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Stochastic dynamics, large deviation principle, and nonequilibrium thermodynamics
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By examining the deterministic limit of a general ε-dependent generator for Markovian dynamics, which
includes the continuous Fokker-Planck equations and discrete chemical master equations as two special cases,
the intrinsic connections among mesoscopic stochastic dynamics, deterministic ordinary differential equations
or partial differential equations, large deviation rate functions, and macroscopic thermodynamic potentials
are established. Our result not only solves the long-lasting question of the origin of the entropy function in
classical irreversible thermodynamics, but also reveals an emergent feature that arises automatically during the
deterministic limit, through its large deviation rate function, with both time-reversible dynamics equipped with
a Hamiltonian function and time-irreversible dynamics equipped with an entropy function.
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I. INTRODUCTION

Statistical equilibrium thermodynamics in terms of the the-
ory of ensembles, as formulated originally by Gibbs, has a
more fundamental origin; there is a growing consensus that
the description of large deviations from the theory of prob-
ability provides a mathematical foundation for the subject
[1] (see [2–4] and references therein for some of the recent
developments). One of the most important insights from [3] is
that one is able to derive nonequilibrium steady-state chemical
thermodynamics using the same approach.

Briefly, the large deviation theory says that if a sequence
of probability distributions has a deterministic limit, there ex-
ists concomitantly a scalar rate function for the convergence,
which is defined on the entire state space. This rate func-
tion provides a variational principle akin to those associated
with various thermodynamic potentials for different ensem-
bles [5–8]. The existence of a thermodynamic potential such
as entropy, in addition to being justified through the Clausius
equality in traditional thermodynamics and the logarithm of
thermodynamic probability as Boltzmann used in the mechan-
ical theory of heat, could be hidden in the assumption of
the sequence of probability distributions and its deterministic
limit. We recall that, according to Boltzmann’s approach, the
existence of a thermodynamic potential function, regardless
of its specific form, is the only prerequisite for developing
thermodynamics: Thermodynamic forces are introduced as
conjugate variables, work as “the force times the displace-
ment,” and then automatically become a part of the energy
change.
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It is well known that the large deviation principle plays
a key role in the equilibrium statistical mechanics [1,9].
In this study we are going to show that it also acts as
the statistical foundation of nonequilibrium thermodynamics,
specifically, the classical irreversible thermodynamics (CIT).
Classical irreversible thermodynamics was developed by On-
sager, Prigogine, de Groot and Mazur, and others, as a natural
generalization of concepts from equilibrium to nonequilib-
rium thermodynamics by introducing (i) the local equilibrium
assumption which secures a spatiotemporal entropy density
function and (ii) a linear thermodynamic force-flux relation-
ship [10]. However, so far, a solid and general theoretical
foundation of CIT has not been established with a bottom-up
approach. In this paper we propose a bridge between the
CIT and the application of the large deviation principle in
the small-noise limit for a wide class of stochastic dynamics,
representing by both diffusion and jump processes.

The existence of a nonequilibrium steady state is essential
for our construction and its role cannot be overemphasized. In
fact, a key step of our approach is to examine the stationary
solution to a Hamilton-Jacobi equation satisfied by the large
deviation rate function, which has been rigorously demon-
strated for many cases in the limiting process of stochastic to
deterministic nonlinear dynamics [11]. The latter is the macro-
scopic dynamics covered by CIT, for which the stationary
large deviation rate function becomes the (relative) entropy
function.

The paper is organized as follows. In Sec. II a very gen-
eral ε-dependent generator for Markovian dynamics, which
includes the continuous Fokker-Planck equations and discrete
chemical master equations as two special cases, is introduced.
By examining the macroscopic limit, deterministic nonlinear
ordinary differential equation (ODEs) and partial differen-
tial equations (PDEs), which are widely used in modeling
nonequilibrium processes, are derived from the Markovian
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dynamics as the noise level ε → 0. Most importantly, during
this limit process, stationary large deviation rate functions
emerge automatically and serves as the entropy foundation
for classical irreversible thermodynamics as shown in Sec. III.
This conclusion is further justified through several concrete
exactly solvable examples. Since the present paper is a syn-
thesis of several lines of research into a coherent theory for
nonequilibrium thermodynamics, in Sec. IV we discuss the
relation between previous work and ours. Section V contains
a general discussion about entropy, energy, dissipative dynam-
ics, and conservative dynamics.

II. LARGE DEVIATION PRINCIPLE
AND STOCHASTIC DYNAMICS

Most stochastic dynamics has a natural deterministic limit,
which can and should be understood as a form of the law
of large numbers (LLN) in the theory of probability. If one
uses an ε to represent this limiting process and denote the
stochastic dynamics by Yε (t ), one has

lim
ε→0

Yε (t ) = y(t ), (1)

where y(t ) represents deterministic dynamics. By envisioning
the y(t ) as the limit of a sequence of Yε (t ), there is an emergent
variational principle associated with the deterministic y(t ):
This is the essence of our new thermodynamics. One example
of the type of limit theorems in (1) was given by Kurtz.
According to [12], for any finite time the volume-averaged
trajectories of particle numbers inside a given chemical reac-
tion system, which follows a pure jump Markov process, will
converge in probability to the solution of a set of deterministic
ODEs in the limit of infinitely large particle number and
volume (with the volume per particle being ε) while keeping
a finite ratio between the two: the concentration. One can find
details of this result in the texts by van Kampen [13], Gardiner
[14], and Keizer [15].

In general, Yε (t ) can be either discrete or continuous:
For Markov dynamics, it can be a diffusion process driven
by a stochastic Wiener process W (t ), or an integer-valued
continuous-time jump process on the lattice ZN driven by a
stochastic Poisson process �(t ). In the former case,

√
ε is

the amplitude of the W (t ); for the latter, the jump size is
proportional to ε, which means we are taking the continuum
limit. For a spatiotemporal dynamics Yε (x, t ), the well-known
examples are the solution to a stochastic partial differential
equation (SPDE) with ε scaled white noise and interacting
particle systems (IPSs) [16]. The corresponding limit law such
as in (1) is called the hydrodynamic limit: In this case, the
limit y(x, t ) usually satisfies a nonlinear PDE [17–19].

