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Exact results for average cluster numbers in bond percolation on infinite-length lattice strips
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We calculate exact analytic expressions for the average cluster numbers 〈k〉�s on infinite-length strips �s,
with various widths, of several different lattices, as functions of the bond occupation probability p. It is proved
that these expressions are rational functions of p. As special cases of our results, we obtain exact values of
〈k〉�s and derivatives of 〈k〉�s with respect to p, evaluated at the critical percolation probabilities pc,� for the
corresponding infinite two-dimensional lattices �. We compare these exact results with an analytic finite-size
correction formula and find excellent agreement. We also analyze how unphysical poles in 〈k〉�s determine the
radii of convergence of series expansions for small p and for p near to unity. Our calculations are performed for
infinite-length strips of the square, triangular, and honeycomb lattices with several types of transverse boundary
conditions.
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I. INTRODUCTION

The study of percolation on lattice graphs elucidates the
effect of vacant sites and/or bonds on the connectedness
properties of the system. Here we consider bond percolation,
in which the bonds of the lattice are randomly present with
probability p and thus absent with probability 1 − p. Per-
colation is relevant for the analysis of such phenomena as
the flow of liquids through porous rock, electrical conduction
through composite materials, and the magnetic properties of
materials with lattice defects and impurities. On an infinite
lattice �, as p decreases from 1 to 0, the probability P(p)
for a site to be part of an infinite connected cluster decreases
and vanishes at a critical value pc,�, remaining identically
zero for 0 � p < pc,�. Other quantities also behave nonan-
alytically at p = pc,�. For example, as p increases toward
pc,� from below, the average cluster size S(p) diverges. Thus,
the percolation transition is a geometrical transition from a
region 0 � p < pc,�, in which only finite connected clusters
exist, to a region pc,� � p � 1, in which there is a percolating
cluster containing an infinite number of sites and bonds. The
singularities in various quantities such as P(p) and S(p) are
described by a set of critical exponents depending only on the
dimensionality d of � but independent of the specific type of
lattice and type (site or bond) of percolation (some reviews
include [1–4]).

One of the interesting quantities in percolation is the aver-
age number of (connected) clusters per site on a lattice graph
G, in particular, the limit as the number of sites n → ∞,

〈k〉{G} = lim
n→∞ n−1〈k〉G, (1.1)

where {G} denotes the given n → ∞ limit of the family of n-
vertex graphs G. Here, as in mathematical graph theory [3], a
cluster is defined as a connecting subgraph of G, including sin-

gle sites. Since as p → 0 there are no bonds and each site is a
cluster, it follows that limp→0〈k〉{G} = 1. On the other hand, as
p → 1 there is just one cluster, namely, �, so 〈k〉{G} = 0. This
function 〈k〉{G} is a monotonically decreasing function of p for
0 � p � 1; it is continuous but nonanalytic at p = pc,�, with
a finite singularity of the form (〈k〉{G})sing ∝ |p − pc,�|2−α .
There is no exact solution for 〈k〉� as a general function of p
for (site or bond) percolation on a regular lattice of dimension
d � 2, although a solution has been calculated for the Bethe
lattice [5]. Much has been learned from series expansions
[1,6–8] and Monte Carlo simulations [4,9].

Although the critical exponents describing singularities in
quantities such as P(p) and S(p) are universal, the critical
(threshold) values of p depend on the type (site or bond) of
percolation and on the type of lattice �. For bond percolation
on the two-dimensional lattices considered here, exact expres-
sions are known for these critical percolation threshold values
pc,� [10]. The exact values of 〈k〉� on each of these lattices �,
evaluated at the respective critical values p = pc,�, have also
been determined [11] (see also [12–14]), as have the finite-size
corrections [15,16].

In [17,18] we gave exact analytic calculations of average
cluster numbers 〈k〉�s as functions of p in bond percolation
for infinite-length strips, with various widths, of a variety of
lattices with certain transverse boundary conditions. We also
gave numerical values of 〈k〉�s evaluated at p = pc,� to five-
digit accuracy.

In the present paper we report a far-reaching extension
of this earlier work, which has enabled us to substantially
increase the number of lattice strips for which we are able to
calculate exact analytical expressions for the average cluster
numbers as functions of p. This is based on a method of
calculation that we have devised, which is much more pow-
erful than the method that we used in [17], as we explain in
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Sec. III. In addition to making possible exact calculations of
〈k〉�s on considerably wider infinite-length strips, this method
has enabled us to prove an important theorem that 〈k〉�s is a
rational function of p (see Sec. IV A).

By convention, the longitudinal (horizontal) direction
along a given lattice strip is taken to be the x direction and
the transverse (vertical) direction to be the y direction. We
denote a given infinite-length strip of a lattice � with width Ly

sites and with free or periodic transverse boundary conditions
(FBCy or PBCy, respectively) by [�, (Ly)F ] or [�, (Ly)P]. For
the case of the square lattice, we have also calculated 〈k〉 for
the case of infinite-length strips with self-dual (sd) transverse
boundary conditions (i.e., such that a finite strip graph is
invariant under a planar duality transformation that maps the
vertices and faces of a given graph to the faces and vertices
of the dual graph, respectively) and we denote these strips by
[sq, (Ly)sd]. Here we will often use the compact notation

�s ≡ [�, (Ly)BCy ] (1.2)

for infinite-length lattice strips (where the subscript s stands
for strip).

Our results include the following.
(1) We prove a theorem showing that for an infinite-length

lattice strip [�, (Ly)BCy ], the average number of clusters per
site 〈k〉[�,(Ly )BCy ] is a rational function of the bond occupation
probability p.

(2) We calculate exact expressions for 〈k〉[�,(Ly )BCy ] as func-
tions of p, for a variety of infinite-length lattice strips with
width Ly and certain transverse boundary conditions. The
lattices are square, triangular, and honeycomb.

(3) We calculate the exact values of 〈k〉[�,(Ly )BCy ] evaluated
at the critical value of p for the corresponding infinite two-
dimensional lattice �, pc,�, which we denote by

〈k〉[�,(Ly )BCy ]|p=pc,� . (1.3)

The numerical values of these exact analytic expressions agree
with the numerical values that we presented in [17] for the
respective infinite-length strips.

