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Relating heat and entanglement in strong-coupling thermodynamics
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Explaining the influence of strong coupling in the dynamics of open quantum systems is one of the most
challenging issues in the rapidly growing field of quantum thermodynamics. By using a particular definition
of heat, we develop an approach to study the thermodynamics in the strong-coupling regime, which takes into
account quantum resources such as coherence and entanglement. We apply the method to calculate the time-
dependent thermodynamic properties of a system and an environment interacting via the generalized amplitude-
damping channel. The results indicate that the transient imbalance between heat dissipated and heat absorbed
that occurs in the process is responsible for the generation of system-environment entanglement.
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I. INTRODUCTION

Classical thermodynamics intrinsically relies on the as-
sumption that the system under analysis is weakly coupled to
its surroundings. This is because the energy of the interacting
elements of the body’s surface is negligible compared to the
energy of the bulk. In this regime, one can always treat the
states and the energetic properties of the system and environ-
ment separately, which allows us, for example, to equate the
energy dissipated by the system with the heat absorbed by the
reservoir [1–5]. On the other hand, this weak-coupling limit is
not in general justified for quantum open systems, since the
system-environment interaction involves a large fraction of
the system’s constituents [6,7]. In this strong-coupling regime,
stochastic and quantum effects become important [8], and the
usual approach to this problem begins with the decomposition
of the total system-environment Hamiltonian in the form

Ĥ = ĤS + ĤE + ĤSE , (1)

where the operators ĤS and ĤE are the bare Hamiltonians
of the system and environment, respectively, and ĤSE is the
interaction Hamiltonian, which cannot be neglected.

Some particularly important problems are often pointed
out when the coupling is strong. One is how to partition the
internal energy into work and heat, as dictated by the first
law, �U = W + Q. In this case, the notion of work is less
problematic because, as usual, it only depends on system
variables, but the definition of heat has been shown to be more
difficult and ambiguous [7,9,10]. Another question is that the
reduced density matrix of the open system is not supposed to
contain all the information necessary to describe the thermo-
dynamic properties; instead, information originating from the
system-environment interaction should be included [11–16].
In this article, we present a framework to study the thermo-
dynamics of open quantum systems in the strong-coupling
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regime, based on a recently proposed quantum version of the
first law of thermodynamics [17]. The formalism circumvents
the limitations indicated above, in the sense that an unambigu-
ous definition of heat is provided, which considers quantum
effects such as coherence and entanglement, and the reduced
density matrices of the subsystems involved are capable of
providing full information about their average thermodynamic
behavior. To illustrate the practical implications, we use the
method to investigate the thermodynamics of the generalized
amplitude-damping channel (GADC). Interestingly, we find
that the system-bath entanglement in this case is generated at
the cost of the heat asymmetry that naturally emerges during
the interaction process.

II. FIRST LAW OF QUANTUM THERMODYNAMICS

In this section we review the quantum version of the
first law of thermodynamics put forward by the author in
Ref. [17]. Consider a generic quantum, physical system op-
erating as a working substance, whose Hamiltonian reads
Ĥ = ∑

n En |n〉 〈n|, with the nth energy eigenvalue and eigen-
state given by En = 〈n|Ĥ |n〉 and |n〉, respectively. We also
define the density operator of the system as ρ̂ = ∑

k ρk |k〉 〈k|,
where ρk = 〈k|ρ̂|k〉 and |k〉 are the eigenvalues and eigenkets,
respectively. From a statistical perspective, we can define the
internal energy of this system as the average of Ĥ , i.e., U =
〈Ĥ〉 = tr{ρ̂Ĥ}. However, since the trace operation is basis
independent, we can calculate U using either the eigenbasis
{|n〉} of Ĥ or the eigenbasis {|k〉} of ρ̂. In the first case,
which we label as C1, we have that U = ∑

n PnEn, where
Pn = 〈n|ρ̂|n〉 is the occupation probability of the nth energy
level, while in the second case, which we label as C2, one finds
U = ∑

k ρkεk , with εk = 〈k|Ĥ |k〉 as the diagonal elements of
Ĥ represented in the {|k〉} basis.