A. ε-dependent Markov transition probability

Let us now consider the situation that a continuous-time
stochastic Markov Yε (t ) is not given explicitly, but only in
terms of a dynamic equation, as its generator:

∂

∂t
ρε (z; t ) =

∫
Rn

T (z|ξ ; ε)ρε (ξ ; t )dξ, (2a)

ρε (z; t )dz = Pr{z < Yε (t ) � z + dz}. (2b)

This is a special form of the Chapman-Kolmogorov equa-
tion for Markov dynamics, assuming a time-homogeneous
rate for the transition probability. Here ρε (z; t ) denotes the
probability density of the system in state z at time t ,
with ε � 1 a small parameter indicating the strength of
randomness.

In addition, T (z|ξ ; ε) is the transition probability from state
ξ to state z, which has the following essential properties: For
z, ξ ∈ Rn and ε > 0, (i)

T (z|ξ ; ε) � 0 for z �= ξ,

(ii) ∫
Rn

T (z|ξ ; ε)dz = 0,

and (iii)

lim
ε→0

T (z|ξ ; ε) = −F (ξ )δ′(z − ξ ).

The first two are standard properties for an infinitesimal
Markov generator and the third one indicates a deterministic
(weak-noise) limit as ε → 0,

∂ρ(z; t )

∂t
= −

∫
Rn

[F (ξ )δ′(z − ξ )]ρ(ξ ; t )dξ

= −
∫
Rn

∇ · [F (ξ )ρ(ξ ; t )]δ(z − ξ )dξ

= −∇ · [F (z)ρ(z; t )], (3)

which represents a nonlinear ODE

dz(t )

dt
= F (z). (4)

Note that (i) and (ii) imply that T (z|ξ ; ε) has a negative
signed Dirac δ atomic measure at z = ξ . However, for finite
ε, there could be other positive signed atomic measures at z −
ξ �= 0 in the form

T (z|ξ ; ε) = R(ξ )

[
δ(z − ξ + εν) − δ(z − ξ )

ε

]
, (5)

in which the amplitude R(ξ ) is non-negative and the location
ν can be positive or negative. We therefore assume the general
form for the Markov generator T (z|ξ ; ε),1

T (z|ξ ; ε) =
m∑

	=−m

R	(ξ )

[
δ(ξ − z + εν	) − δ(ξ − z)

ε

]

−A(ξ )δ′(z − ξ ) + εD(ξ )δ′′(z − ξ ), (6)

in which A, δ′ ∈ Rn are vectors; D, δ′′ ∈ Rn × Rn, with D a
positive definite matrix; and ν	 = −ν−	. As a concrete exam-
ple, it is noted that the first term on the right-hand side of (6)
is the generator for chemical master equations with ε scaled
jump size and time, leading to εν	 and ε−1R	 [22], while the

1The theory of Lévy processes gives a more rigorous treatment of
a Markov process whose probability of increments changes contin-
uously in time [20,21]. Our assumption here amounts to a class of
diffusion with jumps in units of ε.
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FIG. 1. (a) General, discontinuous transition probability distribu-
tion function Pε (x|ξ ; dt ) defined in (8) (b) approaches (b) H [x − ξ −
F (ξ )dt] as ε → 0.

last two terms on the right-hand side are those for the drift and
ε scaled diffusion terms in the Fokker-Planck equation.

It is noted that in the formula (6) the mechanical and
chemical contributions to the dynamics (given by A and D
and by R, respectively) scale with the same small parameter ε.
However, as the ε from chemical contribution originates from
the infinitely large population limit, while the ε in the dif-
fusion process represents thermal fluctuations in mechanical
movements, they do not have to be the same thing. In general
this means that we need to deal with a double-limit problem
when studying its asymptotic behaviors (see footnote 1). Here,
for simplicity, we just use the same small parameter ε for both
processes, since in order to have macroscopic chemomechan-
ics they have to be infinitesimals on the same order.

In the limit of ε → 0, the generator in (6) gives

F (z) = A(z) +
m∑

	=−m

ν	R	(z). (7)

This provides a unified treatment of the weak-noise limit of
continuous diffusion processes as well as Kurtz’s limit of
jump process. The latter is modeled by a Poisson process
Y (t ; λ) with rate λ to represent the particle number change
during each chemical reaction in a stochastic way. As ε → 0,
εY (t ; ε−1λ) → λt .

Figure 1 illustrates graphically the nature of the assumption
in (6) when z, ξ ∈ R. The corresponding transition probability
distribution function in an infinitesimal dt is

Pε (x|ξ ; dt ) =
∫ x

−∞
[δ(z − ξ ) + T (z|ξ ; ε)dt]dz, (8)

which in general contains discontinuous jumps. In the limit of
ε → 0, it converges to the Heaviside step function H (x − ξ −
B(ξ )dt ).

B. Large deviation principle and Hamiltonian dynamics

Besides the LLN, it is well known that, associated with
the probability of Yε at time t , there exists a large deviation
principle

− lim
ε→0

[ε ln Pr{η < Yε (t ) � η + dη}] = ϕ(η, t ), (9)

in which non-negative ϕ(η, t ), called the large deviation rate
function, has a global minimum equal to zero when η = y(t ).
Now if one uses the result in (9) as the basis for an assumption
like the WKB ansatz

ρε (z; t ) = exp

(
−ϕ(z, t )

ε

)
(10)

and substitutes this expression into (2a), one has the leading-
order terms

∂ϕ(z, t )

∂t
= ε

∫
Rn

e[ϕ(z,t )−ϕ(ξ,t )]/ε

{
A(ξ )δ′(z − ξ ) − εD(ξ )δ′′(z − ξ ) −

m∑
	=1

R	(ξ )

[
δ(ξ − z + εν	) − δ(ξ − z)

ε

]}
dξ

= −A(z)∇ϕ(z, t ) − ∇ϕ(z, t )D(z)∇ϕ(z, t ) −
m∑

	=−m

R	(z)[eν	∇ϕ(z,t ) − 1]. (11)

Notice the subtlety for the following double limit as ε → 0 and ε′ → 0, which is singular:

lim
ε′→0

lim
ε→0

ε′eϕ(z)/ε′
∫
R

e−ϕ(ξ )/ε′
(

δ(ξ − z − εν) − δ(ξ − z)

ε

)
dξ

= lim
ε′→0

lim
ε→0

ε′

ε
[e−[ϕ(z+εν)−ϕ(z)]/ε′ − 1] =

{
limε→0 e−[ϕ(z+εν)−ϕ(z)]/ε − 1 = e−ν[dϕ(z)/dz] − 1, ε′ = ε

limε′→0 − νε′
ε′ [ dϕ(z)

dz ] = −ν[ dϕ(z)
dz ], ε → 0 first.