(4) We quantitatively study how these values approach the
critical value 〈k〉c,� for the infinite two-dimensional lattice �

as the strip width Ly increases and in particular compare with
the exact results from Refs. [15,16] for the leading finite-size
correction term in the case of periodic transverse boundary
conditions

〈k〉[�,(Ly )P]|p=pc,� = 〈k〉|c,� + c�b̃

L2
y

+ · · · , (1.4)

where we use the notation

〈k〉c,� ≡ 〈k〉�|p=pc,� (1.5)

for the average cluster number, per site, on the infinite two-
dimensional lattice � evaluated at p = pc,� and the ellipsis
denotes higher-order terms in 1/Ly. The coefficient b̃ is [15]

b̃ = 5
√

3

24
= 0.360 844 (1.6)

and c� is a mathematical constant that takes account of the
geometry of the lattice [see Eqs. (4.9) and (4.10) below].
With this geometric relation incorporated, the coefficient b̃

is universal. Our exact results are in very good agreement
with this formula (1.4), including (i) the (Ly)−2 dependence
of the leading correction term, (ii) the value of b̃, and (iii) the
universality with respect to lattice type. The universality of
b̃ was previously demonstrated from a comparative analysis
of the square and triangular lattices in [16]. In this context,
we recall that our results for 〈k〉[�,(Ly )BCy ], and hence for the
values 〈k〉[�,(Ly )P]|p=pc,� , are independent of the longitudinal
boundary conditions imposed on the lattice strips. For the
comparison with 〈k〉�|p=pc,� on the corresponding infinite
two-dimensional lattice �, we define the ratio

R[�,(Ly )BCy ],c = 〈k〉[�,(Ly )BCy ]|p=pc,�

〈k〉c,�
. (1.7)

(5) As a corollary of our theorem, we prove that
for infinite-length square-lattice strips, the critical values
〈k〉[sq,(Ly )BCy ]|p=pc,� are rational numbers and for infinite-length
strips of the triangular and honeycomb lattices they are ratio-
nal functions of the quantity sin(π/18) that appears in pc,tri

and pc,hc.
(6) We calculate d j〈k〉[�,(Ly )BCy ]/(d p) j with j = 1, 2, 3,

evaluated at p = pc,�, for infinite-length lattice strips �s with
a resultant determination of coefficients in the expansion of
〈k〉[�,(Ly )BCy ] about this value pc,�.

(7) We study the poles in 〈k〉[�,(Ly )BCy ] involving the deter-
mination of the pole or the complex-conjugate pair of poles
closest to the origin in the complex-p plane, which thus set the
radius of convergence of the small-p series. A corresponding
analysis is given of the poles of 〈k〉[�,(Ly )BCy ] in the complex-r
plane, where

r ≡ 1 − p. (1.8)

Some of our results are summarized in Tables I–VI . Our
results in Ref. [17] included analytic calculations of 〈k〉�s

for �s = [sq, 2F ], [sq, 2P], [sq, 1sd], [tri, 2F ], [tri, 2P], and
[hc, 2P]. We also presented numerical calculations of 〈k〉�s

and 〈k〉�s |p=pc,� for several other infinite-length strips. These
included plots of 〈k〉�s as functions of p for p ∈ [0, 1] for the
square, triangular, and honeycomb lattices with the various
transverse boundary conditions for widths up to Ly = 5. We
refer the reader to Ref. [17] for these results.

There have been a number of developments in percolation
theory since our Ref. [17] that serve as motivation for the
present work, e.g., [4,19,20]. These include studies of the
behavior of 〈k〉� at p = pc,� [19] for two-dimensional lattices
�, relevant to our results mentioned in item 6 above, and a
recent calculation of 〈k〉sq,diag|p=pc,sq on infinite-length diago-
nal strips of the square lattice [20]. The work in Ref. [20] is
complementary to ours, since [20] does not calculate 〈k〉sq,diag

as a general function of p, but instead calculates the evaluation
of 〈k〉sq,diag at the special point p = pc,sq for general width
(and also uses strips oriented in a diagonal direction rather
than along the lattice axes, as we do). However, Ref. [19]
shows the insights into percolation that can be gained by
exact calculations on infinite-length lattice strips, just as our
previous studies in [17,18] did. We discuss this further in
Sec. VIII.

In statistical mechanics, it had been very valuable to
use high-temperature series expansions of thermodynamic
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TABLE I. Structural features of exact expressions for average
cluster numbers 〈k〉[�,(Ly )BCy ] on infinite-length strips of various lat-
tices � with width Ly and specified transverse boundary conditions
(BC)y, expressed as functions of bond occupation probability p
and bond vacancy probability r = 1 − p. For each such lattice strip
we list the degrees deg(N[�,(Ly )BCy

]) and deg(D[�,(Ly )BCy ] ) of the nu-
merator and denominator of 〈k〉[�,(Ly )BCy ] (as polynomials in p or
r) and the degree deg[PF(N[�,(Ly )BCy ] )]. To save space, in the table
we write deg(N[�,(Ly )BCy ] ) ≡ deg(N ), deg(D[�,(Ly )BCy ] ) ≡ deg(D), and
deg[PF(N[�,(Ly )BCy ] )] ≡ deg[PF(N )].

� (Ly )BCy deg(N ) deg(D) deg[PF(N )]

sq 1F 1 0 1
sq 2F 4 3 2
sq 3F 13 12 3
sq 4F 46 45 3

sq 2P 5 4 2
sq 3P 11 10 3
sq 4P 31 30 4
sq 5P 63 62 4

sq 1sd 3 2 3
sq 2sd 13 12 3
sq 3sd 53 52 3

tri 2F 3 2 3
tri 3F 16 15 4
tri 4F 42 41 4

tri 2P 10 6 4
tri 3P 23 17 6
tri 4P 55 47 6

hc 2F 6 5 2
hc 3F 13 12 2
hc 4F 72 71 2

hc 2P 4 3 2
hc 4P 32 31 3

quantities to determine the critical temperature. This was de-
termined via the estimate of the radius of convergence of these
series. However, the application of this procedure in studies
of percolation encountered a complication, namely, that the
radii of convergence of these series expansions were typically
determined not by the actual critical values of pc,� or rc,�, but
instead by unphysical singularities in the respective complex-
p plane and r plane that lie closer to the origin than pc,� or rc,�

[7,8]. Although this complication was circumvented, e.g., by
the use of Padé approximants, to get accurate determinations
of critical behavior at the percolation transition, it raises an
intriguing question, namely, whether one would encounter the
presence of similar unphysical singularities in analyses of ex-
act expressions for average cluster numbers on infinite-length
lattice strips. Our work in [17] provided some initial insight
into this question. Our present results go substantially further
in answering this question, since we have now succeeded
in calculating exact expressions for 〈k〉�s for considerably
greater strip widths. Indeed, one of the interesting results of
our study of the poles in the exact expressions for 〈k〉�s on
various infinite-length lattice strips �s is that we find that, as
the strip width Ly increases, it is generic that there is a pole on

TABLE II. Values of average cluster numbers 〈k〉[�,(Ly )BCy ] on
infinite-length strips of various lattices with specified transverse
boundary conditions, evaluated at the critical bond occupation prob-
abilities p = pc,� for the corresponding infinite two-dimensional
lattices. These values are given analytically and numerically, to the
indicated floating-point accuracy. The entries in the rightmost col-
umn of the table are the values of the ratio R[�,(Ly )BCy ] in Eq. (1.7).

