of departure from isomorphic
behavior. The linearity of the data indicates that the MF is to
a very good approximation equal to the Debye-Waller factor
[65] using δ2

D as the required parameter. The least-squares
fit slope is within ∼2% of the formal value of a given in

FIG. 9. The density dependence of L calculated using Eq. (B1),
and M is defined in Eq. (B2) along the melting line of the LJ system.
The parameters B′

12 in Eq. (B2) are 1.016 364 and 1.004 916 for the
sc and fcc crystals. The parameters B′

6 are 1.157 635 and 1.066 83 for
the sc and fcc crystals.

Eq. (19) for the chosen interlayer direction. It was also found
that the values of the even order cumulants of the particle
displacements were several orders of magnitude smaller than
the second cumulant (i.e., the MSD case). From a practical
point of view, Fig. 8(b) indicates that the MF can be obtained
from δ2

D using Eq. (19), or vice versa, which could be useful
in developing analytic theories of the ML, which is not reliant
on using a cell model.

A structure-independent freezing indicator, L, has been
proposed and applied to a wide range of model potential
systems,

kBT = 1

L (r2φ′′(r))r=r, (20)

where r = 1/ρ−1/3 was used for the mean interparticle dis-
tance in those previous studies [37,38,46,52,53]. In Eq. (20),
L is an adjustable constant that takes on a roughly comparable
role to δ−2 in the LMR and HLR treatments. Equation (20) has
primarily been used for the freezing transition (i.e., ρ = ρ f ),
but it has also been applied to melting [37], where the density
along the melting line instead was used. The mean distance
r used for a fluid is also that of a simple-cubic lattice at the
same density. For the crystal phase, the more general defini-
tion, r = c/ρ−1/3

s , can be used, which enables the behavior of
different lattice types to be distinguished while retaining the
simplicity of Eq. (20). This is the principal innovation here,
where Eq. (20) can be used also as a melting indicator (MI).
For a given crystal type, the parameter c and density define
r. For the simple cubic and fcc lattices, c = 1 and 21/6, re-
spectively, and r ≡ r1 is chosen. No other details of the lattice
are required for L. The expression for L for the Mie potential
is given in Appendix B, which also includes the definition of
another related quantity, M, which is a reexpression of the
HLR formula in Eq. (9) in a similar format to that of L.
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Figure 9 shows that the simple-cubic lattice curve has a
high density limiting L � 350, which is in good agreement
with Ref. [37]. For the simple-cubic lattice, the formula, r =
ρ−1/3, is in fact the same as that used in the previous work
on freezing in Ref. [37]. The value of L is seen to be highly
sensitive to lattice type (through r), however, and it reduces
to ∼100 for the fcc lattice, which is the correct crystal form
along the ML. The corresponding fcc melting curve is much
less density-dependent than that of the sc lattice, for ρ greater
than about 1.5. The melting indicator in its current formulation
is very close to the HLR model, and its density dependence is
qualitatively similar to M, which is also shown for both lattice
types in Fig. 9. The M values are slightly lower than the L at
a given density in both sc and fcc cases.

Figure 9 demonstrates that for the fcc solid, the melt-
ing indicator, L, and the related parameter, M, are nearly
constant along the melting line for densities in excess of
about 2.0. This trend follows from the fact that the melting
line is an approximate isomorph as the isomorph description,
h(ρ)/kBT = const [79], is satisfied. The combination of
Eqs. (3) and (16) in Ref. [79] gives the definition of L in
Eq. (20) above.

