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Spatiotemporal spread of perturbations in power-law models at low temperatures: Exact results
for classical out-of-time-order correlators
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We present exact results for the classical version of the out-of-time-order commutator (OTOC) for a family of
power-law models consisting of N particles in one dimension and confined by an external harmonic potential.
These particles are interacting via power-law interaction of the form ∝ ∑N

i, j = 1(i �= j) |xi − x j |−k ∀ k > 1 where
xi is the position of the ith particle. We present numerical results for the OTOC for finite N at low temperatures
and short enough times so that the system is well approximated by the linearized dynamics around the many-body
ground state. In the large-N limit, we compute the ground-state dispersion relation in the absence of external
harmonic potential exactly and use it to arrive at analytical results for OTOC. We find excellent agreement
between our analytical results and the numerics. We further obtain analytical results in the limit where only
linear and leading nonlinear (in momentum) terms in the dispersion relation are included. The resulting OTOC is
in agreement with numerics in the vicinity of the edge of the “light cone.” We find remarkably distinct features in
OTOC below and above k = 3 in terms of going from non-Airy behavior (1 < k < 3) to an Airy universality class
(k > 3). We present certain additional rich features for the case k = 2 that stem from the underlying integrability
of the Calogero-Moser model. We present a field theory approach that also assists in understanding certain
aspects of OTOC such as the sound speed. Our findings are a step forward towards a more general understanding
of the spatiotemporal spread of perturbations in long-range interacting systems.
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I. INTRODUCTION

Collective behavior of many-particle systems far from
equilibrium has been a central issue of interest [1–5]. In
particular, the role of integrability and its breaking in the
dynamical behavior of a system is of great interest from both
a theoretical [6–9] and an experimental perspective [10–12].
More generally, chaos which characterises extreme sensitivity
to arbitrarily small perturbations in initial conditions has been
extensively studied in both classical [13,14] and quantum
systems [15,16]. Recently, long-ranged systems have taken
a special place as a platform for studying collective behav-
ior and have become a promising avenue for experimental
research. Notable examples of long-ranged systems include
one-dimensional one-component plasma [17–20], Dyson’s
log gas [21], Calogero-Moser systems [22–24], dipolar
Bose gas [25,26], ionic systems [27–29], three-dimensional
Coulomb gas confined in one dimension [30], and Yukawa
gas [31] to name a few. Two main ingredients for understand-
ing sensitivity to initial conditions in long-ranged systems
are (1) the availability of a family of long-ranged models
which contain in them both generic and integrable cases with
preferably having reasonably well-understood classical and
quantum limits and (2) the availability of diagnostics which
can characterize dynamical phenomena and has both classical
and quantum counterparts.

The Riesz gas [32,33] is one such platform which en-
compasses a family of long-ranged models, and we consider

the case when it is trapped in an external trapping poten-
tial. This family contains in it several models which have
themselves been a subject of great interest from both a
physics and mathematics perspective. Well-known examples
for specific values of k include Dyson’s log gas (k → 0), the
integrable Calogero-Moser system (k = 2), one-dimesional
one-component plasma (k = −1), Coloumb gas confined to
1D (k = 1), dipolar gas (k = 3), and hard rods (k → ∞).
The parameter k which characterizes the power-law inter-
action spans from “relatively long-ranged” to “relatively
short-ranged” as we increase k. Recently, collective field the-
ory [33] has been provided for the Riesz gas and its finite
ranged generalization [34]. Such a collective description is
an important step forward to study nonlinear hydrodynamics
[35,36].

The second ingredient, i.e., a suitable diagnostic which can
characterize dynamical phenomena is the classical version of
the quantum out-of-time ordered correlator (OTOC) [37–43],
which quantifies growth or decay of perturbations in time
and their spread in space. This quantity is precisely suited to
explore questions on chaos, aspects of integrability, entropy,
and nonlinearity to name a few. In recent years, classical
OTOC has been employed as an insightful diagnostic tool
to study various extended classical systems such as classical
one-dimensional spin chains [44], thermalized fluid obeying
truncated Burgers equation [45], classical interacting spins on
a Kagome lattice [46,47], disordered systems [48], the two-
dimensional anisotropic XXZ model [49], spherical p-spin
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TABLE I. Summary of key results (k > 1). Note that αk, βk, δk, γ3 are all given in Eq. (5).

Asymptotic Scaling of D(x, t ), for large η± or �k,± 1/x2k+2

Spread of perturbations Ballistic
Dispersion relation, ωk (q) αkq − βkqk , for 1 < k < 3

αkq + γ3q3 log(qa), for k = 3
αkq − δkq3 − βkqk , for 3 < k < 5

Profile of the envelope of perturbations Convex for k < 2
Flat for k = 2

Concave for k > 2

glass model [50], discrete nonlinear Schrödinger equation
[51], and open systems such as the driven-dissipative duffing
chain[52]. The classical OTOC shines light on how perturba-
tions spread in space and grow and decay in time. The more
conventional ways of probing classical perturbations such as
Lyapunov exponents can be deduced from OTOC, although
the OTOC is well suited for probing extended many-particle
systems.

It is worth noting that, to the best of our knowledge, all
works on classical OTOC so far have been restricted to the
case of short-ranged interactions (essentially nearest neigh-
bor) and away from any integrable points [44–49,51,52]. In
fact, even for short-ranged models, although there have been
studies of OTOC in quantum integrable systems [43,53–57],
there has been no work reported on OTOC in classical inte-
grable models to the best of our understanding. In this work,
we aim to fill this important gap in our understanding by
studying low temperature OTOC of a family of power-law
models. Our key results can be summarized as follows: (1) We
found exact analytical computation of the dispersion relation
in absence of external harmonic potential and utilized it to
compute analytical results for OTOC at low temperatures and
short enough times. (2) We performed direct numerics and
demonstrated excellent agreement with the results obtained
after using dispersion relation. (3) We obtained exact results
for OTOC at the integrable point (k = 2). (4) We introduced
a field theory approach that paved an alternate path to the
investigative aspects of OTOC. A summary of key results is
presented in Table I.