� (Ly )BCy 〈k〉[�,(Ly )BCy ] 〈k〉[�,(Ly )BCy ],num R[�,(Ly )BCy ]

sq 1F 1/2 0.5 5.098076
sq 2F 2/7 0.285714 2.913186
sq 3F 147/670 0.219403 2.237066
sq 4F 27229/145196 0.187533 1.912112

sq 2P 1/5 0.2 2.039230
sq 3P 11/78 0.141026 1.437919
sq 4P 677/5572 0.121500 1.238836
sq 5P 85013/753370 0.112844 1.150571

sq 1sd 1/6 0.166667 1.699359
sq 2sd 17/118 0.144068 1.468937
sq 3sd 2051/15474 0.132545 1.351448

sq ∞ Eq. (2.12) 0.0980762 1

tri 2F Eq. (6.3) 0.359575 3.214963
tri 3F Eq. (6.2) 0.271487 2.427362
tri 4F Eq. (6.8) 0.229460 2.051605

tri 2P Eq. (6.14) 0.190910 1.706929
tri 3P Eq. (6.13) 0.146651 1.311205
tri 4P Eq. (6.19) 0.131378 1.174651

tri ∞ Eq. (2.13) 0.111844 1

hc 2F Eq. (7.3) 0.204751 2.663717
hc 3F Eq. (7.2) 0.160002 2.081555
hc 4F Eq. (7.9) 0.138341 1.799749

hc 2P Eq. (7.15) 0.127450 1.658066
hc 4P Eq. (7.17) 0.0898337 1.168696

hc ∞ Eq. (2.14) 0.076867 1

the negative real axis or a complex-conjugate pair of poles in
the complex-p plane closer to the origin than the value pc,�

for the infinite lattice, and similarly for the pole(s) in the r
plane.

TABLE III. Values of ai,[sq,(Ly )BCy ] for i = 1, 2 in Eq. (2.6) for
infinite-length, finite-width square-lattice strips with various trans-
verse boundary conditions.

(Ly )BCy a1,[sq,(Ly )BCy ] a2,[sq,(Ly )BCy ]

1F −1 0
2F −1.204082 0.921283
3F −1.214450 1.464119
4F −1.200912 1.833688

2P −1 1.493333
3P −1 2.201755
4P −1 2.617979
5P −1 2.898863

1sd −1 1.777778
2sd −1 2.186394
3sd −1 2.4668475
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TABLE IV. Small-p and small-r expansions of the average cluster number 〈k〉[�,(Ly )BCy ] for the infinite-length strip of the lattice � with
width Ly and transverse boundary conditions BCy.

� (Ly )BCy Small-p series Small-r series

sq 1F 1 − p (exact) r (exact)
sq 2F 1 − 3

2 p + 1
2 p4 + 1

2 p6 + O(p7) 1
2 r2 + 2r3 − 7

2 r5 − 3
2 r6 + O(r7)

sq 3F 1 − 5
3 p + 2

3 p4 + p6 + O(p7) r3 + 7
3 r4 + 2r5 − 11

3 r6 + O(r7)
sq 4F 1 − 7

4 p + 3
4 p4 + 5

4 p6 + O(p7) 1
2 r3 + 5

4 r4 + 2r5 + 19
4 r6 + O(r7)

sq 2P 1 − 2p + 1
2 p2 + 2p4 − 2p5 + 5

2 p6 + O(p7) 1
2 r2 + 2r4 − 2r5 + 5

2 r6 − 6r7 + O(r8)
sq 3P 1 − 2p + 1

3 p3 + p4 + 2p5 + O(p7) 1
3 r3 + r4 + 2r5 − 2r7 + O(r8)

sq 4P 1 − 2p + 5
4 p4 + 5p6 + O(p7) 5

4 r4 + 5r6 − 4r7 + O(r8)
sq 5P 1 − 2p + p4 + 1

5 p5 + 2p6 + O(p7) r4 + 1
5 r5 + 2r6 + 2r7 + O(r8)

sq 1sd 1 − 2p + p3 + p4 − p6 − p7 + O(p9) r3 + r4 − r6 − r7 + O(r9)
sq 2sd 1 − 2p + 1

2 p3 + p4 + 1
2 p5 + p6 + O(p7) 1

2 r3 + r4 + 1
2 r5 + r6 + r7 + O(r8)

sq 3sd 1 − 2p + 1
3 p3 + p4 + 1

3 p5 + 4
3 p6 + O(p7) 1

3 r3 + r4 + 1
3 r5 + 4

3 r6 + 1
3 r7 + O(r8)

sq ∞ 1 − 2p + p4 + 2p6 + O(p7) r4 + 2r6 − 2r7 + O(r8)

tri 2F 1 − 2p + p3 + p4 − p6 + O(p7) r3 + r4 − r6 − r7 + r9 + r10 + O(r12)
tri 3F 1 − 7

3 p + 4
3 p3 + 5

3 p4 + p5 − 1
3 p6 + O(p7) 2

3 r4 + 4
3 r5 + r6 + 2

3 r7 − 1
3 r8 − 17

3 r9 − 5
3 r10 + O(r11)

tri 4F 1 − 5
2 p + 3

2 p3 + 2p4 + 3
2 p5 + 1

2 p6 + O(p7) 1
2 r4 + r6 + 3

2 r7 + 2r8 + 2r9 − 1
2 r10 + O(r11)

tri 2P 1 − 3p + 1
2 p2 + 4p3 + 9

2 p4 − 10p5 − 10p6 + O(p7) 1
2 r4 + 2r6 − 2r8 + O(r10)

tri 3P 1 − 3p + 7
3 p3 + 6p4 + 11p5 − 17

3 p6 + O(p7) 4
3 r6 + 2r8 + 2r10 + O(r11)

tri 4P 1 − 3p + 2p3 + 13
4 p4 + 7p5 + 22p6 + O(p7) r6 + 1

4 r8 + 6r10 + O(r11)

tri ∞ 1 − 3p + 2p3 + 3p4 + 3p5 + 3p6 + O(p7) r6 + 3r10 + 3r11 + O(r12)

hc 2F 1 − 5
4 p + 1

4 p6 + 1
4 p10 + O(p11) 3

2 r2 + 3r3 − 31
4 r4 − 7r5 + 35r6 + O(r7)

hc 3F 1 − 4
3 p + 1

3 p6 + 2
3 p10 + O(p11) 1

3 r2 + 3r3 + 17
3 r4 − 22

3 r5 − 53r6 + O(r7)
hc 4F 1 − 11

8 p + 3
8 p6 + 7

8 p10 + O(p11) 1
4 r2 + 3

2 r3 + 29
8 r4 + 93

8 r5 + 35
8 r6 + O(r7)

hc 2P 1 − 3
2 p + 1

2 p4 + 1
2 p6 − 1

2 p7 + 1
2 p8 − p9 + p10 + O(p11) 1

2 r2 + 2r3 − 7
5 r5 − 3

2 r6 + O(r7)
hc 4P 1 − 3

2 p + 1
2 p6 + 3

4 p8 + 5
2 p10 + O(p11) r3 + 9

4 r4 + 11
2 r5 + 7r6 + O(r7)

hc ∞ 1 − 3
2 p + 1

2 p6 + 3
2 p10 + O(p11) r3 + 3

2 r4 + 3
5 r6 + O(r7)