Actually, the limit does not exist if taking ε′ → 0 first.
With respect to the Hamilton-Jacobi equation in (11), it becomes possible to introduce a Hamiltonian function

H (z, y) = A(z)y + yT D(z)y +
m∑

	=−m

R	(z)[eν	y − 1] (12)

and the corresponding Hamiltonian dynamics

dz

dt
= ∂H (z, y)

∂y
= A(z) + 2D(z)y +

m∑
	=−m

ν	R	(z)eν	y, (13)

dy

dt
= −∂H (z, y)

∂z
= −A′(z)y − yT D′(z)y −

m∑
	=−m

R′
	(z)[eν	y − 1]. (14)
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Clearly, the above Hamiltonian system accepts the zero-noise
dynamics (4) and (7) as a solution when the momentum
is equal to zero (y = 0). Thus it corresponds to the relax-
ation dynamics towards an attractor. All other solutions to
the Hamiltonian system with y �= 0 correspond to rare events
which are impossible in the deterministic dynamics and are
only populated in fluctuations.

Meanwhile, according to classical mechanics, we can
also construct a variational principle by considering the La-
grangian function

L(z, ż) =[yż − H (z, y)]y=y(z,ż), (15)

in which y as a function of z and ż is obtained from solving
the implicit equation (13). Clearly, H (z, y) and L(z, ż) are
Legendre transforms of each other. In terms of L(z, ż), the
conjugate variable y = ∂L(z, ż)/∂ ż. Consequently, the most
probable path consistent with the above Hamiltonian dynam-
ics with given z(0) and z(T ) is given through the least action
principle

min
z(s)

∫ T

0
L(z(s), ż(s))ds. (16)

C. −ϕss as an entropy functional

We now show that the stationary solution to Eq. (11) is an
entropy functional for the nonlinear differential equation (4),

d

dt
ϕss[z(t )] = F (z) · ∇zϕ

ss(z)

=
(

A(z) +
m∑

	=−m

ν	R	(z)

)
· ∇zϕ

ss(z), (17)

where ϕss(z) satisfies

A(z)∇ϕss(z) + ∇ϕss(z)D(z)∇ϕss(z)

+
m∑

	=−m

R	(z)[eν	∇ϕss (z) − 1] = 0. (18)

From (18) and using the inequality ea − 1 − a � 0 for all
a ∈ R,

−F (z)∇ϕss(z) = ∇ϕss(z)D(z)∇ϕss(z)

+
m∑

	=−m

R	(z)[eν	∇ϕss (z) − 1 − ν	∇ϕss(z)]

� 0. (19)

Therefore, the PDE (11) is the equation one seeks to define
an entropy, thus the nonequilibrium thermodynamics of the
nonlinear system (4).

It is important to identify −dϕss/dt not as the entropy
production rate but rather as the instantaneous rate of entropy

change. Then one has [3,23]

− d

dt
ϕss[z(t )]︸ ︷︷ ︸

entropy change

= −
[

A(z) +
m∑

	=−m

ν	R	(z)

]
∇zϕ

ss(z)

= A(z)D−1(z)A(z) +
m∑

	=1

[R	(z) − R−	(z)] ln

(
R	(z)

R−	(z)

)
︸ ︷︷ ︸

entropy production

− (A + D∇ϕss)D−1(A + D∇ϕss)︸ ︷︷ ︸
mechanical drive

−
m∑

	=1

(R	 − R−	) ln

[
R	

R−	

eν	∇ϕss

]
︸ ︷︷ ︸

chemical drive

+ (A∇ϕss + ∇ϕssD∇ϕss)︸ ︷︷ ︸
chemomechanical exchange

. (20)

According to (18), the last term representing chemomechani-
cal exchange can also be expressed as

[A(z) + ∇ϕss(z)D(z)]∇ϕss(z) = −
m∑

	=−m

R	(z)[eν	∇ϕss (z) − 1].

By “chemomechanics” we mean the continuous variables
describing mechanical movements and the discrete jump pro-
cesses representing chemical reactions as discrete events.
From the standpoint of all the atoms as point masses in the
molecules, the distinction between mechanics and chemistry
disappears; the latter is an emergent phenomenon of a very
complex particle “diffusion” in a potential force field as first
elucidated by Kramers [24].

Let us now consider the specific situation in which both the
mechanical and chemical parts are in detailed balance on their
own [3,23],

A(z) = −D(z)∇zU (z), (21)

ln

(
R	(z)

R−	(z)

)
= −ν	∇zG(z), (22)

in which U (z) is a mechanical potential function and G(z) is
the Gibbs function for a chemical part. Substituting these two
potential conditions into (4) and (7), we have

dz(t )

dt
= −

[
D∇zU +

m∑
	=1

2ν	R̂	 sinh

(
1

2
ν	∇zG

)]
. (23)

Equation (11) becomes

∂ϕ(z, t )

∂t
= (∇U − ∇ϕ)D∇ϕ

−
m∑

	=0

2R̂	

[
cosh

(
ν	∇ϕ − 1

2
ν	∇G

)

− cosh

(
1

2
ν	∇G

)]
, (24)
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in which R̂	(z) = [R	(z)R−	(z)]1/2. In a chemomechanical
equilibrium, both thermomechanics described by the contin-
uous variables and thermochemistry represented by the jump
processes have to be in their respective equilibrium; further-
more, the chemomechanical energy transduction has to be
precisely balanced by mechanochemical energy transduction
in the reverse process. Here U and G are actually different
views of the same invariant probability measure with detailed
balance. As a consequence, a global chemomechanical equi-
librium is reached when U (z) = ϕss(z) = G(z).