II. MODEL AND DEFINITIONS

We consider N classical particles in one dimension with
pairwise interaction confined by an external harmonic trap.
This is the so-called Riesz gas [32] given by

H =
N∑

i=1

p2
i

2m
+ Vk ({x j}), (1a)

Vk ({x j}) =
N∑

i=1

[
mω2

2
x2

i + J

2

∑
j �=i

1

|xi − x j |k
]
. (1b)

Here xi is the position of the ith particle (such that i <

j ⇐⇒ xi < x j , i.e., ordering is maintained), pi is the cor-
responding conjugate momentum, m is the mass of each
particle, J is the interaction strength, and ω is the frequency
of the external trap. Therefore, equations of motion become

ẋi = pi/m and

ṗi = −mω2xi + Jk

2

∑
j �=i

sgn(xi − x j )

|xi − x j |k+1 . (2)

For a set of initial conditions {xi(0), pi(0)}, one can in
principle solve the above N ordinary differential equations
each consisting of (N − 1) pairing terms thereby rendering it
highly nonlocal and nonlinear.

III. DISPERSION RELATION

In the ground state in the absence of external trap, we find
the dispersion relation (using small oscillation analysis) to be
(Appendix B),

ωk (q) =
√

Jk(k + 1)

mak+2
[2ζ (k + 2) − P(k, q)], (3)

where P(k, q) = Lk+2(e−iqa) + Lk+2(eiqa) with Ln(z) =∑∞
p=1 zp/pn being the polylogarithm function. Here a is the

lattice spacing or inverse density [i.e., equilibrium is achieved
when xi(t ) = ai and pi(0) = 0] and ζ (z) = ∑∞

n=1 1/nz is the
Riemann ζ function. The lattice spacing a can be introduced
in the following manner. Let us say that we have N particles
confined in a harmonic trap of frequency ω. The minimum
energy configuration is such that the density takes a dome
shape [33], and the interparticle distance at the center is

given by [33] a = 2
3k+4

k2+2k [J (k + 1)ζ (k)/m]
1

k+2 ( ωN
B[1+ 1

k ,1+ 1
k ]

)
− 2

k+2

where B[a, b] = ∫ 1
0 dw wa−1(1 − w)b−1 is the standard β

function. The homogeneous limit can be thus realized by
simultaneously taking a careful limit N → ∞ and ω → 0
keeping ωN to be a constant. For a finite ω, the dome shape
survives in the large-N limit.

It turns out that the above dispersion relation [Eq. (3)]
is periodic with period 2π/a, and it has a maxima at q =
π/a. Using the remarkable property of the polylogarithm
function [58], Ln(z) = �(1 − n) log (1/z)

n−1 + ∑∞
l=0 ζ (n −

l ) log(z)l

l! for n �∈ Z and | ln z| < 2π , we find that the above
exact dispersion relation [Eq. (3)] for k > 1 has the follow-
ing small-q expansion up to the next leading relevant order
(Appendix B):

ωk (q) ≈
⎧⎨
⎩

αkq − βkqk, 1 < k < 3
αkq + γ3q3 log(qa), k = 3
αkq − δkq3 − βkqk, 3 < k < 5

(4)
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with

αk =
√

Jk(k + 1)

mak
ζ (k), γ3 = 1

4

√
Ja

3mζ (3)
,

δk = 1

24

√
Jk(k + 1)

mζ (k)

ζ (k − 2)

a(k−4)/2
,

βk =
√

Jk(k + 1)

mζ (k)
cos

[π

2
(k + 1)

]
ak/2−1�(−1 − k),

(5)

where �(z) is the � function. If k ∈ Z one can resort to the
conventional definition of the polylogarithm function to get
the above small-q expansion (Appendix. B). Note also that
in the regime 3 < k < 5, we wrote the next-to-next-leading-
order term [Eq. (4)] since this is what remarkably results in
power-law asymptotic behavior of the OTOC to be discussed
later, and hence, it is a relevant term.

IV. OUT-OF-TIME-ORDER COMMUTATOR (OTOC)

The key diagnostic for us is the classical version of
the well-known quantum OTOC. In the Heisenberg picture,
the quantum OTOC can be defined [44,59] as D(x, t ) =
〈[Âx(t ), B̂0(0)]2〉 where Âx(0) and B̂0(0) are local operators
at position x and the origin, respectively. The average 〈·〉 is
over a given quantum state. This quantity captures the effect
of an operator B̂0(0) on another operator Âx(t ) at a differ-
ent position and time. We now replace the commutator by
a Poisson bracket, {Ax(t ),B0(0)}. For our purposes, if one
makes the identification, Ax(t ) ≡ xi(t ) and B0(0) ≡ p0(0),
then the Poisson bracket is {xi(t ), p0(0)} ≈ δxi (t )

δx0(0) . There-
fore, the classical OTOC in our variables becomes D(i, t ) =
〈{xi(t ), p0(0)}2〉 ≈ 〈| δxi (t )

δx0(0) |
2〉. Here 〈·〉 is the average over a

thermal ensemble of initial conditions at a given tempera-
ture T . However, for low enough temperatures (kBT � J/ak

where kB is the Boltzmann constant), the initial conditions are
very close to the true ground state (global minima) which is
characterized by the set {xi(0) = yi, pi(0) = 0} that minimizes
the energy in Eq. (1). Therefore, for low enough temperature
we do not need to make an ensemble average. D(i, t ) can be
interpreted as follows: Take two copies (I, II) of a system with
identical initial conditions. Now, we infinitesimally perturb
the position (by ε) of one particle (say, the middle one) in
only one of the copies. In such a case, the OTOC is

D(i, t ) =
∣∣∣∣ xI

i (t ) − xII
i (t )

xI
N+1

2

(0) − xII
N+1

2

(0)

∣∣∣∣
2

=
∣∣∣∣δxi(t )

ε

∣∣∣∣
2

, (6)

where we assume N is an odd integer just for convenience.
Since here we are in a regime of sufficiently low temperature,
one can invoke a Hessian description, which yields |δẍ(t )〉 =
−M |δx(t )〉 where |δx(t )〉 is a N × 1 column vector consisting
of elements δxi(t ) and M is a N × N Hessian matrix given
by Mi j = [ ∂2Vk

∂xi∂x j
]x=y where y is the equilibrium solution that

minimizes Eq. (1). In this Hessian limit, Eq. (6) becomes
(Appendix A)

D(i, t ) =
∣∣∣∣∣

N∑
α=1

〈
λα

∣∣∣∣N + 1

2

〉
〈ei|λα〉 cos (ωαt )

∣∣∣∣∣
2

, (7)

where |λα〉 is the αth eigenvector of M and ω2
α is the corre-

sponding eigenvalue. The set {|ei〉} is the standard basis for
RN . We have chosen the initial conditions, 〈ei|δx(t = 0)〉 =
εδi, N+1

2
and 〈ei|δẋ(t = 0)〉 = 0 such that D(i, 0) = δi, N+1

2
.