To summarize, further evidence is presented of the
effectiveness of a quasiharmonic treatment of atomic dy-
namics along the solid melting line. It is shown that both
anharmonicity and the effects of collective dynamics can be
incorporated into a harmonic cell model at a mean-field level
(i.e., by a simple scaling factor) to reproduce the simulation
mean-square displacements (see Fig. 6). In addition, the statis-
tics of the atom displacements from their average locations
are shown to be essentially (but not completely) Gaussian in
form, in which the key constant involves the mean-square
displacement of the atoms obtained directly by MD. The
Debye-Waller factor is consequently expressed accurately in
terms of just the MD MSD, and this is shown to be the
same as the melting factor in this instance. The Lindemann
cell model is not always a physically realistic representation
of the melting line in regard to the magnitude of the mean-
square displacements, however, as shown for steeply repulsive
inverse power systems and for the WCA low-temperature
limit. Nevertheless, despite these limitations, the harmonic
cell models perform remarkably well in representing melting
lines in general, and better than might have been expected
because of their simple foundations.

In the next section, the methodology used for the melting
line in this section is applied and adapted for the sublimation
line.

III. SUBLIMATION LINE

Solids at temperatures below the triple point along the SL
have been the subject of only a few simulation studies (e.g.,
Refs. [17,18,80,81]). It is essential for any system to have an
attractive component to the pair interaction for it to have a
SL, otherwise the melting line continues down to the T → 0
limit, as is evident in Fig. 4 for the WCA potential and has
to be the case for the IP potential whose ML consists of
lines of constant ρn/3/T . Figure 1 shows that the temperature
dependence of the sublimation curve is qualitatively different
from that of the melting curve, in that the density decreases

as temperature increases. The SL of the LJ system has been
determined with the aid of simulation in Refs. [17,18,80].

The pressure along the sublimation line is very small
(<10−3 in LJ units [80]), which can be exploited to obtain
an approximate expression for the temperature dependence of
the density of the solid along the sublimation line, ρsub, by
imposing the condition that P = 0. Starting from Eq. (7) and
where αT = 1 in the equation below, the SL is predicted to be

P = Pk + αT Pc,

0 = ρsubkBTsub + αT
[
4Aρ,12ρ

5
sub − 2Aρ,6ρ

3
sub

]
,

kBTsub = −αT
[
4Aρ,12ρ

4
sub − 2Aρ,6ρ

2
sub

]
,

ρsub =
⎛
⎝Aρ,6 +

√
A2

ρ,6 − 4Aρ,12kBTsub/αT

4Aρ,12

⎞
⎠

1/2

, (21)

where ρsub and Tsub are the density and temperature, respec-
tively, along the SL. Figure 10(a) shows that the curve from
Eq. (21) when αT = 1 has the correct (negative) slope but
is significantly smaller than those of the simulation-derived
curves [17,18]. This might be expected, in part, as the αT = 1
special case is based on a static lattice regular crystal formula
without contributions from anharmonicity and cooperative
motion of nearby atoms. An optimum value of αT was ob-
tained by fitting the sublimation line coexistence density and
temperature to the formula of the form

kBTsub = Bsubρ
2
sub − Asubρ

4
sub, (22)

which follows from Eq. (21). Then,

a12 = Asub/(4Aρ,12), a6 = Bsub/(2Aρ,6),

αT = (a12 + a6)/2, (23)

taking the values of Aρ,12 and Aρ,6 from Table I, which gives a
value αT = 0.115 55 (as a12 and a6 are 0.115 59 and 0.115 51,
respectively). The formula in the last line of Eq. (21) with
this value of αT reproduces the literature SL data very well
at all temperatures, as is evident in Fig. 10(a) and Table II,
despite its simplicity and only requiring a single fitted param-
eter. The parameters Asub and Bsub are 2.803 68 and 3.340 30,
respectively. Note that apart from a sign change, Eq. (22)
has the same analytic form as the melting line formula of
Eq. (4), yet it is not an isomorph. If the ML is considered to be
dominated by the repulsive part of the potential (i.e., viewed
from a perturbation theory perspective), then the reference
state for the SL appears to be determined to some extent by
the attractive part of the potential. The configurational part of
the pressure along the SL is negative, so the crystal is under
tension along this line.