D. PDEs as deterministic limits

Our previous derivations can be formally extended to
nonlinear PDEs, which are the most widely used models
in nonequilibrium thermodynamics. Partial differential equa-
tions originally arose from treating fluid dynamics in terms of
Newtonian mechanics; the thermodynamics of the continuum
thus naturally follows. There is a long tradition in the physics
of nonequilibrium thermodynamics in terms of continuum
theory [10] on the one hand and in formulating mathemati-
cal theory of PDEs in terms of ideas from thermodynamics
[25,26] on the other hand. Ultimately, with a statistical foun-
dation of thermodynamics in mind, a system of PDEs can
be understood as the hydrodynamic limit of a SPDE or IPS.
For example, nonequilibrium thermodynamics emerges in the
asymptotic limit via the law of large deviations in the interac-
tion particle system [27] and generalized Gibbsian chemical
thermodynamics emerges in the asymptotic limit of Kurtz’s
theorem [12] and so does the chemomechanics we outlined in
Sec. II above.

To begin with, let us consider a spatiotemporal stochastic
process Yε (x, t ), where x ∈ 
 ⊂ R, whose probability distri-
bution for the entire function of x at a given time t ,

Pr{z(x) < Yε (x, t ) � z(x) + dz(x)} = ρε[z(x); t]dz(x), (25)

is given by a Chapman-Kolmogorov equation

∂

∂t
ρε[z(x); t] =

∫
Tε[z(x)|ξ (x)]ρε[ξ (x); t]dξ (x), (26)

in which ρε[z(x); t] = ρε[z(x)](t ) is a functional of z(x), and
z(x), ξ (x), and dξ (x) are all in an appropriate function space.
Similarly, the transition probability Tε[z(x)|ξ (x)] is assumed
to take the general form

Tε[z(x)|ξ (x)]

=
m∑

	=−m

R	[ξ (x)]

×
[
δ[ξ (x) − z(x) + εν	(x)] − δ[ξ (x) − z(x)]

ε

]
−A[ξ (x)]δ′[ξ (x) − z(x)] + εD[ξ (x)]δ′′[ξ (x) − z(x)],

(27)

where R	[ξ (x)], A[ξ (x)], and D[ξ (x)] are all functionals of
ξ (x). Here δ′[ξ (x) − z(x)] and δ′′[ξ (x) − z(x)] represent func-
tional (or variational) derivatives of Dirac δ functions defined

as

δ′[z] ≡ δ

δz
(δ[z]) = lim

h→0

δ[z + hdz] − δ[z]

h
. (28)

With respect to this generator, in the limit of ε → 0, we have

lim
ε→0

Tε[z(x)|ξ (x)] = −F [ξ (x)]δ′[z(x) − ξ (x)], (29)

with the functional

F [z(x)] = A[z(x)] +
m∑

	=−m

ν	(x)R	[z(x)]; (30)

therefore,

∂

∂t
ρ0[z(x); t] = − δ

δz
{F [z(x)]ρ0[z(x); t]}. (31)

This equation for the functional ρ0[z(x); t] actually represents
a nonlinear partial differential equation

∂z(x, t )

∂t
= F [z(x, t )], (32)

in which F maps a function space in which z(x, t ) belongs
to R.

E. Conservation dissipation formalism

We now assume a more concrete form for F up to
the second-order spatial derivative of z(x, t ), F [z(x, t )] =
F (z, zx, zxx, x). This corresponds to a rather broad class of
nonlinear PDEs discussed in the literature

∂z(x, t )

∂t
= F (z, zx, zxx, x), (33)

in which zx denotes ∂z(x, t )/∂x. A PDE in which F = −∇ ·
j(zx, z, x) + s(x) is called a transport equation; F without the
zxx term is called hyperbolic and with the zxx term is called
parabolic. Further, F without the z is called the Hamilton-
Jacobi equation. When F does not contain zxx, the nonlinear
first-order PDE can be solved by the method of characteristics
[28–30]; for a Hamilton-Jacobi equation this method gives
rise to a Hamiltonian system.

In particular, a group of first-order PDEs in the form

∂t z = −
n∑

j=1

∂xi Ji(z) + Q(z), (34)

where

z =
(

zs

zd

)
, Ji(z) =

(
fi(z)
gi(z)

)
, Q(z) =

(
0

q(z)

)
,

are of great interest in both nonequilibrium thermodynamics
and mathematical physics. Here z = z(x, t ) is a set of inde-
pendent variables used for characterizing the system under
study. In addition, Ji(z) are fluxes in the xi direction, while
q(z) �= 0 represents nonzero source or sink terms. We notice
that terms in Q(z) corresponding to z are all zeros, which
means variables zs obey local conservation laws. The theoret-
ical significance of local conservation laws is that they point
out which kind of variables (an integration of zs in the whole
space) do not change with time. In contrast, since the source
terms for zd are nonzero, the spatial integration of zd is no
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longer constant. This gives a natural classification of zs and zd

variables.
With respect to the above equations, a very general math-

ematical formulation, the conservation dissipation formalism
(CDF) [31], for modeling nonequilibrium processes was con-
structed. The following are two key assumptions of the
formulation.

(i) There is a strictly concave smooth function η = η(z),
called entropy, such that ηzz · Jiz(z) is symmetric for each i
and for all z = (zs, zd ) under consideration.

(ii) There is a positive-definite matrix M(z), called the
dissipation matrix, such that q(z) = M(z) · ηzd (z).

The first assumption is the famous entropy condition for
hyperbolic conservation laws due to, e.g., Godunov [32] and
Friedrichs and Lax [33], which ensures the system is globally
symmetrizable and hyperbolic. Then the Poincaré lemma im-
plies that there is a function Ki = Ki(z) such that

ηz · Jiz = Kiz.

The second condition is a nonlinearization of the celebrated
Onsager reciprocal relation [34,35], which ensures that the
states far away from equilibrium tend to equilibrium in a long
time.