In general, neither the equilibrium positions {yi} nor the
eigenvectors and eigenvalues are easy to find. Barring the
exceptional integrable case [60] of k = 2, we resort to direct
numerics.

V. DIRECT NUMERICS

In order to compute the OTOC [Eq. (7)] numerically, we
first need to find the set {yi}. This is done via the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [61,62] which
is an efficient way for energy minimization of Eq. (1) when
N is large (Appendix E). All numerical results presented here
are for N = 4097. After getting the positions of the minima
({yi}) one can compute the Hessian matrix M, its eigenvectors
(|λα〉) and eigenvalues (ω2

α) thereby aiding the computation
of OTOC [Eq. (7)]. It is also important to mention that for
sufficiently large N the resulting density profile is sufficiently
flat near the center. Hence, for comparing these direct numer-
ical results with analytics (discussed later), we can ignore the
harmonic trap as long as we are studying features relatively
far from the edges.

VI. ANALYTICAL APPROACH

The dispersion relation [Eq. (3)], along with a plane-wave
ansatz (Appendix C), gives us [52],

D(x, t ) =
∣∣∣∣ a

2π

∫ π
a

− π
a

dq cos(qx − ωk (q)t )

∣∣∣∣
2

, (8)

where ωk (q) is the full dispersion relation given in Eq. (3).
It is to be noted that the limits of the integral are chosen to
be where the dispersion relation reaches a maximum (zero
group velocity). Equation (8) encodes both the left and the
right movers. In other words, Eq. (8) can be split into two
pieces of integral comprising negative (−π/a, 0) and positive
(0, π/a) momentum. Next, we will present the results for
various values of k. Owing to a rich mathematical structure
rooted in integrability, we will present the k = 2 case first.

k = 2 (Integrable Calogero-Moser Model): It remarkably
turns out that, when k = 2, the expansion of Eq. (3) in q ter-

minates to exactly yield, ω2(q) =
√

J
m ( πq

a − q2

2 ). Using this,
the OTOC Eq. (8) gives (Appendix D),

D(x, t ) =
∣∣∣ a

2π
[DR(x, t ) + DL(x, t )]

∣∣∣2
, (9)

where DL/DR are the left and right moving perturbations
respectively and are given by

DR,L =
√

π

tut
cos

(
η2

∓
2u2

t

)[
±C

(
v

ut
√

π

)
∓ C

(
η∓

ut
√

π

)]

+
√

π

tut
sin

(
η2

∓
2u2

t

)[
±S

(
v

ut
√

π

)
∓ S

(
η∓

ut
√

π

)]
,

(10)
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where ut = (
√

J/
√

mt )
1/2

and C(y) and S (y) are the Fresnel
cosine and Fresnel sine integrals, respectively (Appendix D).
Here v = x/t and η± = v ± √

J/m(π/a). The velocities η+
and η− are indeed the velocities of the fronts at right and left,
respectively. The notation ut is introduced for convenience
and one can infer that ut dictates the length scale of the oscilla-
tions as it appears inside the Fresnel functions as well as in the
overall amplitude. In Fig. 1 we show the OTOC for the case
k = 2. Exact agreement between direct numerics [Eq. (7)] and
analytical expression [Eq. (9)] is established in Fig. 1(c). The
slope of the heat map [Fig. 1(b)] is precisely the butterfly
velocity (which in this ground-state case is the sound speed)
given by vB = π/a. This is consistent with the position of the
front in Fig. 1(c), which occurs at vBτ . Extensive asymptotic
analysis of Eq. (9) and Eq. (10) is presented in Appendix D.
For example, we have shown that the right moving perturba-
tion front has the asymptotic behavior DR(t ) ∼ 1/η3

− for large
η− > 0.

The oscillatory nature of the spatial profiles indicate that
the dynamics is well approximated by a Hessian theory of
small oscillations. The approximate dynamics is similar to
the dynamics of an all-to-all connected Harmonic graph. The
oscillatory nature is a testimony to the fact that chaos is not
yet prevalent. In other words, there is no exponential temporal
growth of perturbations. Remarkably, we find that the form
of the envelope is a good demarcator of various k regimes
(see Table I). The envelope is convex, flat and concave for
k < 2 [Fig. 2(a)], k = 2 [Fig. 1(c)], and k > 2 [Fig. 3(c)],
respectively. Physically, the envelope gives us an idea of how
an initial energy packet is distributed in space for various
values of k.

Although the exact analytical form of the OTOC for k �= 2
is not available due to the complexity of the dispersion relation
[Eq. (3)], significant advance can be made due to the small-q
expansion [Eq. (4)], which is what we do next.

Nonintegrable case, k �= 2: For the case of k �= 2, one can
compare the direct numerical simulations of Eq. (7) with the
analytical expression in Eq. (8) with ωk (q) given by Eq. (3).
In Fig. 2 we present an example for k = 1.5. We see perfect
agreement in entire space-time. However, given the complex-
ity of k �= 2 case, we do not have an analog of Eq. (9) and
Eq. (10), which assumed a fully exact dispersion relation
which takes a remarkably simple form in the Calogero-Moser
(k = 2) case. We therefore resort to a small-q expansion of
Eq. (3). We recollect that such an expansion gave us Eq. (4)
along with definitions given in Eq. (5). Note that such an
expansion is expected to work close to a particular front
(either right or left). Therefore, in the following discussions,
we will restrict ourselves to the right sector, and our analysis
straightforwardly holds for the left sector. We will discuss
three cases in Eq. (4) separately.