If TP is the temperature obtained directly by MD subject
to the condition P = 0, and Tsub is obtained by the formula
in Eq. (21) using αT = 0.115 55, the difference, �T1 = TP −
Tsub, can be defined. If TSK is the temperature obtained from
the Schultz-Kofke formula [17,18], then another temperature
difference, �T2 = TSK − Tsub, is specified. Figure 10(a) shows
the density dependence of �T1 and �T2, which indicates that
the sublimation temperature calculated from the semiempiri-
cal formula in Eq. (21) agrees better than 1% with the exact
temperature values near the top of the coexistence line, but
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FIG. 10. (a) The sublimation curve derived from simulation data
[17,18] (SK) is the green line, and MD refers to simulation taking
P = 0. The solid magenta line is the formula in Eq. (21) with αT = 1,
and the black solid line is the result of a least-squares fit derived
correction, αT = 0.115 55 in Eq. (21) (it is hardly distinguishable
from the green line). MD data for N = 500 and 864 are shown.
The quantities �T1 and �T2 are defined in the main text. Data for
velocity scaling (VS) and the Nosé-Hoover (NH) thermostats are
shown. (b) The SK melting and sublimation lines (shown as sym-
bols) compared with the formulas in Eq. (4) where As = 1.8985 and
Bs = 0.8126 (ML) for melting, and Eq. (22) where Asub = 2.803 68
and Bsub = 3.340 30 (SL) for sublimation, given as continuous lines.

overestimates it by a few percent for T < 0.4 (note the tem-
perature differences are scaled by a factor of 10 in the figure
to make them visible). The temperature is more sensitive to
differences in the model formulas than the density.

The parameter αT accounts for factors not present in the
harmonic cell model expressions. The expansion of the lattice
is determined principally by the third derivative of the local
potential energy surface [82]. An approximate treatment of
the linear thermal expansion of a crystal [82] has a term
∼φ(3)/r1[φ(2)]2 ∼ n−1, where the derivatives are evaluated at
r = r1, and φ(k) is the kth r-derivative of φ. This term has a
magnitude of about 0.1 for n = 12 (the dominant term in the
LJ potential), which is close to the optimum value of αT found
for the present analysis.

The present treatment of thermal expansion along the SL
given in Eq. (21) has some features in common with that
of van der Hoef [80] (see also Ref. [83]), however in that
study the anharmonic effects were taken into account via
a temperature-dependent polynomial correction term which
was fitted to simulation SL data. The present treatment gives
just as good a representation of the simulation SL data with
only the single adjustable parameter, αT . Note that Eq. (21)
is based on the regular lattice summation formula for the
pressure, whereas other studies have started typically from an
approximate expression for the free energy, and taken its first
density derivative to obtain the pressure [43,83,84].

Figure 10(b) presents in the same figure a comparison
between the simulation-derived melting and sublimation lines
with the simple approximated formulas given in Eqs. (4) and
Eq. (22), respectively. The agreement is very good apart from
close to the triple point for the ML, despite the fact that only
the ML is an isomorph (not too close to the triple point), as
is evident in Fig. 10(b). The sign difference between Eqs. (4)
and Eq. (22) combined with different constants is sufficient to
reflect this major qualitative difference in behavior.

Figure 11 shows the radial distribution function (RDF) at
selected state points along the melting and sublimation lines,
where the pair separation, r, is scaled by ρ1/3. For the state
points shown, the melting line is seen to be an isomorph, as
the three curves are statistically the same (apart from near the
tip of the first peak, the reason for which has been explained
in Refs. [85,86]). In contrast, the RDFs along the sublimation
line do not superimpose, indicating that the sublimation line is
not an isomorph. This might be expected, as the melting line
near the triple point departs from an isomorph [36]. Figure 11
demonstrates that the melting line RDF for T = 3.5 coincides
well with those at higher density, whereas the δ2

D (see Fig. 6)
and MF PDF for this temperature are still shifted from any
higher density limiting values at this temperature, which is

TABLE II. Comparison of the sublimation densities from Refs. [17,18] denoted by ρSK, and ρsub from Eq. (21) with αT = 0.115 55.