II. BACKGROUND

In this section we review some relevant background. We
begin with an important connection between percolation and
the Potts model. For the sake of generality, let us consider the
q-state Potts model on a connected graph G = (V, E ) defined
by its set of sites (vertices) V and its set of bonds (called edges
in mathematical graph terminology) E . In graph theory, a
percolation cluster is a connected subgraph of G. The partition
function of the q-state Potts model on G is [21]

Z (G, q, v) =
∑
G′⊆G

qk(G′ )ve(G′ ), (2.1)

where G′ = (V, E ′) is a spanning subgraph of G, i.e., a sub-
graph containing all of the sites in G and a subset E ′ ⊆ E of
the bonds of G, e(G′) is the number of bonds in G′, and, as
above, k(G′) is the number of connected components in G′. In
the thermal context, v = eK − 1 is a temperature-dependent
Boltzmann variable, with K = J/(kBT ), where J is the spin-
spin coupling in the Potts Hamiltonian H = −J

∑
ei j

δσi,σ j ,
where ei j is the bond connecting sites i and j in G. The
dimensionless free energy is then defined as

f ({G}, q, v) = lim
n→∞

1

n
ln[Z (G, q, v)], (2.2)

where, as above, n denotes the number of sites in G and {G}
denotes the N → ∞ limit of G. Now in f ({G}, q, v), set v =
vp, where

vp = p

1 − p
. (2.3)

Then the average number of clusters per site is

〈k〉{G} = ∂ f ({G}, q, vp)

∂q

∣∣∣∣
q=1

, (2.4)

which shows the correspondence with the q-state Potts model
in the limit q → 1.1 Now we specialize to the case where G
is a lattice graph. The relation (2.4) leads to the inference that
the percolation transition on these lattices is in the universality
class of the q-state Potts model in the limit where q → 1,
with critical exponents α = −2/3, β = 5/36, γ = 43/18, etc.

1By correspondence with the Potts model in the limit q → 1, one
means that the thermodynamic limit is taken first for q �= 1, after
which one then takes the limit q → 1. On a finite graph with q
set equal to 1, the partition function is trivially given by Eq. (3.4),
and, in particular, on a 
-regular graph, in the limit n(G) → ∞,
f = (
/2) ln(v + 1) = (
/2)K , which is an analytic function of K
and has no nonanalytic critical behavior.
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TABLE V. For each infinite-length strip of the lattice � with width Ly and transverse boundary conditions BCy, denoted by [�, (Ly )BCy ],
this table lists information about the pole or complex-conjugate pair of poles located nearest the origin in the complex-p or -r plane, in the
exact expression for the average cluster number 〈k〉[�,(Ly )BCy ]. The columns are 1, �; 2, (Ly )BCy ; 3, p[�,(Ly )BCy ],np; 4, |p[�,(Ly )BCy ],np|; 5, whether
|p[�,(Ly )BCy ],np| is larger or smaller than the critical bond occupation probability pc,� on the corresponding infinite two-dimensional lattice;
6, r[�,(Ly )BCy ],np; 7, |r[�,(Ly )BCy ],np|; and 8, whether |r[�,(Ly )BCy ],np| is larger or smaller than the critical bond occupation probability rc,� on the
corresponding infinite two-dimensional lattice. The values of pc,� are given in Eqs. (2.8)–(2.10) and rc,� = 1 − pc,�. For brevity of notation,
column 5 is labeled with the symbol rpc, standing for |p[�,(Ly )BCy ],np| “relative to pc,�,” and similarly, column 8 is labeled with the symbol rrc,
standing for |[r[�,(Ly )BCy ],np| “relative to rc,�.” No entry indicates that an entry is not applicable.

� (Ly )BCy p[�,(Ly )BCy ],np |p[�,(Ly )BCy ],np| rpc r[�,(Ly )BCy ],np |r[�,(Ly )BCy ],np| rrc

sq 1F none none
sq 2F −0.754878 0.754878 >pc,sq 0.122561±0.744862i 0.754878 >rc,sq

sq 3F −0.400758±0.399068i 0.565564 >pc,sq −0.411578 0.411578 <rc,sq

sq 4F −0.492588 0.492588 <pc,sq −0.317578±0.244625i 0.400871 <rc,sq

sq 2P −0.618034 0.618034 >pc,sq −0.618034 0.618034 >rc,sq

sq 3P −0.354731±0.319907i 0.477676 <pc,sq −0.354731±0.319907i 0.477676 <rc,sq

sq 4P −0.424294 0.424294 <pc,sq −0.424294 0.424294 <rc,sq

sq 5P −0.371844±0.169863i 0.408805 <pc,sq −0.371844±0.169863i 0.408805 <rc,sq

sq 1sd e±iπ/3 1 >pc,sq e±iπ/3 1 >rc,sq

sq 2sd −0.483657 0.483657 <pc,sq −0.483657 0.483657 <rc,sq

sq 3sd −0.341129±0.289364i 0.447326 <pc,sq −0.341129±0.289364i 0.447326 <pc,sq

tri 2F e±iπ/3 1 >pc,tri e±iπ/3 1 >rc,tri

tri 3F −0.300743±0.259341i 0.397120 >pc,tri −0.599392 0.599392 <rc,tri

tri 4F −0.335309 0.335309 <pc,tri −0.419061±0.379572i 0.565408 <rc,tri

tri 2P −0.374357 0.374357 >pc,tri −0.6538705 0.6538705 >rc,tri

tri 3P −0.2277805±0.175218i 0.287376 <pc,tri −0.594760 0.594760 <rc,tri

tri 4P −0.260779 0.260779 <pc,tri −0.570571 0.570571 <rc,tri

hc 2F −0.856675 0.856675 >pc,hc −0.0783889±0.496940i 0.503084 >rc,hc

hc 3F −0.492595±0.542272i 0.732604 >pc,hc 0.123348±0.377252i 0.396906 >rc,hc

hc 4F −0.552838±0.373251i 0.667042 >pc,hc −0.212449±0.136692i 0.252625 <rc,hc

hc 2P −0.754878 0.754878 >pc,hc 0.122561±0.744862i 0.754878 >rc,hc

hc 4P −0.585767 0.585767 <pc,hc −0.270891 0.270891 <rc,hc

[22,23] and an associated conformal field theory having a
Virasoro algebra with central charge c = 0 [24] for the case of
dimensionality d = 2 relevant here. In [17,18] we used the re-
lation (2.4) together with our earlier exact calculations of f on
strips of lattices with arbitrarily great length and fixed width,
with various transverse boundary conditions (BCy) to obtain

TABLE VI. Values of b̃[�,(Ly )P ] in Eq. (1.6) for infinite-length,
finite-width lattice strips with periodic transverse boundary con-
ditions, including a comparison with the value b̃ = 5

√
3/24 =

0.360 844 in Eq. (1.4) from Ref. [15] (see also [16]).