1 < k < 3 : Here we simplify Eq. (8) using the first line of
Eq. (4). Doing so, we get (Appendix D)

DR(x, t ) = a

2π

Bk (�k,−)

(3tβk )1/k
, with �k,− = x − αkt

(3tβk )1/k
, (11)

and the special function is defined as (for 1 < k < 3)

Bk (y) :=
∫ (3tβk )1/k π

a

0
ds cos

(
ys + sk

3

)
. (12)

FIG. 1. (a) Heat map of the OTOC (for clear visualization, we
chose N = 65) from direct numerical simulation of Eq. (7) for the
Calogero-Moser case (k = 2). The solid black line separating the
white and blue (gray) regions depicts the light cone. Time axis is
in units of a/vB. (b) 2D heat map showing a ballistic light cone
(N = 65). Note that each point in the plot corresponds to the am-
plitude of the OTOC. (c) Comparing OTOC from direct numerical
simulation of Eq. (7) with the analytical expression in Eq. (9) at a
time snapshot, t ≈ 164 (in units of a/vB). Note that, for visualization
purposes, we have plotted only the positive x-axis, and the results are
mirror symmetric on the other side. The time t is chosen such that the
front moves about 10% from the center to make sure that we are far
enough from the edge of the cloud. Here a = 0.0347, vB = 90.5207
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FIG. 2. (a) Comparing OTOC (k = 1.5) from direct numerical
simulation of Eq. (7) with the analytical expression in Eq. (8) at
a time snapshot, t ≈ 151 (in units of a/vB). Note again that, for
visualization purposes, we have plotted only the positive x-axis and
the results are mirror symmetric on the other side. The time t is
again chosen such that the front moves about 10% from the center
to make sure that we are far enough from the edge. Note the differ-
ence in the profiles of the OTOC. While k = 2 has a relatively flat
envelope [Fig. 1(c)], k = 1.5 shows a downward trending envelope
and k = 4.5 has an upward trending envelope (Appendix C). (b) 2D
heat map showing a ballistic light cone. (c) Log-log plot showing
the asymptotic power-law behavior for k = 1.5. This plot is the
zoomed version of the plot in the top panel near the right front, with
x ∈ [5.5, 8.5]. Here a ∼ 0.02237 and vB ∼ 53.9296.

FIG. 3. (a) Heat map of the OTOC, for k = 4.5 and N = 65,
from direct numerical simulations. The time axis in in units of a/vB.
The solid black line separating the white and blue (gray) regions
depicts the light cone. (b) 2D heat map showing a ballistic light
cone. (c) Comparing OTOC from direct numerical simulation with
the analytical expression at a time snapshot, t ≈ 218 (in units of
a/vB). Note that, for visualization purposes, we have plotted only
the positive x-axis and the results are mirror symmetric on the other
side. Here a ∼ 0.1346, vB ∼ 466.514.
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FIG. 4. Power-law decay of OTOC beyond the cone for k = 4.5
and N = 4097. The slope depicts the exponent of the power law.
Here a ∼ 0.1346, vB ∼ 466.514.

Equation (16) below expresses �k,± for various values of k.
Note that when the lattice spacing a → 0 (which is essentially
the large-N limit), then the upper limit of the integral in
Eq. (12) becomes +∞. This can be thought of as a k �= 3
generalization of the Airy integral. In stark contrast to the Airy
integral, in the regime 1 < k < 3, we find Bk (y) ∼ 1/yk+1

for large y. This implies that DL,R(x, t ) ∝ 1/�k+1
± where ±

indicates whether we are probing the left or the right front,
respectively. Note that, throughout the paper, for the sake of
brevity by �± we mean �k,±. In Fig. 2(c) we demonstrate
that this power-law prediction (for k = 1.5 which will give
D ∼ 1/�5

±) is consistent with direct numerical results.
3 < k < 5 : In this case, if we consider the lowest and the

next-order term in the dispersion relation [Eq. (4)] we get

DR(x, t ) = aAi(�k,−)

2(3tδk )1/3
, with �k,− = x − αkt

(3tδk )1/k
, (13)

where Ai(z) is the Airy function. Refer to Eq. (16) to see
the definition of �k,± in various regimes of k. This would
imply that the asymptotic behavior of the OTOC [Eq. (8)]
would be characterized by exponential since large argument

behavior of the Airy function is Ai(z) ∼ e− 2
3 z3/2

2
√

πz1/4 . However,

this is because we stopped at O(q3) in Eq. (4). Knowing that
we have a power-law model, we expect that the asymptotic
behavior of OTOC should be characterized by power laws.
It turns out that this is captured by considering higher orders
in the dispersion relation [Eq. (8)]. For 3 < k < 5, the next-
order term after q3 in Eq. (4) would be qk and this will yield
a power-law tail DL,R(x, t ) ∝ 1/�k+1

± . For example, for the
case k = 4.5 (see Fig. 3), we demonstrate (Appendix D) that
DL,R(x, t ) ∝ 1/�5.5

± (see Fig. 4).
We briefly comment on the case 5 < k < ∞ and k /∈

odd integer. The term in the dispersion expansion that results
in power law is δkqk , which will again yield DL,R(x, t ) ∝
1/�k+1

± . However, to see this power law, one needs to go to
very large asymptotic values since this will happen only after
all the exponential behaviours [arising due to O(q2Z+1) where
Z are positive integers] are suppressed. Next, we will discuss
the case when k is an odd integer. In particular, we will discuss

the case of k = 3, but our method can be adapted for all odd
integers.

k = 3: In this case, we see a logarithm term in Eq. (4), i.e.,
q3 log(q). Note that without the logarithmic piece, we would
have ended up with Airy function for the OTOC, which would
have resulted in exponential asymptotics. However, we now
get

DR(x, t ) = a

2π

B3(�k,−)

(3tγ3)1/3
, (14)

where

B3(y) :=
∫ (3tγ3 )1/3 π

a

0
ds cos

(
ys + s3

3
log

[
s

(3tγ3)1/3

])
.

(15)
We find that the large y behavior is B3(y) ∼ 1/y4, which
implies DL,R(x, t ) ∝ 1/�4

±. It is remarkable to note that the
expected power-law behavior is recovered as a result of the
intricate role played by the logarithmic term in the dispersion
relation for k = 3. We also find that for odd integers, i.e.,
k ∈ 2Z + 1 where Z are positive integers, the power law is
recovered by a term in the dispersion relation of the form
βkqk log(q).