Now it is easy to see that, for F [z(x, t )] in (33) which meet
the two requirements of the CDF, −ϕss turns out to be the
desired entropy function. Its corresponding time evolution is
given through the balance equation

∂ϕss(z)

∂t
=

n∑
j=1

∂xi Ki(z) − σ (z), (35)

where Ki(z) is the entropy flux and σ (z) =
∂ϕss (z)

∂t M(z) ∂ϕss (z)
∂z � 0 is the entropy production rate.

This result establishes an interesting connection between
stochastic thermodynamics, large deviation rate functions,
and macroscopic nonequilibrium thermodynamics. As the
formulation for the CDF looks similar to what we do for CIT
in the next section, no more details will be presented here.
Interested readers may work it out by themselves.

III. LARGE DEVIATION PRINCIPLE AND CLASSICAL
IRREVERSIBLE THERMODYNAMICS

A. Logical structure of CIT

In contrast to the deterministic limit of stochastic processes
discussed in previous sections, which provides a direct link-
age between mesoscopic and macroscopic dynamics, there
are also other schools, such as classical irreversible ther-
modynamics, trying to derive the governing equations for
macroscopic deterministic dynamics directly from a thermo-
dynamic point of view. The mathematics of macroscopic
classical irreversible thermodynamics, such as presented in
[10], has a very elegant and clear logical structure, which we
summarize here.

(i) First, one considers the macroscopic system to be lo-
cally fully specified by several quantities, say, ui, vi, and
wi, i ∈ S, which are called state variables. For example, in
classical hydrodynamics, the fluid density ρ, velocity v, and
total energy e are the most often used ones. This assumption
is generally referred to as the local equilibrium hypothesis

in the literature, which allows the application of concepts
and methodology in equilibrium thermodynamics directly to
nonequilibrium systems. In CIT, another remarkable feature
of state variables is that each of them satisfies a system of con-
servation laws of its own, which means u(t ) = {ui(t ), i ∈ S}
follows

dui(t )

dt
=

∑
j∈S

(
J (u)

ji − J (u)
i j

)
, (36)

where J (u)
i j � 0 is a one-way flux.

(ii) The local equilibrium hypothesis also guarantees the
existence of a local strictly convex entropy function si ≡
S(ui, vi,wi ). Then, by differential calculus (or the Gibbs re-
lation in thermodynamics) one has

dsi

dt
=

(
∂si

∂ui

)[
dui(t )

dt

]
+

(
∂si

∂vi

)[
dvi(t )

dt

]

+
(

∂si

∂wi

)[
dwi(t )

dt

]

=
∑

ξ=u,v,w

(
∂si

∂ξi

) ∑
j∈S

(
J (ξ )

ji − J (ξ )
i j

)
(37a)

=
∑

ξ=u,v,w

∑
j∈S

1

2

[
∂si

∂ξi
− ∂s j

∂ξ j

](
J (ξ )

ji − J (ξ )
i j

)
︸ ︷︷ ︸

local entropy production rate = force × flux

+
∑

ξ=u,v,w

∑
j∈S

J (S,ξ )
ji︸ ︷︷ ︸

entropy exchange flux

, (37b)

in which the net entropy flux due to transport of ξ ,

J (S,ξ )
i j = 1

2

[
∂si

∂ξi
+ ∂s j

∂ξ j

](
J (ξ )

i j − J (ξ )
ji

) = −J (S,ξ )
ji . (37c)

Equation (37) has established a local entropy balance law
in the form given by (35). If ξ represents the energy, vol-
ume, or concentration of a chemical species, then ∂si/∂ξi ≡
(∂S/∂ξ )i, i ∈ S, will be 1/Ti, pi/Ti, and μi/Ti respectively,
with Ti, pi, and μi the local temperature, pressure, and chemi-
cal potential. Then the corresponding thermodynamic forces
between states i and j are 1/Ti − 1/Tj , pi/Ti − p j/Tj , and
μi/Ti − μ j/Tj .

(iii) Equation (37b), which splits (37a) into symmetric and
antisymmetric terms, is actually a discrete version of the in-
tegration by parts in differential calculus, which is employed
in the third step of CIT based on continuous variables. We
recognize

∑
j∈S(Ji j − Jji ) as a discrete analog of a divergence

term, in which Ji j � 0 is a one-way flux. Thus we have(
∂si

∂ξi

) ∑
j∈S

(Ji j − Jji ) = −
∑
j∈S

[(
∂s j

∂ξ j

)
−

(
∂si

∂ξi

)]
Jji

+
∑
j∈S

[(
∂s j

∂ξ j

)
Jji −

(
∂si

∂ξi

)
Ji j

]
.

(38)

The last term is again a divergence term, which is determined
by only boundary values when summed over a set of i’s.
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Interestingly, if we identify s j/ξ j − si/ξi as a thermodynamic
force between states i and j, the term (s j/ξ j − si/ξi )Jji is not
consistent with Onsager’s entropy production rate: According
to his theory, a thermodynamics flux is the net flux Ji j − Jji,
not the one-way flux [36]. This observation suggests that
instead of Eq. (38), we should make Ji j and Jji symmetric:

(
∂si

∂ξi

) ∑
j∈S

(Ji j − Jji )

=
(

∂si

∂ξi

) ∑
j∈S

[(
Ji j − Jji

2

)
−

(
Jji − Ji j

2

)]

= −1

2

∑
j∈S

[(
∂s j

∂ξ j

)
−

(
∂si

∂ξi

)]
(Jji − Ji j )

+1

2

∑
j∈S

[(
∂si

∂ξi

)
+

(
∂s j

∂ξ j

)]
(Jji − Ji j ). (39)

This is precisely Eq. (37b).
(iv) The fourth step in CIT is to introduce a thermodynamic

force-flux relationship

⎡
⎢⎢⎣

J (u)
i j − J (u)

ji

J (v)
i j − J (v)

ji

J (w)
i j − J (w)

ji

⎤
⎥⎥⎦ = −Mi j (u, v, w)

⎡
⎢⎢⎣

∂si
∂ui

− ∂s j

∂u j

∂si
∂vi

− ∂s j

∂v j

∂si
∂wi

− ∂s j

∂w j

⎤
⎥⎥⎦, (40)

where Mi j is a 3 × 3 positive-definite symmetric matrix. With
this assumption, the local entropy production rate in (37) is
strictly positive except all forces and fluxes are zero. When
Mi j (u, v, w) is evaluated at an equilibrium (Ji j = Jji), it
becomes a constant matrix. In that case, Eq. (40) is called On-
sager’s near-equilibrium linear force-flux relationship, which
can be derived from the principle of detailed balance.