The result of the internal energy obtained in the case C1
allows us to write dU = ∑

n[EndPn + PndEn]. Now, we are
in a position to define the work done on the system in an
infinitesimal quantum process, d̄W . In doing so, we first recall
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the classical concept of work: “The work realized on or by
the working substance is the change in the internal energy
produced by modifications in the generalized coordinates”
[18–20]. In a quantum-mechanical setting, a change in the
generalized coordinates of the system, which may include the
volume, external electric and magnetic fields, or the gravita-
tional potential, leads naturally to a modification in the energy
spectrum En, as for example in quantum dynamics satisfy-
ing the adiabatic approximation [21–23], or in the so-called
shortcuts to adiabaticity [24–28]. Thus, from the expression
of dU above, we can identify the infinitesimal work as d̄W :=∑

n PndEn.
Let us now study the case C2. In this scenario, we have

that dU = ∑
k[εkdρk + ρkdεk], which permits us to define

the heat exchange by the working substance in an infinites-
imal quantum process, d̄Q. In classical thermodynamics,
the concept of heat reads as follows: “The heat exchanged
between the working substance and the external environ-
ment corresponds to the change in the internal energy that
is accompanied by entropy change” [18,20]. In order to
generalize this concept to the quantum realm, we first re-
call that the von Neumann entropy of the system is given
by S(ρ̂ ) = −tr{ρ̂ log ρ̂} = −∑

k ρk log ρk . Then, for an in-
finitesimal trace-preserving quantum transformation, we have
that dS = −∑

k[log(ρk )dρk], where we used the fact that∑
k dρk = 0, because

∑
k ρk = 1. From the results of dS and

dU obtained in this case C2, if we invoke the above classi-
cal definition of heat, we can identify the quantum heat as
d̄Q := ∑

k εkdρk . Indeed, this is the only part of dU which
accompanies entropy change.

Having the definitions of d̄W and d̄Q above, it can be
easily verified that dU �= d̄W + d̄Q, in apparent contradiction
with the first law of thermodynamics. However, as shown
in Ref. [17], the missing energetic contribution is given
by the infinitesimal quantity d̄C = ∑

n

∑
k (Enρk )d[|cn,k|2],

where cn,k = 〈n|k〉. In fact, it can be demonstrated that dU =
d̄W + d̄Q + d̄C. Observe that the contribution of d̄C only ex-
ists if the thermodynamic process in question involves some
change in the quantum coherence of the system in the energy
basis, i.e., when the coefficients |cn,k| are time dependent. For
this reason, we will refer to the quantity C here as coherent
energy. Of course, this is only relevant in specific quantum
processes, and the usual form of the first law, dU = d̄W + d̄Q,
is recovered in the classical limit.

Overall, the function C, which is not compatible with the
classical definitions of work and heat, expresses the energetic
contribution of the dynamics of coherence in the first law. This
is why we give it an independent classification. For finite-time
processes, the work, heat, and coherent energy can be found
by integration of the respective differentials (see details in
Ref. [17]):

W (t ) =
∑

n

∑
k

∫ t

0
ρk|cn,k|2 dEn

dt ′ dt ′, (2)

Q(t ) =
∑

n

∑
k

∫ t

0
En|cn,k|2 dρk

dt ′ dt ′, (3)

C(t ) =
∑

n

∑
k

∫ t

0
(Enρk )

d

dt ′ |cn,k|2dt ′. (4)

FIG. 1. Schematic representing a two-level atomic system S in-
teracting with an environment E , which is initially in a thermal state
at inverse temperature β.

The change in the internal energy is given by �U (t ) =
W (t ) + Q(t ) + C(t ). In what follows, we apply these results
to study the energy exchanges that occur in a particular strong
system-environment interaction.

III. PHYSICAL MODEL

In order to study the evolution of an open quantum system
S , one usually considers it as part of a larger closed system,
which also includes the environment E , undergoing a unitary
transformation Û that depends on the total Hamiltonian as
that of Eq. (1). Following this reasoning, we illustrate our
description of strong-coupling thermodynamics by examining
a model based on the generalized amplitude-damping channel
(GADC) [29]. This model is a useful tool to describe the
dynamics of a qubit system in contact with a thermal bath with
finite temperature. For instance, the GADC has been used to
characterize a spin-1/2 system coupled to an interacting spin
chain at nonzero temperature [30,31], the influence of noise in
superconducting-circuit-based quantum computing [32], and
the finite-temperature thermal noise in linear optical systems
[33]. Here, we consider a particular approach consisting of an
open two-level atomic system S interacting with two levels of
a finite environment E initially in a thermal state, as depicted
in Fig. 1.