It is worth recollecting that the details of �± ≡ �k,±
depends on the regime of k we are investigating. This is
summarized as follows:

�± =

⎧⎪⎨
⎪⎩

x±αkt
(3tβk )1/k , 1 < k < 3
x±αkt

(3tγ3 )1/k , k = 3
x±αkt

(3tδk )1/k , 3 < k < 5

. (16)

VII. FIELD THEORY

An alternative approach to studying the large N behavior
of this system is to investigate the collective field theory. Re-
cently, a systematic derivation of large-N field theory [33] was
achieved. Here we will show that certain aspects of spatiotem-
poral spread of correlations such as the butterfly velocity can
be obtained by a field theory. Let us define a density field,
ρ(x) = ∑N

i=1〈δ(x − xi )〉, where 〈·〉 denotes an average with
respect to a Boltzmann measure. We also define a momentum
field, j(x) = ∑N

i=1〈piδ(x − xi )〉. We will introduce a velocity
field v(x) such that j(x) = ρ(x)v(x). In large N at sufficiently
low temperatures, the field theory is given by, H[ρN (x)] ≈
m
2

∫
ρ(x)v(x)2 dx + Jζ (k)

∫
ρ(x)k+1 dx. This in conjugation

with Poisson brackets, {ρ(x1), v(x2)} = 1
m δ′(x1 − x2), gives

ρ̇ = −∂x(ρv), v̇ = −∂x

[
v2

2
+ J

m
ζ (k)(k + 1)ρk + · · ·

]
.

(17)
One can linearize the above continuity and Euler equa-
tions by using ρ(x, t ) = ρ0 + δρ(y, t ), v(x, t ) = 0 + δv(x, t )
to get a wave equation with sound speed given by c =√

(J/m)k(k + 1)ζ (k)ρk
0 . This is precisely the butterfly veloc-

ity in agreement with αk given in Eq. (5). The background
density (ρ0) and the inverse lattice spacing (a−1) have already
been discussed.
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VIII. CONCLUSIONS

In summary, we studied a family of power-law models
at low temperature. In particular, we probed in detail the
spatiotemporal spread of perturbations. We could analytically
compute the dispersion relation in absence of external har-
monic potential and utilize it to get analytical results for
OTOC at low temperatures. We then performed direct nu-
merics with the aid of BFGS algorithm and demonstrated
excellent agreement with the results obtained after using the
dispersion relation. Exact results for OTOC at the integrable
point (k = 2) were obtained. We also presented a collective
field theory approach to understand certain features of the
OTOC such as the butterfly speed. The main observations are
summarized in Table I.

Our work was restricted to low enough temperatures and
short enough times so that the system is still in the linear
regime. Therefore, although there was spread of perturbations,
we restricted ourselves to temperatures and timescales where
there was no growth in magnitude of perturbations. Precisely
quantifying the limits of this regime as well as exploring
beyond it is part of our planned future work. It is worth
noting that for the temperature range considered in our paper,
the quantum analog would be the probe of the ground state
[63–65] rather than chaos. Being a long-ranged system of par-
ticles, high-temperature studies are considerably numerically
intense, and it will be interesting to study classical OTOC and
the largest Lyapunov exponent using methods of Ref. [66].
In such high-temperature cases one expects exponential (non-
integrable, k �= 2) or power-law (integrable, k = 2) growth,
and this will be addressed in a future work. Understanding
aspects of integrability (k = 2) and its breaking through the
lens of OTOC still remains largely unexplored and is an in-
teresting future direction. The analogous quantum case is a
fascinating and challenging problem especially given the fact
that quantum long-ranged systems exhibit rich OTOC features
depending on the exponent (k) of the power-law interactions
[67]. Needless to mention, the comparison with the quan-
tum case should be done with caution. Nonetheless, a linear
light cone is predicted in both our results (classical case) and
Ref. [67] (T = ∞ quantum case) for the exponent k > 1. This
is remarkable and unexpected especially given the fact that
these are quite different models thereby hinting towards an
underlying universality.

ACKNOWLEDGMENTS

We would like to thank A. Dhar, A. Kundu, and A. K. Chat-
terjee for useful discussions. M.K. would like to acknowledge
support from the project 6004-1 of the Indo-French Centre
for the Promotion of Advanced Research (IFCPAR), Ramanu-
jan Fellowship (SB/S2/RJN-114/2016), SERB Early Career
Research Award (ECR/2018/002085), and SERB Matrics
Grant (MTR/2019/001101) from the Science and Engineer-
ing Research Board (SERB), Department of Science and
Technology, Government of India. D.H. is supported in part
by (USA) DOE grant DE-SC0016244. B.K.S. and M.K. ac-
knowledge support of the Department of Atomic Energy,
Government of India, under Project no. RTI4001. M.K. thanks
the hospitality of the Department of Physics, Princeton Uni-
versity where some of the work was done.

APPENDIX A: OTOC IN HESSIAN APPROXIMATION
VALID IN THE LOW-T REGIME

Here we present a derivation of the OTOC in the Hessian
approximation. Let us recap that the Hamiltonian is given by

H =
N∑

i=1

p2
i

2m
+ Vk ({x j}), (A1a)

Vk ({x j}) =
N∑

i=1

[
mω2

2
x2

i + J

2

∑
j �=i

1

|xi − x j |k
]
, (A1b)

which therefore yields the N × N Hessian matrix,

Mi j =
[

∂2Vk

∂xi∂x j

]
x=y

, (A2)

where y is the equilibrium solution that minimizes Eq. (A1).
Let us define a column vector (N × 1) representing the relative
displacement (again a N × 1 column vector) of corresponding
particles of copy I and copy II:

|δx(t )〉 = |xI (t )〉 − |xII (t )〉 . (A3)

Let M be the Hessian matrix. We therefore have

|δẍ(t )〉 = −M |δx(t )〉 . (A4)

We assume initial condition for velocities 〈ei|δẋ(t = 0)〉 =
0 where {|ei〉} is the standard basis for RN . Let |λα〉 be the
eigenvectors and ω2

α be the corresponding eigenvalues of M.
In the eigenbasis, the solution is

|δx(t )〉 =
N∑

α=1

〈λα|δx(0)〉 |λα〉 cos (ωαt ). (A5)

With our chosen initial condition 〈ei|δx(0)〉 = εδi, N+1
2

the
OTOC finally becomes

D(i, t ) =
∣∣∣∣ 〈ei|δx(t )〉

ε

∣∣∣∣
2

=
∣∣∣∣∣

N∑
α=1

〈
λα

∣∣∣∣N + 1

2

〉
〈ei|λα〉 cos (ωαt )

∣∣∣∣∣
2

. (A6)