� (Ly )P b̃[�,(Ly )P ]
b̃[�,(Ly )P ]

b̃�

sq 2P 0.407695 1.129838
sq 3P 0.386545 1.071225
sq 4P 0.374786 1.038638
sq 5P 0.369185 1.023116

tri 2P 0.365190 1.012044
tri 3P 0.361720 1.002428
tri 4P 0.360890 1.0001279

hc 2P 0.350452 0.971201
hc 4P 0.359354 0.995871

new analytic expressions and numerical values for 〈k〉�s for
infinite-length strips of these types.

For a lattice �, in the thermodynamic limit, the average
cluster number per site has the following expansion in the
local neighborhood of pc,�:

〈k〉� = 〈k〉c,� + a1,�s (p − pc,λ) + a2,�s (p − pc,λ)2

+A�,±|p − pc,λ|2−α. (2.5)

Here α = −2/3 for d = 2, as noted above, and the amplitudes
A�,± refer to the limits p − pc,� → 0±, respectively. Thus,
〈k〉� has a finite branch-point singularity at p = pc,�. A recent
discussion of the coefficients in this expansion is [19] (where
〈k〉� is defined per bond rather than per site).

A theorem that we present below shows that on an infinite-
length strip of a lattice � with width Ly and some prescribed
transverse boundary conditions BCy, 〈k〉�s , evaluated at p =
pc,�, is a rational function of p. Although it is therefore
meromorphic, none of its poles occur in the physical interval
p ∈ [0, 1]. Hence, for p in this interval, it has a Taylor series
expansion, and if one evaluates this at the value of p equal to
the critical value for the infinite lattice pc,�, then one obtains

〈k〉�s |p=pc,� = 〈k〉�s,c +
∞∑
j=1

a j,�s (p − pc,�) j, (2.6)
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where

a j,�s = 1

j!

d j〈k〉�s

(d p) j

∣∣∣∣
p=pc,�

. (2.7)

As our results in [17] showed, and our current results further
demonstrate, for a given infinite-length strip [�, (Ly)BCy ], as
Ly increases, 〈k〉�s |p=pc,� approaches the critical value 〈k〉c,�

for the infinite two-dimensional lattice.
The known values of critical bond occupation probabilities

for the square (sq), triangular (tri), and honeycomb (hc) lat-
tices are [10] (see also [12,14])

pc,sq = 1

2
, (2.8)

pc,tri = 2 sin

(
π

18

)
= 0.347 296, (2.9)

and

pc,hc = 1 − pc,tri = 1 − 2 sin

(
π

18

)
= 0.652 704. (2.10)

Here and below, floating-point values are given to the indi-
cated number of significant figures. It will be convenient to
introduce the shorthand symbol

s ≡ sin

(
π

18

)
. (2.11)

Exact analytic expressions for 〈k〉c,� were presented in [11]
(see also related results in [12,14]):

〈k〉c,sq = 3
√

3 − 5

2
= 0.098 076 2, (2.12)

〈k〉c,tri = 35

4
− 3

pc,tri
= −6 + 35s

4s
= 0.111 844, (2.13)

and

〈k〉c,hc = 1

2

(〈k〉c,tri + p3
c,tri

) = −6 + 31s + 24s2

8s
= 0.076 866 7. (2.14)

On a lattice � with coordination number 
�, the small-
p series expansion for 〈k〉� has the generic form 〈k〉� =
1 − (
�/2)p + · · · , where the ellipsis indicates higher-order
terms. For the square, triangular, and honeycomb lattices, the
small-p series expansions are [7]

〈k〉sq = 1 − 2p + p4 + 2p6 − 2p7 + 7p8 + O(p9), (2.15)

〈k〉tri = 1 − 3p + 2p3 + 3p4 + 3p5 + 3p6 + 6p7 + O(p9),

(2.16)

and

〈k〉hc = 1 − 3
2 p + 1

2 p6 + 3
2 p10 + O(p11). (2.17)

These have been calculated to higher order than shown here,
but we will only need the expansions to these respective or-
ders for comparison with the small-p expansions of our exact
expressions for average cluster numbers on infinite-length
strips of various lattices with specified transverse boundary
conditions.

It has also been valuable to calculate Taylor series expan-
sions of average cluster numbers in terms of the expansion
variable r for small r. On (the thermodynamic limit of) a
lattice � with coordination number 
�, the small-r series
expansion for 〈k〉� has the generic form 〈k〉� = r
� + · · · ,
where the ellipsis indicates higher-order terms. For the square,
triangular, and honeycomb lattices, the small-r series expan-
sions are [7]

〈k〉sq = r4 + 2r6 − 2r7 + 7r8 + O(r9), (2.18)

〈k〉tri = r6 + 3r10 − 3r11 + 2r12 + O(r14), (2.19)

and

〈k〉hc = r3 + 3
2 r4 + 3

2 r6 + O(r7). (2.20)

III. CALCULATIONAL METHODS

We consider strip graphs of a lattice � of finite width
Ly and arbitrarily great length m = Lx, with a given set of
longitudinal and transverse boundary conditions. For these
strip graphs, the Potts model partition function Z has the form
of a finite sum of mth powers

Z ([�, Lx, Ly, BCx, BCy], q, v) =
∑

j

c j (λ j )
m, (3.1)

where c j are coefficients and λ j are certain functions that
depend the type of strip, but are independent of the length
m. The λ j functions are eigenvalues of a transfer matrix and
also determine the form of a recursion relation satisfied by
the Potts model partition function or equivalent Tutte-Whitney
polynomial for the given strip graph [25,26]. In the limit of
infinite length m → ∞, this sum is dominated by the λ of
largest magnitude, so the reduced dimensionless free energy
is

f
([

�, (Ly)BCy

]
, q, v

) = 1

Ly
ln

(
λdom,[�,(Ly )BCy ]

)
. (3.2)

In previous work, we have determined the λ functions and in
particular λdom for a number of lattice strips �s (e.g., [27–36]).
As was shown in this earlier work, the above-mentioned domi-
nant λ function, and hence the resultant reduced free energy f ,
is independent of the type of longitudinal boundary conditions
used for the finite-m lattice strips. We will make use of a
general property of Z (G, q, v), which holds for any graph G,
namely,