The ground and excited states of the system, |g〉 and
|e〉, have energies Eg and Ee, respectively, so that the free
Hamiltonian of the system is given by ĤS = Eg |g〉 〈g| +
Ee |e〉 〈e|. On the other hand, we assume that the environment
E has a small number of states, d + 1, and that only the tran-
sitions between the states |E0〉 and |E1〉 are capable of causing
some influence in S . The free environmental Hamiltonian
and initial thermal state are given by ĤE = ∑d

i=0 Ei |Ei〉 〈Ei|
and ρ̂E (0) = e−βĤE/ZE , respectively, where ZE = tr[e−βĤE ]
is the partition function, and β the inverse temperature. As a
matter of fact, since we are assuming that S interacts with E
only via transitions that occur between |E0〉 and |E1〉, the en-
vironment can be effectively represented as a qubit (which we
call E ), with initial state ρ̂E (0) = w0 |E0〉 〈E0| + w1 |E1〉 〈E1|,
where the probabilistic weights obey w1 = w0e−β(E1−E0 ) and
w0 + w1 = 1. We also see from Fig. 1 that E1 − E0 =
Ee − Eg.
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To describe the system-environment dynamics, we use the
joint SE basis {|g, E0〉 , |g, E1〉 , |e, E0〉 , |e, E1〉} and establish
an (probabilistic) unitary evolution such that

|g, E0〉 → |g, E0〉 , (5)

|g, E1〉 →
√

1 − p |g, E1〉 + √
p |e, E0〉 , (6)

|e, E0〉 →
√

1 − p |e, E0〉 + √
p |g, E1〉 , (7)

|e, E1〉 → |e, E1〉 . (8)

These interaction rules can be interpreted as follows: (i)
Equation (5) says that if S starts out in the ground state and E
has no excitation (e.g., zero temperature), no transition occurs;
(ii) Eq. (6) indicates that if S is in the ground state and E in
the first excited state, after a given time interval τ , there is
a probability p that S becomes excited and E decays to the
fundamental state; (iii) Eq. (7) says that if S is in the excited
state and E in the fundamental one, after the time τ , S decays
to the ground state with probability p, and E is led to the first
excited state; (iv) Eq. (8) tells us that, if E is in the first excited
state, the state |e〉 of S has a comparatively longer lifetime, so
that no transition is expected during the time τ . The longer
lifetime of |e, E1〉 in comparison with |e, E0〉 can be justified
by the fact that, in some strong-coupling cases, the metasta-
bility of quantum states is sensitive to the environmental
conditions [34–36].

According to Eqs. (5)–(8), the matrix representation of the
evolution of SE is given by

Û =

⎡
⎢⎢⎣

1 0 0 0
0

√
1 − p

√
p 0

0
√

p
√

1 − p 0
0 0 0 1

⎤
⎥⎥⎦, (9)

with p ∈ [0, 1]. Note that, in the limit where p = 1, Û reduces
to the SWAP gate [37]. Now, if we assume that S and E
are initially uncorrelated, ρ̂SE (0) = ρ̂S (0) ⊗ ρ̂E (0), we can
describe the evolution of S through the quantum channel
ρ̂S (0) → �[ρ̂S (0)] = trE [Û (ρ̂S (0) ⊗ ρ̂E (0))Û†], where trE

denotes trace over the environment states |E0〉 and |E1〉.
It can be shown that �[ρ̂S (0)] = ∑

i j=0,1 K̂i j ρ̂S (0)K̂†
i j is

a completely positive trace preserving (CPTP) map with
Kraus operators K̂i j = √

wi 〈Ej |Û |Ei〉 given by K̂00 =√
w0(|g〉 〈g| + √

1 − p |e〉 〈e|), K̂01 = √
w0(

√
p |g〉 〈e|),

K̂10 = √
w1(

√
p |e〉 〈g|), and K̂11 = √

w1(
√

1 − p |g〉 〈g| +
|e〉 〈e|), which satisfy

∑
i j=0,1 K̂†

i j K̂i j = IS [37,38]. This is the
GADC [29].