APPENDIX B: DERIVATION OF THE DISPERSION
RELATION

Here we present a detailed derivation of the dispersion
relation. Let us consider the Riesz gas [Eq. (A1)] without the
harmonic trap. We will also consider the case of N → ∞ and
label the particles from −∞ to +∞ without loss of generality.
The corresponding equations of motion are

ẋi = pi/m, ṗi = Jk

2

∞∑
j = −∞ j �= i

sgn(xi − x j )

|xi − x j |k+1 . (B1)

The equilibrium solution takes the form

xi(t = 0) = ia, pi(t = 0) = 0, (B2)
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where a is a chosen lattice spacing. The above solution [Eq. (B2)] does not evolve, and therefore it is an equilibrium solution for
Eq. (B1). This is so because Eq. (B1) is an odd sum. In other words,

∞∑
j = −∞ j �= i

sgn(xi − x j )

|xi − x j |k+1 = 1

ak+1

∞∑
j = −∞ j �= i

sgn(i − j)

|i − j|k+1 = 0. (B3)

Having found an equilibrium background, we do a small oscillation analysis of Eq. (B1). Using the ansatz

xi(t ) = ai + ε cos (qai − ωkt ), (B4)

we get from Eq. (B1)

−mω2ε cos (qai − ωt ) = Jk

2

∑
j �=i

sgn(xi − x j )∣∣a(i − j) + ε[cos (qai − ωt ) − cos (qa j − ωt )]
∣∣k+1 . (B5)

Note that, from Eq. (B5) onwards, for convenience of notation we suppress the subscript k in ωk , and it is restored in the end.
Also, ε introduced for the small oscillation analysis in Eq. (B4) should not be confused with the ε used in the definition of OTOC
[Eq. (6)].

Splitting the summation above [Eq. (B5)] gives

−mω2ε cos (qai − ωt ) =
∑
j<i

Jk

|a(i − j)|k+1

1∣∣1 + ε
a(i− j) [cos (qai − ωt ) − cos (qa j − ωt )]

∣∣k+1

−
∑
j>i

Jk

|a(i − j)|k+1

1∣∣1 + ε
a(i− j) [cos (qai − ωt ) − cos (qa j − ωt )]

∣∣k+1 . (B6)

Since ε
a << 1 (small oscillation theory), we use the binomial expansion. Remember that our choice of labeling, xi < x j ⇐⇒

i < j, means that the absolute value can be removed once the sum is broken into parts as done in Eq. (B6). We keep terms only
up to leading order in ε. Simple algebra and trigonometric identities simplify the expression to give

mω2 cos (qai − ωt ) =
i−1∑

j=−∞

−2Jk(k + 1)

[a(i − j)]k+2

[
sin

(
qa

i + j

2
− ωt

)
sin

(
qa

i − j

2

)]

+
∞∑

j=i+1

2Jk(k + 1)

[a( j − i)]k+2

[
sin

(
qa

j + i

2
− ωt

)
sin

(
qa

j − i

2

)]
. (B7)

Let us define integers i − j ≡ x1 and j − i ≡ x2 in the first and the second sum in Eq. (B7), respectively. Further simplification
yields

mω2 cos (qai − ωt ) =
∞∑

x1=1

−2Jk(k + 1)

(ax1)k+2

[
sin (qai − ωt ) cos

(qax1

2

)
sin

(qa

2
x1

)
− cos (qai − ωt ) sin2

(qa

2
x1

)]

+
∞∑

x2=1

2Jk(k + 1)

(ax2)k+2

[
sin (qai − ωt ) cos

(qa

2
x2

)
sin

(qa

2
x2

)
+ cos (qai − ωt ) sin2

(qa

2
x2

)]
. (B8)

In Eq. (B8), x1 and x2 are dummy variables, and it is easy to see that the first terms in each of the sums cancels each other. The
expression [Eq. (B8)] easily simplifies further to [restoring the subscript k notation from Eq. (B4)]

ω2
k (q) = 4Jk(k + 1)

mak+2

∞∑
x1=1

sin2
( qa

2 x1
)

xk+2
1

. (B9)

Using the relation sin(z) = eiz−e−iz

2i , we see that Eq. (B9) can be simplified to

ωk (q) =
√

Jk(k + 1)

mak+2
[2ζ (k + 2) − Lk+2(e−iqa) −Lk+2(eiqa)], (B10)

where ζ (z) = ∑∞
n=1 1/nz is the Riemann ζ function and

Lin(z) = ∑∞
k=1

zk

kn is the polylogarithm function. Note that
Eq. (B10) is the exact dispersion relation. Figure 1 (left)
shows a plot of ωk (q) for k = 2. Further, using the following

remarkable identity of the polylogarithm function [58]

Ln(z) = �(1 − n) log
(
1/z

)n−1 +
∞∑

l=0

ζ (n − l )
log(z)l

l!
(B11)
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for n �∈ Z and | ln z| < 2π , one can expand Eq. (B10) (to the
next-to-next leading order) as a power series in q to obtain

ωk (q) ≈
⎧⎨
⎩

αkq − βkqk − δkq3, 1 < k < 3
αkq + γ3q3 log(qa) − γ̄3q3, k = 3
αkq − δkq3 − βkqk, 3 < k < 5

(B12)
with

αk =
√

Jk(k + 1)

mak
ζ (k), γ3 = 1

4

√
Ja

3mζ (3)
,

δk = 1

24

√
Jk(k + 1)

mζ (k)

ζ (k − 2)

a(k−4)/2
,

βk =
√

Jk(k + 1)

mζ (k)
cos

(π

2
[k + 1]

)
ak/2−1�(−1 − k),

γ̄3 = 25γ3

12
. (B13)

It is to be noted that, if k ∈ Z one can resort to the conven-
tional definition of polylogarithm function to get the above
small-q expansion. In Eq. (B13) we see that both βk and δk

terms diverge in the limit k → 3. But upon a careful computa-
tion of this limit, it is seen that these divergences in fact cancel
each other and give rise to the logarithm term in the dispersion
relation for k = 3. More precisely,

lim
k→3

(
βkqk + δkq3

)
= lim

ε→0
(β3±ηq3±η + δ3±ηq3)

=
√

Ja3(4)

mζ (3)
q3 lim

ε→0

(
qεaε/2�(−4 ∓ ε) + 1

24
a−ε/2ζ (1 ± ε)

)

= 6

√
Ja

3mζ (3)

(
25 − 12 log(qa)

288

)
q3

= −γ3q3 log(qa) + γ̄3q3. (B14)

Moreover, this kind of cancellation is seen for all odd integer
values of k, leading to a logarithm term ∼qk log(q). This is a
crucial term in the dispersion relation because this is precisely
the term which leads to a power-law decay of the OTOC
beyond the cone, for odd integer values of k.