T ρSK ρsub T ρSK ρsub

0.00 1.09151 1.09151 0.3 1.04512 1.04573
0.01 1.09010 1.09014 0.4 1.02722 1.02778
0.05 1.08437 1.08455 0.5 1.00755 1.00789
0.1 1.07702 1.07734 0.6 0.985365 0.985396
0.15 1.06944 1.06989 0.7 0.959192 0.959179
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FIG. 11. Radial distribution functions along the melting and
sublimation lines, for N = 500 and 1372, respectively. The pair
separation distance, r, is scaled by ρ1/3. The values of T are given
in the figure. The top three curves in the key are for the melting line
(“M”), which are shifted vertically by 5, and the bottom three curves
are for the sublimation line (“S”).

not achieved even for T = 40. Therefore, the convergence
towards isomorphic scaling for fluctuation-based quantities is
slower with increasing temperature (density) than the static
average quantities such as the RDF, energy, and pressure. This
conclusion is consistent with the linear relationship found in
Fig. 8 as those state points are the ones that depart to some
extent from an isomorph (i.e., where δ2

D is constant).
Figure 12 presents the density dependence of the force

constant, K , along the sublimation line (via MD simulations
carried out along the P = 0 line by the procedure explained
in Sec. II B). The force constant was calculated by different
routes using the formulas given in Sec. II A. Figure 12 should
be compared with Fig. 5, which plots the same quantities
for the melting line. Just as for melting, the SL Kp and KT

both increase in magnitude with increasing density (but for
decreasing temperature in this case). They meet in the T → 0
limit, whereas for melting they get farther apart with increas-
ing ρ (note the log abscissa scale in Fig. 5). The perfect lattice
force constant at each density, Kp, is again smaller than KT .
Numerical agreement between the two definitions of KT in
Eq. (11) was found, even at these very low temperatures. The
force constant based on the MD data or KD, which is defined
in Eq. (12), exhibits a systematic decrease in magnitude with
increasing system size, reflecting a progressive increase in the
MSD with system size. There is not the same sensitivity to
system size of KD along the melting line.

Figure 13 shows δ2 as a function of density along the
sublimation line. The δ2

p and δ2
T were calculated from Kp and

KT using Eq. (13), and δ2
D was computed directly from the MD

simulations using Eq. (12). Computations using METROPO-
LIS MC [57] were also carried out to establish if there are
any artificial consequences of the lower than usual temper-
atures used in the SL simulations. The MC moves do not

FIG. 12. The density dependence of the force constants along
the LJ sublimation line. Kp is evaluated from Eq. (8) applied to a
perfect lattice at the given density. KT is defined in Eq. (11), and
KD is in Eq. (12). The T values are from right to left between
0.0, 0.1, 0.2, . . . , 0.7. The number of atoms used in the simulation
is indicated in the figure. The crosses indicate the Nosé-Hoover
thermostat (N = 500) while the other symbols are using the velocity
scaling thermostat.

conserve the center of mass (even without periodic bound-
ary crossings), which needs correcting in order to obtain
physically meaningful MSD. For every N trial displacement,
the average displacement per atom along each Cartesian

FIG. 13. As for Fig. 12, except the scaled mean-square dis-
placements, δ2, along the sublimation line calculated by several
procedures are shown, where “P” refers to δ2

p and “T ” denotes
δ2

T . The results for MD and Monte Carlo simulations (“MC”) are
shown. The cell simulation variants on the figure are discussed in
the main text. Note that temperature increases from right to left. The
simulations were carried out with N = 1372 atoms.
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direction was subtracted off, i.e.,

δr = 1

N

N∑
k=1

δrk,

δr′
i = δri − δr, (24)

where δrk is the “displacement” (either 0 if the the trial move
is not accepted, or the accepted trial displacement) of particle
k, and δr is its average over N consecutive trial MC moves.
The displacement for atom i used in computing the MSD
is δr′

i. This corrected displacement quantity is only used to
compute the MSD, and the standard METROPOLIS MC pro-
cedure was used to evolve the particle positions without any
center-of-mass corrections.