We next turn to investigating the dynamics of E . This is
dictated by the channel ρ̂E (0) → �[ρ̂E (0)] = trS [Û (ρ̂S (0) ⊗
ρ̂E (0))Û†], where trS denotes trace over the system states,
|g〉 and |e〉, which yields �[ρ̂E (0)] = ∑

k=0,1 L̂k ρ̂E (0)L̂†
k .

For simplicity, we assume that the system is prepared in the
pure state |ψ (0)〉 = α |g〉 + √

1 − α2 |e〉, with α ∈ R (this
assumption does not invalidate the generality of the results,
i.e., a general mixed state could be equally used). In this case,
the two Kraus operators are given by L̂0 = 〈g|Û |ψ (0)〉 =
α |E0〉 〈E0| +

√
p(1 − α2) |E1〉 〈E0| + √

1 − pα |E1〉 〈E1|,
and L̂1 = 〈e|Û |ψ (0)〉 =

√
(1 − p)(1 − α2) |E0〉 〈E0| +

√
pα |E0〉 〈E1| + √

1 − α2 |E1〉 〈E1|. This is also a CPTP
map, in which

∑
k=0,1 L̂†

k L̂k = IE .
As a result of the application of the maps, the states of S

and E become

�[ρ̂S (0)] =
[

A11 A12

A21 A22

]
, �[ρ̂E (0)] =

[
B11 B12

B21 B22

]
,

(10)

respectively. The entries of �[ρ̂S (0)] are given by
A11 = [α2 + (1 − α2)p]w0 + α2(1 − p)w1, A12 = A21 =
α
√

(1 − α2)(1 − p), and A22 = (1 − α2)(1 − p)w0 +
[(1 − α2) + α2 p]w1, whereas the entries of �[ρ̂E (0)] are
B11 = [α2 + (1 − a2)(1 − p)]w0 + α2 pw1, B12 = B21 =
α
√

(1 − α2)p, and B22 = (1 − α2)pw0 + [(1 − α2) + α2(1 −
p)]w1. It can be seen that, although the unitary (reversible)
evolution of SE , the partial trace operations used to construct
the above maps lead to nonunitary (irreversible) evolution of
S and E , individually.

To express the time evolution of S and E , we will assume
that the probability of a quantum transition event per unit time
is �, in such a way that p = ��t 
 1 for a short-time interval
�t . Then, the evolution of the system and the environment
after a time t = n�t is a result of the application of the respec-
tive maps n times in succession. This assumption is equivalent
to assuming that the evolution of S and E are Markovian,
i.e., the influence of the quantum channels acting on S and E
are completely determined by the respective quantum states
at each time step [39–41]. Accordingly, these transforma-
tions can be implemented as ρ̂S (t ) = �n[ρ̂S (0)] and ρ̂E (t ) =
�n[ρ̂E (0)], which make the probabilistic factors change based
on the rule (1 − p) → (1 − p)n = limn→∞(1 − �t

n )n = e−�t ,
where we assumed �t → 0 [38]. In this form, we can write

ρ̂S (t ) =
[

A11(t ) A12(t )
A21(t ) A22(t )

]
, ρ̂E (t ) =

[
B11(t ) B12(t )
B21(t ) B22(t )

]
.

(11)

In this case, the entries of ρ̂S (t ) are given by A11(t ) =
[α2 + (1 − α2)δ(t )]w0 + α2γ (t )w1, A12(t ) = A21(t ) =
α
√

1 − α2[γ (t )]1/2, and A22(t ) = (1 − α2)γ (t )w0 +
[(1 − α2) + α2δ(t )]w1. In turn, the entries of ρ̂E (t ) are
B11(t ) = [α2 + (1 − a2)γ (t )]w0 + α2δ(t )w1, B12(t ) =
B21(t ) = α