APPENDIX C: OTOC IN PLANE-WAVE BASIS
FOR LARGE N

Here we briefly derive the large-N expression of the OTOC
in the plane-wave basis. Let |δx(t )〉 be a vector containing the
displacements δx j (t ). We can expand this vector in terms of
the plane-wave phonons of our system as

|δx(t )〉 = a

2π

∫ π/a

−π/a
dq 〈q|δx(t )〉 |q〉 , (C1)

which implies

〈e j |δx(t )〉 = a

2π

∫ π/a

−π/a
dq 〈q|δx(t )〉〈e j |q〉 , (C2)

where 〈e j |δx(t )〉 = δx j (t ). Here we remind that {|ei〉} is the
standard basis for RN . At At t = 0, since 〈e j |δx(t = 0)〉 =
ε δ j,0 and 〈e j |q〉 = Real[ei(q ja−ωk (q)t )] at time t , we have
〈q|δx(t = 0)〉 = ε (constant), which ensures that Eq. (C1) is
satisfied at t = 0. The noninteracting phonons simply evolve
freely, so, using ja ≡ x, we can write

〈e j |δx(t )〉 = εa

2π
Real

[ ∫ π/a

−π/a
dq ei[qx−ωk (q)t]

]
. (C3)

We therefore finally get

D(x, t ) =
∣∣∣∣ 〈e j |δx(t )〉2

ε

∣∣∣∣ =
∣∣∣∣ a

2π

∫ π
a

− π
a

dq cos(qx − ωk (q)t )

∣∣∣∣
2

,

(C4)
where ωk (q) is given in Eq. (B10). Figures 1(c) and 3(c) show
a plot of Eq. (C4) for cases k = 2 and k = 4.5, respectively.
The figures show only the right sector (x > 0), the left sector
(x < 0) being just the mirror image.

APPENDIX D: ASYMPTOTIC ANALYSIS OF OTOC

In this appendix we provide the asymptotic analysis of
the OTOC at either the left or the right front. We divide this
section into k = 2 (integrable case) and k �= 2 (nonintegrable
case).

1. Integrable case, k = 2

In this case, the dispersion [Eq. (B10)] remarkably has a
finite expansion,

ω2(q) =
√

J

m

(
πq

a
− q2

2

)
, for k = 2. (D1)

This allows us to cast the OTOC in terms of the Fresnel
functions without resorting to any approximations. We would
like to understand the behavior of the OTOC in the large η±
limit where η± = v ±

√
J
m

π
a . For example, large η− means

that we are probing the asymptotics of the right front. For this,
we look at the asymptotics of the following equations:

DR,L =
√

π

utt
cos

(
η2

∓
2u2

t

)[
± C

(
v√
πut

)
∓ C

(
η∓√
πut

)]

+
√

π

utt
sin

(
η2

∓
2u2

t

)[
± S

(
v√
πut

)
∓ S

(
η∓√
πut

)]
,

(D2)

where C(r) = ∫ r
0 dt cos(πt2/2) and S (r) = ∫ r

0 dt sin(πt2/2)
are the Fresnel cosine and sine integrals, respectively. Recall

that ut =
√√

J/
√

mt .
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For our purpose we use the large argument asymptotic form
of Fresnel integrals. In the large r limit, we have

S (r) =1

2
+ cos

(
πr2

2
+ O(r−4)

)[
− 1

πr
+ O(r−4)

]

+ sin

(
πr2

2
+ O(r−4)

)[
− 1

π2r3
+ O(r−4)

]
, (D3a)

C(r) =1

2
+ sin

(
πr2

2
+ O(r−4)

)[
1

πr
+ O(r−4)

]

+ cos

(
πr2

2
+ O(r−4)

)[
− 1

π2r3
+ O(r−4)

]
. (D3b)

We reemphasize here that to get the correct asymptotic
behavior in the right sector, we go to the large η− limit. Note
that v � η−. This is because v = vB + η− and vB is very large
in the limit that lattice spacing is very small. Therefore, we can
take the limit v → ∞ while assuming η− to be large enough
to be able to do asymptotics. We use Eqs. (D3) to get the large

η− expansion for DR and set v

√
mt
Jπ

→ ∞ in the argument of

the Fresnel functions. This finally yields

DR ≈
√

2

utt
cos

(
η2

−
2u2

t

)√
π

8
+

√
2

utt
sin

(
η2

−
2u2

t

)√
π

8

−
√

2

utt
cos

(
η2

−
2u2

t

)⎡
⎣√

π

8
+

sin
(

η2
−

2u2
t

)
√

2η−/ut

−
cos

(
η2

−
2u2

t

)
4
(
η−/

√
2ut

)3

⎤
⎦

−
√

2

utt
sin

(
η2

−
2u2

t

)⎡
⎣√

π

8
−

cos
(

η2
−

2u2
t

)
√

2η−/ut

−
sin

(
η2

−
2u2

t

)
4
(
η−/

√
2ut

)3

⎤
⎦.

(D4)

Equation (D4) further is simplified to give

D(x, t ) ≈
∣∣∣∣ a

2π

(
u2

t

η3−t

)∣∣∣∣
2

, for η− > 0 and large. (D5)

We find that beyond the front, there is a power-law decay
(∝ η−6

− ). We can see that this result [Eq. (D5)] agrees with
the numerical simulations [Fig. 5(c)] not only in terms of the
exponent of the power law but also in terms of the coefficients
given in Eq. (D5).