The MC simulation MSD values are statistically indistin-
guishable from the corresponding MD data, δ2

D, as may be
seen in Fig. 13. The figure also shows data from the various
cell simulation models, which agree quite well (apart from the
NH CMD method) and are slightly above δ2

T to an extent that
decreases with increasing ρ. There is a qualitative difference
between δ2

p and δ2
T , being convex and concave, respectively, a

trend that is not found for the melting line. As for the melting
curve, the harmonic models significantly underestimate the
MSD along the sublimation line. The figure reveals that a
scaling factor of 1.55 applied to (this time) the δ2

p gives values
that agree very well with those computed directly by MD or δ2

D
using Eq. (12). The shape of δ2

T is concave, unlike for melting,
and thus multiplication by a constant cannot make it agree
with δ2

D (which is convex). Cooperative motion appears to be a
significant factor for sublimation (just as for the ML) because
of the significant difference between δ2

T and δ2
D. Figure 13

is another demonstration that the sublimation line is not an
isomorph as δ2

D is not constant along it.
Figure 14(a) shows the repulsive (r−12), attractive (r−6)

components and total potential energy per particle, u, along
the P = 0 isobar. The HLR data for the regular static lattice
at each density [see Eq. (5)] denoted by up,r, up,a, and up are
presented in the figure. The corresponding MD data ur, ua,
and u are also given. Figure 14(a) shows that within simu-
lation statistics, the MD u values agree with the harmonic
prediction for this quantity, up + 3kBT/2, where 3kBT/2 is
the vibrational contribution to the total potential energy in the
classical harmonic approximation. The repulsive part of the
potential energy decreases less rapidly than the static lattice
value with increasing temperature (right to left in the figure).
The differences between MD and the perfect lattice results
are less pronounced for the attractive part of the potential
energy.

Figure 14(b) presents the corresponding simulation and
cell model quantities for the interaction components of the
pressure. The repulsive and attractive components of the pres-
sure from simulation and cell model to a large extent cancel
each other out, which is expected as the total potential en-
ergy contribution to the pressure is hardly distinguishable
from zero on that scale. In addition, the total interaction part
of the pressure from the cell model is about an order of
magnitude larger than from the MD simulations, but is still
relatively small compared to the repulsive and attractive term
components. The ratio of the MD divided by regular lattice

FIG. 14. (a) The components and total potential energy per par-
ticle, u, as a function of ρ along the P = 0 isobar of the LJ system,
where N = 1372. The open symbols are for the perfect static lattice
values, up,r, up,a, and up for repulsive, attractive, and total potential
energy, respectively [see Eq. (7)]. The filled-in symbols denote the
simulation averages at each density (temperature). The crosses are
up + 3kBT/2. Frame (b) is the corresponding plot for the interaction
components of the pressure. The open orange circles are for the total
pressure (“Ptot”) of the system obtained directly by MD, which in-
cludes both kinetic and potential energy terms. Also, cp = up,r + up,a

and c = ur + ua. The magenta ∗ are the ratio of the MD and regular
lattice total interaction parts of the pressure, c/cp, which correspond
to the variable, αT , in Eq. (21).

predictions of the interaction part of the pressure in Fig. 14 is
independent of density to a good approximation, and equals
αT .

Figure 15 presents the melting factor plots for the sublima-
tion line, in the same format as for the melting line shown in
Fig. 8. The MF trends in both frames (a) and (b) are the same
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FIG. 15. (a) Melting factor PDF for the sublimation line at three
temperatures, T = 0.05, 0.3, and 0.7. MD data for N = 500 are
shown. (b) The mean melting factor against δ2

D [see Eq. (19)].

for melting and sublimation when plotted against the MD
determined values of δ. Notably in Fig. 15(a) as temperature
increases there develops a shoulder in the MF PDF which is
indicative of occasional large disruptive displacements of the
atoms through cooperative motion. The slope of −26.19(2)
in Fig. 15(b) is close to the exact limit of −26.32 given in
Eq. (19), which is even better than the value obtained for the
ML.