√
1 − α2[δ(t )]1/2, and B22(t ) = (1 − α2)δ(t )w0 +

[(1 − α2) + α2γ (t )]w1. In these equations we have that
γ (t ) = e−�t and δ(t ) = 1 − e−�t . The consistency of
the states in Eq. (11) in this physical scenario relies on
the tacit assumption that the characteristic timescale of the
system-environment interaction, τint = 1/�, is much faster
than the characteristic time of the other transitions involving
the environment states |E0〉 and |E1〉. It is worth mentioning
that the positive constant �, which can also be interpreted as
a decoherence rate of S , is a characteristic of the Markovian
dynamics assumed here [39–41]. As a consequence, there is
a flow of information from the system to the environment
before they reach a steady state. As we shall see, this behavior
is indicated in the graphs of the thermodynamic quantities
shown in Fig. 2.
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FIG. 2. Time evolution of the heat exchange, coherent energy,
and internal energy of the (a) system S and (b) environment qubit
E , interacting via the GADC. Initially, S is in a maximally coherent
state, |+〉 = 1/

√
2(|g〉 + |e〉), and E is at thermal equilibrium with

inverse temperature β = 1/(Ee − Eg). For simplicity, we assumed
� = 1 in both panels.

IV. THERMODYNAMICS OF THE MODEL

Having found the density operators of the system S and the
environment qubit E , ρ̂S (t ) and ρ̂E (t ), and considering the re-
spective Hamiltonians, ĤS = Eg |g〉 〈g| + Ee |e〉 〈e| and ĤE =
E0 |E0〉 〈E0| + E1 |E1〉 〈E1|, we can calculate the eigenvalues
and eigenstates of these four operators. This information al-
lows us to calculate the thermodynamic properties of S and E
as a function of time during the interaction process, according
to Eqs. (2)–(4). As the energy eigenvalues of S and E are
time independent, it is straightforward to see from Eq. (2)
that no work is done on the system and the environment, i.e.,
WS (t ) = WE (t ) = 0. However, in order to calculate the heat
exchange and the coherent energy of S and E , we first need
to fix some parameters. As can be seen from the off-diagonal
elements of ρ̂S (t ) and ρ̂E (t ), the quantum coherence of these
states varies only if α �= 0, 1 [42,43]. Thus, an interesting case
to study is when α = 1/

√
2. Let us also consider that the

inverse temperature of the environment is β = 1/(Ee − Eg).
In this form, we have that w0 ≈ 0.73 and w1 ≈ 0.27.

According to Eqs. (3) and (4), we are now able to calculate
the heat exchange and coherent energy of the system, QS (t )
and CS (t ), and the environment, QE (t ) and CE (t ), as the
GADC proceeds. Although these quantities can be computed
analytically, the expressions are too cumbersome to be shown
here. Instead, we plot the results as a function of time, as
shown in Fig. 2. It can be verified that �US (t ) = −�UE (t ) =
tr{ĤS (ρ̂S (t ) − ρ̂S (0))}, ∀t . However, we call attention to the
difference between QS (t ) and −QE (t ), and between CS (t )
and −CE (t ), especially for t < 4. This result confirms that
the weak-coupling condition, in which the relation QS (t ) =
−QE (t ) is applicable, is not fulfilled in the present model.
In order to quantify the discrepancy between the heat re-
leased by E and the heat absorbed by S , we introduce the

FIG. 3. Time evolution of the heat asymmetry QSE (t ) between
the system and environment, which interact via the GADC (we used
the same parameters of Fig. 2). If compared with the values of QS (t )
and QE (t ) shown in Fig. 2, we observe that the heat asymmetry is
high for short times (t < 2). The inset presents the time evolution
of the entanglement negativity N [ρ̂SE (t )] created between S and E .
Curiously, QSE (t ) and N [ρ̂SE (t )] are proportional in this model.

quantity QSE (t ) = |QS (t ) + QE (t )| that we call heat asym-
metry, whose time dependence is shown in Fig. 3. Note that,
since �US (t ) = −�UE (t ) and WS (t ) = WE (t ) = 0, the event
QSE (t ) �= 0 is a consequence of the difference between the
rates of entropy change of the system and the environment,
i.e., dS(ρ̂S )/dt �= −dS(ρ̂E )/dt [43]. Meantime, the quantity
QSE (t ) approaches zero for long times.