Z (G, q = 1, v) = (v + 1)e(G), (3.3)

where, as above, e(G) denotes the number of edges (bonds)
on G. This follows because if q = 1, then the Potts model
Hamiltonian H reduces simply to H = −Je(G), so

Z (G, q = 1, v) = eKe(G) = (v + 1)e(G). (3.4)

For a 
-regular graph G, e(G) = (
/2)n(G). More generally,
for a graph which is not 
 regular, one can define an effective
vertex degree 
eff (e.g., [37]). as


eff = lim
n(G)→∞

2e(G)

n(G)
. (3.5)
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Hence, for a family of 
-regular lattice strip graphs �s,
Eq. (3.2) applies for q = 1 with

λdom,�s |q=1 = (v + 1)(
/2)Ly , (3.6)

and similarly for non-
-regular graphs, with 
 replaced by

eff . In particular, for the application to percolation, setting
v = vp = p/(1 − p), we have

λdom,�s |q=1,v=vp =
(

1

1 − p

)(
/2)Ly

. (3.7)

Each of the λ functions appearing in Eq. (3.1), and in par-
ticular the dominant λ, is a solution to an algebraic equation

jmax∑
j=0

κ�s, j
(
λ�s

) j = 0, (3.8)

where the coefficients κ�s, j are polynomials in q and v. The
property that the κ�s, j are polynomials in q and v follows
from a combination of the properties that (i) Z (G, q, v) is a
polynomial in q and v, as is evident from Eq. (3.1); (ii) the
sums of mth powers of λ j that enter in Eq. (3.1) determining
the dominant λ j arise as traces of the mth power of a transfer
matrix and hence are symmetric polynomials in the roots of
the characteristic equation for the transfer matrix; and (iii)
a theorem embodied in Newton’s identities that states that a
symmetric polynomial in the roots of an algebraic equation is
expressible as a polynomial in the coefficients entering in the
equation [38,39].

For many strip graphs, jmax in the equation of the form
(3.8) for the dominant λ is jmax � 5, so one cannot solve for
λdom,�s in terms of radicals. Fortunately, however, one does
not need to do this; all that one needs to do is to calculate
λdom,�s and dλdom,�s/dq, both evaluated at q = 1, for inser-
tion into Eq. (2.4). We can do this as follows. Differentiating
Eq. (3.8) with respect to q and solving for dλdom,�s/dq, we
have

dλdom,�s

dq
= −

∑ jmax
j=0

(
λdom,�s

) j dκ�s , j

dq∑ jmax
j=1 jκ�s, j

(
λdom,�s

) j−1 . (3.9)

Evaluating this equation at q = 1 and v = vp, we have

dλdom,�s

dq

∣∣∣∣
q=1,v=vp

= −
∑ jmax

j=0(1 − p)− j
[ dκ�s , j

dq

]|q=1,v=vp∑ jmax
j=1 j

[
κ�s, j

∣∣
q=1,v=vp

]
(1 − p)1− j

.

(3.10)

This is a powerful result, because it means that in calculating
〈k〉�s , one does not have to actually solve for the dominant
root λdom,�s but instead only use its derivative evaluated at v =
vp and q = 1, which can be expressed as a rational function of
p. As discussed in Refs. [27,28], our method of calculating
Z (G, q, v), and hence, in particular, Eq. (3.8) for a given
lattice strip, is an iterative use of the deletion-contraction
relation Z (G, q, v) = Z (G − e, q, v) + vZ (G/e, q, v), where
G − e denotes the graph obtained from G by deleting the edge
(i.e., the bond) e and G/e denotes the graph obtained from G
by deleting the bond e and identifying the two vertices that
it connected, i.e., contracting on this bond. This is equiva-
lent to a transfer matrix method, which we have also used

[36,40]. The κ�s, j are the coefficients in the indicial equation
for the dominant eigenvalue λdom,�s of this transfer matrix for
the given strip �s and are determined from the entries in the
transfer matrix. The iterative use of the deletion-contraction
method for this calculation is a generalization of its previous
use in calculating generating functions for chromatic polyno-
mials of lattice strip graphs [41]. With the requisite Eq. (3.8)
for a given lattice strip �s, we then proceed to calculate
Eq. (3.10), which determines 〈k〉�s .

Having explained our method of calculation, we next dis-
cuss the analytic structure of the results and their pertinence
to series expansions. Because the Potts model is a discrete
spin model, the series expansions for 〈k〉�s for small p or
for small r are Taylor series expansions, with finite radii
of convergence. Owing to the fact that vp = p/(1 − p), a
small-p expansion for a (bond or site) percolation problem
is formally analogous to a high-temperature expansion of the
corresponding Potts model. Normally, a high-temperature ex-
pansion in a Potts model has a radius of convergence equal
to the critical point. However, the radii of convergence of
Taylor series expansions around both p = 0 and p = 1 were
typically set by unphysical singularities, and these radii of
convergence were less than the distance from the expansion
point to the physical singularity pc,� for the small-p expan-
sions and rc� = 1 − pc,� for small-r expansions [7,8]. We
showed in [17], using the exact expressions that we calculated
for 〈k〉�s on infinite-length, finite-width lattice strips, that
these expressions also exhibited poles nearer to the origin
in the complex-p plane than the respective value of pc,� on
the infinite two-dimensional lattice. Similarly, we showed that
these expressions, as functions of r, exhibited poles closer
to the origin in the complex-r plane than rc,� = 1 − pc,�

for the corresponding infinite two-dimensional lattices. Thus,
the calculations of 〈k〉�s on infinite-length lattice strips �s

in [17] provided insight into the influence of unphysical
poles in the small-p and small-r series expansions on infinite
two-dimensional lattices. Our present results provide further
insight into this phenomenon.

Our results on radii of convergence and pole structure
are based on a general property that we have proved above,
that 〈k〉�s is a rational function of p and hence also of r =
1 − p. For a given infinite-length strip �s of the lattice �

of finite width Ly and specified transverse boundary condi-
tions BCy, let us denote the set of poles in the complex-p
plane by p�s,i with the index i enumerating the number of
poles. For each infinite-length lattice strip �s, we determine
the pole or complex-conjugate pair of poles closest to the
origin, which thus determines the radius of convergence of
the small-p series. In a similar way, our exact expressions
〈k〉�s as functions of r provide insight into this, since we can
determine the poles in each of them and in particular the pole
or complex-conjugate pair of poles closest to the origin in the
complex-r plane, which thus set the radius of convergence of
the respective small-r series expansions of 〈k〉�s . It should
be noted that it is not the case that there is a simple relation
between the pole(s) nearest to the origin in the p plane and
the pole(s) nearest to the origin in the complex r plane. To
illustrate this, let us consider a hypothetical example in which,
for an infinite-length lattice strip �s, the exact expression for
the average cluster number 〈k〉�s has poles at p = −0.4 and
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p = 0.7. The pole nearest to the origin in the p plane is at
p = −0.4, so the radius of convergence of the small-p series
expansion of 〈k〉�s is 0.4. In this hypothetical example, the
poles in 〈k〉�s , expressed as a function of r, are at r = 0.3
and r = 1.4, so the radius of convergence of the small-r series
is 0.3. Thus, although there is a one-to-one correspondence
between the full set of poles of 〈k〉 in the complex-p and r
planes, it is not in general true that the nearest pole to the
origin in the complex-r plane is equal to 1 minus the value of
the nearest pole to the origin in the complex-r plane.