IV. CONCLUSIONS

This study has shown that the sublimation line of the
Lennard-Jones system is not an isomorph and is not predicted
even qualitatively correctly by harmonic cell models. This is
in contrast to the melting line, which is a very good isomorph
except close to the triple point. Despite this difference, the
atom mean-square displacements of the two lines generated
by molecular dynamics simulations can be reproduced by the

harmonic cell models on the application of scaling factors to
include the effects of anharmonicity and cooperative motion
at a mean-field level, as was first shown by Holian [23] for
the melting line. The extent of agreement is shown here to
improve considerably if molecular-dynamics simulations are
used to compute a time average effective lattice harmonic
force constant employed in the cell model. Lattice caged
single-atom molecular dynamics and Monte Carlo simula-
tions were also carried out on isolated atoms to concentrate
on the effects of anharmonicity by eliminating the collective
motion. The probability distribution function of the melting
factor showed that large displacement event departures from
harmonic motion and Gaussian statistics do occur (evident
in the lower wing of the PDF). The melting factor as a
function of the mean-square displacement (normalized by the
nearest-neighbor distance) is accurately represented by the
Debye-Waller factor for both the melting and sublimation
lines.

It was found here that the sublimation line can be
represented accurately by the simple analytic expression
kBT = aρ4 + bρ2, where the a and b constants are negative
and positive, respectively, which is a new result. This rela-
tionship has been found previously for the melting line, but
the two constants are positive and negative, respectively, in
that case. For the sublimation line, this formula can be derived
starting from a static perfect lattice expression for the pressure
and assuming the total pressure is zero [see Eq. (21)], which is
an accurate approximation, and then making a semiempirical
generalization. The interaction part of the total pressure of the
crystal is negative along the sublimation boundary line.

It is proved that the harmonic cell model prediction for the
melting line can be physically unrealistic for purely repulsive
potential systems under certain conditions, as the dimension-
less route mean-square displacement parameter exceeds unity.
This is the case for inverse power solids with exponent, n,
greater than about 40, and for the WCA system for reduced
temperatures below about 0.01. Inter alia the analysis carried
out here for the WCA solid boundary produces a simple ac-
curate analytic expression for the melting line of the WCA
system in the low-temperature regime using a hard-sphere
reference, which is a valid approximation at these very low
temperatures [see Eq. (16)].

A formal relationship between melting indicator and har-
monic cell models is derived, and their predictions along the
melting line are shown to be qualitatively the same. The near
constancy of their characteristic parameters along the melting
line is consistent with the predictions of isomorph theory and
an approximate isomorph [79].

To conclude, the results and analysis of this work indicate
that there are previously unrecognized connections in the
density-temperature dependence of the Lennard-Jones melt-
ing and sublimation lines despite the fact that they have
opposite slopes. The mean-square displacements for both
lines can be predicted well by harmonic cell models with
mean-field corrections for anharmonicity effects and collec-
tive motion. We think that it would be interesting to attempt to
explain at a more fundamental (statistical mechanical) level
why the melting and sublimation lines of the LJ solid can
both be represented by a simple formula, especially as the
sublimation line is not an isomorph whereas the melting line

044119-14



APPLICATION OF CELL MODELS TO THE MELTING AND … PHYSICAL REVIEW E 104, 044119 (2021)

is one to a good approximation. Further investigation could
be carried out to determine if the same trends are evident for
systems in which the atoms interact with other potentials such
as the more general n : m or Mie potential defined in Eq. (1),
possibly using the lattice constants in Table I. It should be
noted, however, that the coexistence lines for other examples
of the n : m potential are less well established from simulation
compared to the Lennard-Jones special case, which would
make this a fairly demanding computational project. Such
analyses might provide a foundation for a more rigorous “uni-
fied” statistical mechanical description of these two solid-fluid
boundaries.