We also see from Eq. (4) that the coherent energy C(t )
can be physically interpreted as the energy transfer to or
from a system accompanied by coherence change. Based on
this interpretation, we can say that the amount of coherent
energy entailed in a quantum process depends both on the
initial coherence of the system and, of course, the nature of
the interaction with the environment. In general, quantum
transformations that involve large amounts of coherent energy
are those in which the system is initially in a high-coherence
state, and the coupling with the environment causes strong dis-
sipation and decoherence [44–46]. In this context, we observe
that the coherent energy flow may become more prominent
when the system is coupled to low-temperature environments,
as in the spin-spin model [47,48], and high-temperature envi-
ronments, as in the Caldeira-Leggett model [49,50]. Actually,
we note that coherent energy, as well as heat exchange, is not
a quantity that is determined by the coupling strength.

V. QUANTUM CORRELATIONS

We next focus on the study of the entanglement created
due to the coupling between S and E . The quantification of
entanglement for bipartite mixed states is not a trivial task.
Nevertheless, since we reduced our problem to a qubit-qubit
interaction, we can use the concept of negativity to character-
ize the system-environment entanglement. The negativity is
an entanglement monotone given by [51,52]

N (ρ̂SE ) =
∥∥ρ̂

TS
SE

∥∥ − 1

2
, (12)

where ρ̂SE denotes the density matrix of the composite sys-
tem, comprising S and E , and ρ̂

TS
SE the partial transpose of
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ρ̂SE with respect to the system. The trace norm of an operator
Ô is defined as ‖Ô‖ = tr{

√
ÔÔ†}. The negativity is also given

by the sum of the absolute values of the negative eigenvalues
of ρ̂

TS
SE , which vanishes for unentangled states. Previous stud-

ies have used the negativity to quantify system-environment
quantum correlations [53,54]. The time evolution of the oper-
ator ρ̂SE can be calculated from the initial uncorrelated state
ρ̂SE (0) = ρ̂S (0) ⊗ ρ̂E (0) as ρ̂SE (t ) = Û ρ̂SE (0)Û†, with Û
given in Eq. (9), along with the probabilistic rules considered
here, p → 1 − e−�t . This, in combination with Eq. (12), per-
mits us to calculate the system-environment entanglement as a
function of time, N [ρ̂SE (t )], for the GADC [43]. The result is
displayed in the inset of Fig. 3. Interestingly, our calculations
showed that N [ρ̂SE (t )] and QSE (t ), which were obtained
from two completely different theories, are proportional to
each other. This can be observed in the time-dependent pro-
files shown in Fig. 3.

With the results of the energy exchanges and quantum
correlations between S and E established, we can investigate
the energy cost to generate entanglement in this model, which
is an essential resource for many quantum information tasks
[37]. From Eqs. (5)–(8) we see that the energy of the compos-
ite system is clearly conserved in the GADC, as confirmed by
the result �US (t ) = −�UE (t ). Then, we pose the question
of where the energy used to create this entanglement comes
from. In Fig. 2 we observe that, when the interaction begins,
E releases an amount of heat that is not totally absorbed by
S , and, according to Fig. 3, this is exactly when entanglement
is created. After that (mostly in the interval 1 < t < 3), E still
releases heat, but S absorbs a larger amount. This process con-
tinues until all heat released by E is absorbed by S; for long
times we have QS = −QE ≈ 0.104(Ee − Eg). In this form,
we can assign the energy used to generate entanglement to the
transient imbalance between the released and absorbed heat

involving S and E . This justifies the proportionality between
QSE (t ) and N [ρ̂SE (t )] along the entire process, and sheds a
different light on the idea that entanglement is created at the
cost of work [55–58].

VI. CONCLUSION

We have presented a framework to study the thermody-
namics of an open quantum system strongly coupled to a
heat bath, which takes into account the energetic aspects of
quantum-mechanical resources as coherence and entangle-
ment. The method was used to provide a thermodynamic
description of the generalized amplitude-damping channel
(GADC), from the point of view of both system and environ-
ment. We demonstrated that, when the interaction begins, an
asymmetry between the heat released by the environment and
the heat absorbed by the system emerges, while a quantum
correlation is established. More specifically, it was found that
the heat asymmetry in this example is proportional to the
entanglement negativity during the complete time evolution.
This important finding suggests that the creation of quantum
correlations does not come necessarily at the price of doing
work on the interacting systems. This development opens
up another venue for exploring thermodynamics at strong
coupling.
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