The force-flux relation does not need to be linear. Another
well-known example is

⎡
⎢⎢⎣

ln
(
J (u)

i j /J (u)
ji

)
ln

(
J (v)

i j /J (v)
ji

)
ln

(
J (w)

i j /J (w)
ji

)
⎤
⎥⎥⎦ = −Mi j

⎡
⎢⎢⎣

∂si
∂ui

− ∂s j

∂u j

∂si
∂vi

− ∂s j

∂v j

∂si
∂wi

− ∂s j

∂w j

⎤
⎥⎥⎦. (41)

This is the Gibbs chemical affinity-flux relationship. It
implies that, for each and every set of cyclic indices
i0, i1, . . . , in, in+1 = i0 in the state space S,

n∑
k=0

M−1
ikkk+1

⎡
⎢⎢⎣

ln
(
J (u)

ik ik+1
/J (u)

ik+1ik

)
ln

(
J (v)

ik ik+1
/J (v)

ik+1ik

)
ln

(
J (w)

ik ik+1
/J (w)

ik+1ik

)
⎤
⎥⎥⎦ =

⎡
⎣0

0
0

⎤
⎦, (42)

which is known as chemical detailed balance. The three zeros
in (42) imply that there exist three potential functions on the
state space S. With (41) the local entropy production rate in
(37) is non-negative and it is equal to zero if and only if J (ξ )

i j =
J (ξ )

ji for all i, j ∈ S and ξ = u, v,w.

B. CIT for master equations

Let us now follow the same steps (i)–(iv) for a master
equation which conserves the probability

d pi(t )

dt
=

∑
j∈S

(Jji − Ji j ), Ji j = pi(t )qi j � 0. (43)

Introducing a local entropy function si = −pi ln pi, then

dsi

dt
= −(ln pi + 1)

d pi(t )

dt

= 1

2

∑
j∈S

(piqi j − p jq ji ) ln

(
pi

p j

)

+1

2

∑
j∈S

(piqi j − p jq ji )[ln(pi p j ) + 2]. (44)

Now introducing an affinity-flux relationship ln(pi/p j ) =
Mi j (piqi j − p jq ji ), where

Mi j (pi, p j ) = ln pi − ln p j

piqi j − p jq ji
, (45)

it is easy to show that each element of M is strictly positive if
and only if qi j = q ji.

When qi j �= q ji, the above simple entropy function that
is independent of {qi j} can no longer be a valid choice.
Rather, a proper entropy function has to be informed by the
dynamics in (43). One of the best known examples is to
consider the stationary probability distribution to (43), {πi}:
s̃i = −pi ln(pi/πi ). This is the fundamental idea of free en-
ergy. Instead of (44) one then has

ds̃i(t )

dt
= 1

2

∑
j∈S

(piqi j − p jq ji ) ln

(
piπ j

p jπi

)

+ 1

2

∑
j∈S

(piqi j − p jq ji )

[
ln

(
pi p j

πiπ j

)
+ 2

]
. (46)

One therefore has an affinity-flux relationship
ln(piπ j/p jπi ) = M̃i j (piqi j − p jq ji ), with

M̃i j (pi, p j ) = ln(pi/πi ) − ln(p j/π j )

piqi j − p jq ji
. (47)

The matrix M̃ is symmetric and semipositive definite if and
only if the detailed balance condition holds πiqi j = π jq ji (see,
e.g., Ref. [37] for a rigorous proof).

C. ϕss as the statistical foundation of CIT

The entropy function plays a key role during the formula-
tion of CIT; however, its origin is a mystery in macroscopic
thermodynamics and CIT does not provide an answer to it.
Interestingly, the large deviation rate function obtained from
the limit process of mesoscopic stochastic dynamics turns out
to be the desired entropy function for the macroscopic ther-
modynamic modeling and thus it provides a solid statistical
foundation for CIT.

To make this point clear, we start with the stationary large
deviation function (or the free energy function in this case)
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and examine its full time derivative in accordance with CIT,

dϕss[z(x, t )]

dt
= dz(x, t )

dt

δϕss[z(x, t )]

δz

= −
m∑

l=−m

Rl [z][eνlδφ
ss[z]/δz − 1] − A[z]

δϕss[z]

δz
− δϕss[z]

δz
D[z]

δϕss[z]

δz
+ dz

dt

δϕss[z]

δz

= −
m∑

l=−m

Rl [z]

[
eνl δϕ

ss[z]/δz − νl
δϕss[z]

δz
− 1

]
+

[
dz

dt
−

m∑
l=−m

νlRl [z] − A[z] − δϕss[z]

δz
D[z]

]
δϕss[z]

δz

= −σ1 − σ2. (48)

It can be seen that σ1 � 0 by Bernoulli’s inequality. To keep
σ2 � 2 in accordance with the second law of thermodynamics,
CIT suggests taking

dz

dt
−

m∑
l=−m

νlRl [z] − A[z] = δϕss[z(x, t )]

δz
(D[z] − M[z]),

(49)

where M[z] � 0 must be semipositive definite. In particular,
if we choose M[z] = D[z], the macroscopic equation in (32)
is recovered. Comparing to the original equation, we see that
models derived from CIT are not completely specified unless
the entropy production rate is given too (which means M[z] is
given). This ambiguity arises from the fact that a dissipative
process is not fully specified by the entropy function, but also
by its dissipation rate.

D. Exactly solvable models

Finally, we look at several examples, which could be
explicitly solved, to illustrate the intrinsic relation between
mesoscopic stochastic dynamics, macroscopic deterministic
dynamics, large deviation rate functions, classical irreversible
thermodynamics, Hamiltonian dynamics, and so on (see
Fig. 2).

FIG. 2. Relation between stochastic dynamics, macroscopic
limit, large deviation theory, etc. Here LDP denotes large deviation
principle and HJE Hamilton-Jacobi equation.