ACKNOWLEDGMENT

D.M.H. would like to thank Dr. T. Crane (Department
of Physics, Royal Holloway, University of London, UK) for
helpful software support.

APPENDIX A: RADIAL DISPLACEMENT DENSITY
DISTRIBUTION

Details are given of the radial density distribution, ρ(�r),
as a function of the departure of an atom from its mean lattice
site, �r. Models for solids frequently represent the density
profile of the atom around its mean coordinate, ρ(�r), by a
Gaussian centered on the lattice site [75],

ρ(�r) =
(αG

π

)3/2
e−αG[�r]2

,

〈
[�r]2〉 = 4π

(αG

π

)3/2
∫ ∞

0
x4e−αGx2

dx

= 3

2αG
= δ2r2

1 . (A1)

Without making any assumptions about the analytic form
of ρ(�r), it is convenient to define a radial probability

distribution function, P(�r),

P(�r) =
∫

d�ρ(�r)[�r]2d�r∫
d�ρ(�r)

∫
[�r]2d�r

� �N (�r ± δ�r
2 )∑

�N
,

ρ(�r) = P(�r)

4π [�r]2d�r
� �N (�r ± δ�r

2 )

�V (�r)
∑

�N
,

�V (�r) � 4

3
π

[(
�r + δ�r

2

)3

−
(

�r − δ�r

2

)3]
. (A2)

The integral in the first line of Eq. (A2) is over the solid angle,
�. The number of occurrences of the atom at �ρ(r) which
is within the shell, �r ± δ�r/2, is denoted by �N (�r ±
δ�r/2), and �V (�r) is the volume element of that shell. The
formulas involving �N in Eq. (A2) are in a form convenient
for numerical evaluation within an MD program.

APPENDIX B: THE MELTING INDICATOR

The melting indicator parameter, L, introduced in Eq. (20)
for the Mie potential is

L = Q

kBT

(
n(n + 1)

cn
ρn/3 − m(m + 1)

cm
ρm/3

)
. (B1)

Equation (B1) is a generalization of the formula given in
Refs. [37,53]. The HLR formula in Eq. (9) can be reexpressed
to bring out its relationship to Eq. (B1). If the quantity B′

k =
Bk/[Qk(k − 1)N1] is defined, then

M ≡ 9

δ2N1

= Q

kBT

(
n(n − 1)

cn
B′

nρ
n/3 − m(m − 1)

cm
B′

mρm/3

)
. (B2)

For the LJ system along the ML, the Ts(ρs) is known accu-
rately [17,18], which is employed in Eqs. (B1) and (B2). The
values of B′

12 and B′
6 for the sc and fcc lattices are given in the

caption to Fig. 9, which shows the density dependence of L
and M along the ML using the sc lattice and the fcc lattice.

[1] W. G. Hoover and M. Ross, Contemp. Phys. 12, 339 (1971).
[2] R. Agrawal and D. A. Kofke, Phys. Rev. Lett. 74, 122 (1995).
[3] U. R. Pedersen, J. Chem. Phys. 139, 104102 (2013).
[4] A. B. Belonoshko, N. V. Skorodumova, A. Rosengren, and B.

Johansson, Phys. Rev. B 73, 012201 (2006).
[5] B. J. Alder and T. E. Wainwright, J. Chem. Phys. 33, 1439

(1960).
[6] M. Ross, Phys. Rev. 184, 233 (1969).
[7] F. Saija, S. Prestipino, and P. V. Giaquinta, J. Chem. Phys. 124,

244504 (2006).
[8] S. Pieprzyk, D. M. Heyes and A. C. Brańka, Phys. Rev. E 90,
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