2. Nonintegrable case, k �= 2

a. 1 < k < 3

Now turning our attention to the next case, we try to ana-
lyze the asymptotic behavior of

DR,L(x, t ) = a

2π

Bk (�∓)

(3tβk )1/k
, with �k,∓ = x ∓ αt

(3tβk )1/k
, (D6)

where we define a special function,

Bk (y) :=
∫ (3tβk )1/k π

a

0
ds cos

(
ys + sk

3

)
. (D7)

The reader is referred to Eq. (16) to find the definition of
�k,± for different values of k. Again, we are interested in this
analysis for large N (equivalently, a → 0+) and large �k,∓

FIG. 5. (a) Dispersion relation over one time period in q, for
k = 2, q ∈ [0, 2π/a]. (b) Comparing OTOC from direct numerical
simulation with the analytical expression at a time snapshot, t ≈ 164
(in units of a/vB). Note that, for visualization purposes, we have
plotted only the positive x-axis and the results are mirror symmetric
on the other side. (c) Power-law decay of OTOC beyond the cone
for k = 2 and N = 4097. The slope depicts the exponent of the
power law. Note that the asymptotics agrees with Eq. (D5) including
coefficients. Here a ∼ 0.0347, vB ∼ 90.5207.
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limits of the system. The strategy would be to again look at
the asymptotic form of Eq. (D7). But in the absence of an
analytical expression we resort to numerical methods. We find
a power-law decay of the form

D(x, t ) ∝ |�−(k+1)
± |2, (D8)

where −/+ correspond to the right or left sector, respectively.
Therefore, the OTOC outside the light cone decays as a power
law with exponent 2k + 2 [see Fig. 2(c) for k = 1.5].

b. 3 < k < 5

As we have discussed, just considering the first two terms
in the expansion Eq. (B12) does not capture the power-law
decay of the OTOC. This is because we effectively end up
with the Airy function, which has an exponentially decaying
tail. So in order to observe the power-law nature of the OTOC,
one has to consider the next-order term in Eq. (B12) as well,
in addition to the first two terms.

The expectation is that once the Airy-like behavior of
the dominant term washes away, the power-law nature of
the subdominant term will take over. This amounts to using
Eq. (B12) in Eq. (C4). We find that including the next-order
term ∼qk recovers the power-law from an Airy-like behav-
ior. For example, this claim about a power-law behavior is
verified, for k = 4.5, by the direct numerical simulations and
asymptotic analysis of the OTOC using the full dispersion
relation [Eq. (B10)], as is seen in Fig. 4. We find a decay
∝| �± |−11 in this case.

Notice the drastic difference in the nature of the envelope
of the OTOC profile as one goes from k < 2 (peaking at
the center and then having a downward envelope) to k = 2
(essentially flat) and k > 2 (peaking at the edges and having
an upward envelope). The integrable model (k = 2) serves as
a transition point for a change in the nature of propagation of
the perturbations through the system.

c. k = 3

The case of k = 3, and more generally, odd integer values
of k is a little subtle from an analytical analysis stand point. As
elaborated in Eq. (B14), the subtle cancellation of divergences
arising due to the Riemann ζ function and the � function gives
rise to a logarithm term. This is a crucial term as it gives rise to
the power-law decay of the OTOC. As is clear, in the absence
of this term, we obtain Airy-like behavior for k = 3, due to the
q3 term in Eq. (B12). For k = 3, using Eq. (B12) in Eq. (C4)
produces a power-law decay of the OTOC ∝| �± |−8.

These observations strongly suggest that the long-range
nature of Riesz gas family of models is what gives rise to
the power-law decay of the OTOC (for k > 1). A particular
term in the expansion of ωk (q) at O(qk ), ∀ k > 1 explains the
power law.

APPENDIX E: BROYDEN-FLETCHER-GOLDFARB-
SHANNO (BFGS) ALGORITHM

We have implemented the BFGS algorithm [61,62] to
find the global minimum energy configuration of our system
[Eq. (A1)] for system sizes upto N = 4097. This is an iterative
algorithm which can be used for nonlinear, unconstrained
optimization problems. Below we provide the algorithm. Let
V ({xi}) [for example, Eq. (A1)] be a scalar function on RN

which is to be minimized. ∇V ({xi}) is the corresponding
gradient. M is the Hessian matrix [for example, Eq. (A2)].

(1) Make an initial guess for the minimizing configura-
tion x0 = {x0

i }. Using this compute M0 = M(x0) and ∇V0 =
∇V (x0).

(2) Find the minimizing direction by solving: Mnpn =
∇Vn. Here pn is the minimization direction at the nth iterative
step. Therefore, we solve the inverse problem pn = M−1

n ∇Vn.
(3) Now, we try to find the optimum step size αn to

take in the minimization direction. One could use the back-
tracking line-search method for this purpose. We start with
a sufficiently large initial step size α0 and iteratively reduce
it, i.e., α j+1 = ηα j where η ∈ (0, 1) is a control parameter.
This is done until the Armijo-Goldstein condition is satisfied,
namely, V (xn) − V (xn + α jpn) > α jγ , where γ = −cδ and
δ = ∇V · pn. Here similar to η, c ∈ (0, 1) is another control
parameter. So we finally find αn such that it is the largest of the
set α′

j s until the Armijo-Goldstein condition is still satisfied.
(4) Updating procedure:

(i) xn+1 = xn + αnpn

(ii) sn = αnpn

(iii) yn = ∇Vn+1 − ∇Vn

(iv) Mn+1 = Mn + ynyT
n

yT
n sn

− MnsnsT
n MT

n
sT

n Mnsn

(5) Repeat steps 2–4.

APPENDIX F: A COMPARISON WITH THE TWO-POINT
CORRELATOR

The two-point correlator is given by the expression
〈xi(t )x0(0)〉, where xi(t ) is the position of the ith particle at
time t . On the other hand the classical OTOC is given by 〈|
xI

i (t )−xII
i (t )

ε
|2〉. Here 〈·〉 is the average over a thermal ensemble

of initial conditions at a given temperature T . As mentioned
before, for low enough temperatures, we do not need to make
an ensemble average.

In our setup, xI
i (0) = yi (except the middle particle po-

sition which is perturbed by ε). On the other hand, we
take xII

i (0) = yi. Here yi is the equilibrium position of the
ith particle. This immediately implies that xII

i (t ) = yi at all
times. We can now relabel xI

i (t ) as xi(t ) and rewrite the
OTOC as | xi (t )−yi

ε
|2. In this form, it is apparent that the

two-point correlator and the classical OTOC probe similar
physics. However, it should be emphasized that this simi-
larity is because of the low-temperature effects. In a more
general setup at higher temperatures, the classical OTOC is
better suited to probe the perturbations in extended classical
systems.
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