1. Fokker-Planck equations for the Ornstein-Uhlenbeck process

By taking R(ξ ) = 0, A(ξ ) = −az, and D(ξ ) = D in the
generator in (6), we arrive at the famous Fokker-Planck equa-
tion

∂ pε (z, t )

∂t
= ∂

∂z
·
[
εD

∂

∂z
pε (z, t ) + azpε (z, t )

]
. (50)

It corresponds to the Ornstein-Uhlenbeck process, a particular
realization of the general Langevin dynamics, which reads

dz(t ) = −azdt +
√

2εDdB(t ), (51)

under the meaning of Itô’s calculus. In this case, the distribu-
tion function could be exactly solved as

pε (z, t ) =
[

a

2πεD(1 − e−2at )

]1/2

exp

[
− az2

2εD(1 − e−2at )

]
,

(52)

with respect to the initial condition pε (z, 0) = δ(z).
It is straightforward to show the large deviation rate func-

tion ϕ(z, t ) = az2/2D(1 − e−2at ) and its stationary solution
ϕss(z) = az2/2D. With respect to these formulas, we can re-
peat previous derivations of CIT. It is easy to check that the
relation dz/dt = −az guarantees a positive entropy produc-
tion. On the other hand, as suggested by the large deviation
principle, we can also introduce a Hamiltonian dynamics

dz

dt
= 2Dy − az, (53)

dy

dt
= ay, (54)

with a Hamiltonian function H (z, y) = Dy2 − azy, which is
equivalent to a Lagrangian dynamics

z̈ − a2z = 0 (55)

given by the Lagrangian function L(z, ż) = (ż + az)2/4D.
Noticeably, both dynamics are time-reversible generalizations
of dz/dt = −az.

2. Chemical reactions under complex balance conditions

In the next example, we consider a discrete generator with
A(ξ ) = 0 and D(ξ ) = 0. In this case, the chemical master
equations are obtained, whose deterministic limit gives usual
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ODEs

dz(t )

dt
=

m∑
	=1

ν	 · [R	(z) − R−	(z)] (56)

for m chemical reactions with general rate functions
R	(z). Here z = (z1, z2, . . . , zn) are the concentrations
of the n species, and stoichiometric coefficients ν	 =
(ν	1, ν	2, . . . , ν	n).

Due to the condition of complex balance, a concept first
introduced by Horn and Jackson [38] for a class of chemical
reactions with laws of mass action, it can be shown that the
kinetic equation above has a unique stationary solution zss

[39], and the stationary large deviation rate function [3]

ϕss(z) =
n∑

i=1

zi ln

(
zi

zss
i

)
− zi + zss

i (57)

is a solution to
m∑

	=1

R	(z)[eν	∇ϕss (z) − 1] + R−	(z)[e−ν	∇ϕss (z) − 1] = 0. (58)

Then, according to CIT, a possible dissipative extension of
(56) is

dz

dt
=

m∑
	=1

ν	 · [R	(z) − R−	(z)] − M(z) ln

(
zi

zss
i

)
, (59)

which, however, requires prior knowledge of the stationary so-
lution zss and is nearly impossible for real applications. In con-
trast, the conservative extension does not require such infor-
mation. With respect to the Hamiltonian function H (z, y) =∑m

	=1{R	(z)[eν	y − 1] + R−	(z)[e−ν	y − 1]}, the derivation of
corresponding Hamiltonian dynamics is straightforward, i.e.,

dz

dt
=

m∑
	=1

ν	[R	(z)eν	y − R−	(z)e−ν	y], (60)

dy

dt
= −

m∑
	=1

{R′
	(z)[eν	y − 1] + R′

−	(z)[e−ν	y − 1]}. (61)

It is noted that when the momentum y = 0, we recover the
original kinetic equation in (56), which is in fact dissipative
and time irreversible in nature.

3. Slow chemomechanical coupling near equilibrium

Compared to purely diffusive or purely chemical pro-
cesses, the nontrivial chemomechanical coupling is far more
interesting. In this case, we need to solve the stationary
Hamilton-Jacobi equation in the full form

[A(z) + ∇ϕss(z)D(z)]∇ϕss(z)

=
m∑

	=1

R	(z)[1 − eν	∇ϕss (z)] + R−	(z)[1 − e−ν	∇ϕss (z)],

(62)

which for most situations can only be solved numerically.
We now consider the problem in which both the mechani-

cal and chemical parts are in rapid equilibrium, e.g., detailed

balance, on their own,

A(z) = −D(z)∇U (z), ln

(
R	(z)

R−	(z)

)
= −ν	∇G(z),

but the chemomechanical conversion is slow and is not yet
in equilibrium and thus U (z) �= G(z); then ϕss(z) is equal to
neither. Substituting these two into (62), we have

∇ϕss(z)D(z)∇[ϕss(z) − U (z)]

=
m∑

	=1

[eν	∇ϕss (z) − 1]R	(z)[eν	∇[G(z)−ϕss (z)] − 1]. (63)

The terms ∇(ϕss − U ) and ∇(ϕss − G) are the thermome-
chanical force and thermochemical force, respectively. A true
equilibrium has both being zero. We see that if ∇(U − ϕss) >

0, then ∇(G − ϕss) < 0. This implies a net mechanical to
chemical energy conversion.

Near equilibrium, the last factor on the right-hand side of
(63) can be approximated by Taylor expansion. In the special
case of D(z) = ∑m

	=1
R	(z)−R−	(z)

ln R	(z)−ln R−	(z)ν	

⊗
ν	 (called biochem-

ical conductance in stoichiometric network theory), where⊗
denotes the direct product of vectors, Eq. (63) can be

solved explicitly. In this case, the thermomechanical force and
thermochemical force are equal and opposite and are given
by the difference between chemical potential and mechanical
potential, i.e., ∇(ϕss − U ) = −∇(ϕss − G) = ∇(G − U )/2.