A word is in order concerning how the longitudinal and
transverse directions of our lattice strips relate to the lattice
vectors. For the square-lattice strips, we take these longitudi-
nal and transverse directions to be the lattice axes. The strips
of the triangular lattice are constructed by starting with a
square-lattice strip with the same boundary conditions and
adding diagonal bonds to each square, say, from the lower
left site to the upper right site of each square. A picture of
several illustrative finite-length sections of these triangular-
lattice strips was included as Fig. 1 in Ref. [29]. Pictures of
finite-length sections of strips of the honeycomb (brick) lattice
were given as Figs. 16 and 18 in Ref. [31]. In Ref. [32] we
presented results for square-lattice strip graphs with several
types of self-dual transverse boundary conditions (see also
[42]). To construct a strip of the square lattice with one type of
self-dual boundary condition, one starts with a square-lattice
strip of length Lx and width Ly vertices and periodic longitu-
dinal boundary conditions. One then adds bonds connecting
each site on the upper side of the strip to a single external
vertex. For a picture of a finite-length section of this self-dual
square-lattice strip graph, we refer the reader to Fig. 1 of
Ref. [32]. These all yield the same expression for 〈k〉sq,(Ly )sd .

The expressions for the effective coordination numbers

eff , as defined in Eq. (3.5), for the infinite-length strips that
we consider here are listed below:


[sq,(Ly )F ],eff = 4 − 2

Ly
, (3.11)


[tri,(Ly )F ],eff = 6 − 4

Ly
, (3.12)

and


[hc,(Ly )F ],eff = 3 − 1

Ly
. (3.13)

For the infinite-length limit of the first type of self-dual
square-lattice strip, we have


[sq,(Ly )sd],eff = 4. (3.14)

IV. SOME GENERAL PROPERTIES

In this section we prove several general theorems and
discuss some general structural features of our exact calcu-
lations of average cluster numbers 〈k〉�,BCy for infinite-length
strips of lattices � with finite width Ly and various transverse
boundary conditions BCy. (As noted before, all results are
independent of the longitudinal boundary conditions used for
a given lattice strip.)

A. 〈k〉[�,(Ly )BCy ] is a rational function of p

We first prove an important theorem stating that for an
infinite-length strip graph �s = [�, (Ly)BCy ], the average
cluster number per site 〈k〉�s is a rational function of p and
hence also of r, that is,

〈k〉�s = N�s

D�s

, (4.1)

where N and D denote numerator and denominator polynomi-
als in p. In factorized form,

〈k〉�s =
∏degp(N�s )

i=1 (1 − p/ai )∏degp(D�s )
j=1 (1 − p/b j )

. (4.2)

This applies to an arbitrary two-dimensional lattice and is
not limited to the specific types of lattices (square, triangular,
and honeycomb) for which we calculate 〈k〉[�,(Ly )BCy ] here. To
prove this theorem, we note that, from Eq. (2.4),

〈k〉�s = 1

Ly

( dλdom,�s
dq

)∣∣
q=1,v=vp

λdom,�s |q=1,v=vp

. (4.3)

From Eqs. (3.6) and (3.10), it follows that this is a rational
function of p.

This is a very interesting and useful result, because naively,
if one were to make direct use of 〈k〉�s via Eq. (2.4) as the
derivative of f = ln(λdom,�s ) with respect to q, evaluated at
q = 1, one might naturally think that it would be necessary
first to calculate λdom,�s . With strips for which this is possible,
the algebraic equation that yields λdom,�s is of degree 2 to 4, so
λdom,�s would be an algebraic, but not rational, function of q,
and for wider strips, the algebraic equation that yields λdom,�s

is of degree 5 or higher, so one would not be able to solve
for λdom,�s analytically at all. As our method of calculation
presented in Sec. III shows, one can avoid this problem by
making use of Eq. (3.10), which does not require solving for
λdom itself as a general function of q, but only the evaluation
at v = vp and q = 1.

From our theorem in Eq. (4.1) above, it follows that
〈k〉[�,(Ly )BCy ] is a meromorphic function of p, with poles at

p = p[�,(Ly )BCy ], j = b j, j = 1, . . . , degp

(
D[�,(Ly )BCy ]

)
.

(4.4)

Clearly, when expressed as a function of r, 〈k〉�,(Ly )BCy
is again

a rational function

〈k〉[�,(Ly )BCy ] = N[�,(Ly )BCy ],r

D[�,(Ly )BCy ],r
, (4.5)

where N[�,(Ly )BCy ],r and D[�,(Ly )BCy ],r are polynomials in r of
degree degr (N[�,(Ly )BCy ],r ) and degr (D[�,(Ly )BCy ],r ), respectively,
with

degp

(
N[�,(Ly )BCy ]

) = degr

(
N[�,(Ly )BCy ],r

)
(4.6)

and

degp

(
D[�,(Ly )BCy ]

) = degr

(
D[�,(Ly )BCy ],r

)
. (4.7)

Furthermore, there is a one-to-one correspondence between
the poles of 〈k〉[�,(Ly )BCy ] in the p plane and in the r plane.
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B. 〈k〉[sq,(Ly )BCy ]|p=pc,sq is a rational number

An important corollary of our theorem in Eq. (4.1) is
that in the case of square-lattice strips, when one eval-
uates 〈k〉[sq,(Ly )BCy ] at p = pc,sq = 1/2, the result, namely,
〈k〉[sq,(Ly )BCy ]|p=pc,sq , is a rational number. Although this prop-
erty does not hold for strips of other lattices such as triangle
or honeycomb, one has an analogous result, namely, that
because pc,tri is a polynomial of the quantity s ≡ sin(π/18)
defined in Eq. (2.11) and pc,hc is a polynomial function of
s, 〈k〉[tri,(Ly )BCy ]|p=pc,tri and 〈k〉[hc,(Ly )BCy ]|p=pc,hc are rational func-
tions of s.