For chemical reactions with the mass-action law in equi-
librium, an explicit formula for G(z) is known, that is,
G(z) = ∑n

i=1 zi ln(zi/zss
i ) − zi + zss

i (see the second example
above). As a consequence, U (z) = ∑n

i=1 zi ln(zi/zss
i ) −zi + zss

i
and A(z) = −D(z) ln(z/zss). It is worth noting that the term∑n

i=1 zi ln zi, which appears in both G(z) and U (z), has differ-
ent interpretations in chemistry and in mechanics: The former
is caused by chemical affinities, while the latter, according
to Flory and Huggins, is an entropic effect reflecting the
tendency of particle mixing.

IV. RELATION TO PREVIOUS WORK

There are three lines of research that are highly relevant and
with respect to which the present work is seeking a synthesis.

(i) The statistical behavior of a stochastic system, its fluc-
tuations and its entropy productions has been investigated.
The classical theory of e.g., Einstein, Landau, Onsager, and
Machlup for equilibrium fluctuations with detailed balance,
Keizer’s theory for nonequilibrium steady-state fluctuations
[15], and the recently developed stochastic thermodynamics
of finite trajectories [40] are well-known landmarks (see [41]
for a recent development).

(ii) The study of large deviations beyond (i) for a sequence
of stochastic systems with a LLN focuses on securing the
existence of a rate function and deriving its particular form.
Mathematical work tends to focus on the former and physics
literature on the latter. For the mathematical method we refer
interested readers to the comprehensive reviews written for
physicists [5–9]. The traditional Gaussian fluctuation theory
is simply the local Hessian structure near the global minimum
of the rate function.

Along this direction, the weak-noise limit of Markovian
dynamics, e.g., ε → 0 discussed in Sec. II, has been dis-
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cussed many times in the past, both rigorously and applied.
We mention in particular the extensive studies carried out by
Graham and Tél [42,43] for the Fokker-Planck equation and
by Hu [44], Dykman et al. [45], and Agazzi et al. [46] for the
chemical master equation.

(iii) The parallel work for the spatiotemporal infinite-
dimensional stochastic system is technically much more
demanding. The demonstration of a deterministic limit and
its form, usually a nonlinear PDE, is already a challenging
task. There is a large literature on obtaining the hydrodynamic
limit. Its history dates back to the pioneering works of Liggett
[16], Guo et al. [17], and many others. On the discrete IPS, the
exact results on the asymmetric simple exclusion process is
particularly worth mentioning [47] (see [48] for a more recent
study). A closely related approach is the reaction diffusion
master equation in continuous time (see the earlier work of
Keizer [15] on the fluctuating Boltzmann equation, that of
Vance and Ross [49] on fluctuating Turing patterns, and the
more recent work [50] in connection to numerical compu-
tations). On continuous space-time SPDEs, Graham and Tél
also investigated the Ginzburg-Landau equation with weak
noise [51]; Gonçalves and Jara studied the nonequilibrium
fluctuations of the Kardar-Parisi-Zhang equation in terms of
an Einstein relation [52]. With the LLN in hand, a systematic
treatment of the fluctuations of hydrodynamic equations was
carried out in macroscopic fluctuation theory [53,54]. Results
on large deviations followed [27,55,56].

In contradistinction to the above-mentioned research areas
(i)–(iii), our present work is a part of the recent development
on setting the large deviation structure, being a limiting law
for a sequence of Markov processes, as the mathematical
foundation for nonequilibrium stochastic thermodynamics,
beyond the studies of a Markov process. This type of limit
law is to thermodynamic behavior what the central limit
theorem is to the Gaussian fluctuation theory. The focus is
on the mathematical origin of thermodynamic behavior it-
self: Here we combine all these results together, by using
an ε-dependent Markov generator, in providing a unified
mathematical physics in which the large deviation theory
serves the statistical foundation of general nonequilibrium
thermodynamics, like CIT and CDF. This synthesis is miss-
ing from most of the previous studies. One exception is the
macroscopic fluctuation theory, developed by Bertini et al., in
which thermodynamic relationships among force, work, and
quasipotential as energy were discussed; another is a study
from us on extended irreversible thermodynamics [57].

Because of the nature of synthesis, in Sec. II D we dis-
cussed how to derive PDEs as the deterministic limits from a
spatiotemporal stochastic process, in order to incorporate the
general theory of CDF which includes both time and space.
The work in (iii) above provides the more advanced, in-depth
materials for this section. We merely give a heuristic coverage

before moving toward the main purpose of our present work:
going beyond the law of large numbers, e.g., the proper hydro-
dynamic limit, and focusing on the entropy structure on top of
those hydrodynamic equations.

V. CONCLUSION

The macroscopic limit of mesoscopic stochastic dynamics,
especially the Markovian dynamics with either continuous or
discrete state space, has been well understood since the pio-
neering works of Kurtz, Guo et al., and many others. On the
other hand, the fact that the large deviation principle, which
emerges concomitantly during the limit process and provides
the entropy as a macroscopic potential function of nonequilib-
rium thermodynamics, was not fully appreciated in the past.
In the present study, by examining the deterministic limit
of a general ε-dependent generator for Markovian dynam-
ics, which includes the continuous Fokker-Planck equations
and discrete chemical master equations as two special cases,
the intrinsic connections between mesoscopic stochastic dy-
namics, its macroscopic limit, large deviation rate functions,
and classical irreversible thermodynamics and its potential
have been established. To provide concrete examples on our
construction, the purely linear Ornstein-Uhlenbeck process,
chemical reactions under the complex balance condition, and
nontrivial slow chemomechanical coupling near equilibrium
were solved explicitly. The investigation of more interesting
chemical-mechanical coupled systems is left to future studies.
In conclusion, our result not only solves the long-lasting ques-
tion on the origin of entropy function in CIT, but also suggests
a more general principle for emergent phenomena.

In our study, an amazing observation is that both the dissi-
pative dynamics equipped with a (relative) entropy function
and the conservative dynamics equipped with a Hamilto-
nian function arise automatically from the large deviation
principle of mesoscopic stochastic dynamics. This emergent
phenomenon not only highlights the inseparable nature of the
first law and the second law of thermodynamics, which state
the essential roles of energy and entropy in a thermodynam-
ical view of dynamics, but also provides a practical way for
constructing either conservative or dissipative dynamics of
any given deterministic dynamics by considering its stochastic
correspondence.
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