C. Agreement with universal finite-size scaling formula

As noted in the Introduction, our exact results for
〈k〉[�,(Ly )BCy ] evaluated at p = pc,� enable us to make several
comparisons, to check agreement with (a) the values 〈k〉c,�

and (b) the formula (1.4) from [15,16] for the finite-size cor-
rection term, involving three individual checks: (i) the (Ly)−2

dependence on strip width of the leading finite-size correction,
(ii) the coefficient b̃ in Eq. (1.6), and (iii) the universality with
respect to lattice type. For the comparison (b), we define a
constant

b̃[�,(Ly )BCy ] = c−1
� L2

y

[〈k〉[�,(Ly )P] − 〈k〉c,�
]
. (4.8)

The c−1
� in Eq. (1.4) is a geometrical factor connected with the

relation between the area A of a regular -sided polygon and
the length a of a side (equal to the lattice spacing in our case),
A = a2/[4 tan(π/)]. The role of ctri in the universality of b̃
for the square and triangular lattices was shown in [16]. For
the lattices that we consider, csq = 1 and, with our notational
conventions in [29–31],

ctri =
√

3

2
(4.9)

and

chc = 1√
3
, (4.10)

so that ctrib̃ = 5/16 and chcb̃ = 5/24. Agreement with the
formula (1.4) requires that, as the width Ly of the infinite-
length strip increases, the quantity b̃[�,(Ly )P] should approach
the value b̃ = 5

√
3/24, independent of lattice type. We find

excellent agreement with both (a) and all three parts (i)–(iii) of
property (b). Our results are listed in Table VI and show excel-
lent concordance, in particular, with part (iii) of condition (b),
for all of the types of lattice that we consider, namely, square,
triangular, and honeycomb. Quantitatively, as is evident in
Table VI, the ratios b̃[sq,5P]/b̃, b̃[hc,4P]/b̃, and b̃[tri,4P]/b̃ differ
from unity by the respective amounts 1 × 10−2, 4 × 10−3, and
1 × 10−4. These ratios are thus quite close to unity even for
these modest-width strips.

D. Property of poles for square-lattice strips with periodic
and self-dual transverse boundary conditions

We find an interesting special property of the expressions
for 〈k〉[sq,(Ly )P] and 〈k〉[sq,(Ly )sd], i.e., of the average cluster
numbers for the infinite-length strips of the square lattice
with width Ly and either periodic or self-dual (sd) transverse

boundary conditions. For each such strip, we find that the
denominator of 〈k〉[sq,(Ly )P] (or 〈k〉[sq,(Ly )sd]), expressed as a
function of p, is the same as this denominator expressed as
a function of r, with the interchange r ↔ p. That is, for the
strips with periodic transverse boundary conditions, given

〈k〉[sq,(Ly )P] = N[sq,(Ly )P]

D[sq,(Ly )P]
, (4.11)

with

N[sq,(Ly )P] = (1 − p)m

(
Ly +

∑


c[sq,(Ly )P], p

)
, (4.12)

where m is a certain power depending on Ly, and

D[sq,(Ly )P] = Ly

(
1 +

∑


d[sq,(Ly )P], p

)
, (4.13)

the denominator polynomial has the form

D[sq,(Ly )P] = Ly

(
1 +

∑


d[sq,(Ly )P],r

)
. (4.14)

The same property expressed in Eqs. (4.11)–(4.14) also holds
for the square-lattice strips with self-dual boundary condi-
tions. Hence, the set of poles of 〈k〉[sq,(Ly )P] in the p plane has
the same values as the set of poles in the r plane, and similarly
for the set of poles of 〈k〉[sq,(Ly )sd]. Note that this equality of
coefficients for pj and r j terms in Eqs. (4.13) and (4.14) is not
implied by the fact that that the denominator of a given strip,
expressed in terms of p, is equal to this denominator, written
in terms of r = 1 − p. Indeed, the special coefficient equality
embodied in Eqs. (4.13) and (4.14) is not true for the other
infinite-length, finite-width strips for which we have obtained
exact calculations of the average cluster number.

E. Some properties of the derivatives d j 〈k〉�s
(d p) j

We have found several properties of the jth derivatives
d j〈k〉�s/(d p) j for general infinite-length lattice strips. First,
as a corollary of our theorem (4.1) that 〈k〉�s is a rational
function of p, it follows that the jth derivative d j〈k〉�s/(d p) j

is also a rational function of p and that any evaluation of this
function for rational p is a rational number.

Second, for an infinite-length strip graph �s which is 


regular,

d〈k〉�s

d p

∣∣∣∣
p=0

= −


2
. (4.15)

If the infinite-length strip graph �s is not 
 regular, then this
relation holds with 
 replaced by 
eff on the right-hand side.

Third, for all infinite-length lattice strips �s with 
 � 3
(in the 
-regular case) or, more generally, 
eff � 3,

d〈k〉�s

d p

∣∣∣∣
p=1

= 0. (4.16)

This property (4.16) holds for all of the lattice strips con-
sidered here, given our condition on the vertex degree. [This
condition excludes the one-dimensional strip, for which 
 =
2 and 〈k〉1D = 1 − p, so d〈k〉1D/d p = −1 independent of p.]
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F. Structural properties of
d j 〈k〉[sq,(Ly )P,sd]

(d p) j and aj,[sq,(Ly )BCy ]

For infinite-length strips of the square lattice with width
Ly and either periodic or self-dual boundary transverse condi-

tions, we find several general results concerning
d j〈k〉[sq,(Ly )P,sd]

(d p) j

and a j,sq,(Ly )BCy
for 1 � j � 3. For compact notation, we will

denote infinite-length square-lattice strips with either of these
two types of transverse boundary conditions by [sq, (Ly)P,sd].
First, d3〈k〉[sq,(Ly )P,sd]/(d p)3 has the symmetry property that
under a replacement of p → 1 − p, this third derivative re-
verses in sign,

d3〈k〉[sq,(Ly )P,sd]

(d p)3
(p) = −d3〈k〉[sq,(Ly )P,sd]

(d p)3
(1 − p), (4.17)

where the (p) and (1 − p) indicate the arguments of the re-
spective functions. Consistent with this symmetry property,

we find that
d3〈k〉[sq,(Ly )P,sd]

(d p)3 contains the factor (1 − 2p).
Concerning evaluations of 〈k〉[sq,(Ly )P,sd] at the critical value

of p for the infinite lattice, namely, pc,sq = 1/2, which yield
the coefficients a1,[sq,(Ly )P,sd], we find that

a1,[sq,(Ly )P,sd] = −1. (4.18)

This agrees with Ref. [19], when one takes account of the fact
that we define 〈k〉 per site here, while Ref. [19] defines 〈k〉
per bond. Our calculations of a1,[sq,(Ly )F ] for the strips with
free transverse boundary conditions are consistent with the
inference that these coefficients approach the value −1 in the
Ly → ∞ limit. The fact that the value is already reached for
finite Ly on the square-lattice strips with periodic or self-dual
transverse boundary conditions shows the advantage in the
use of these latter boundary conditions, since they remove
boundary effects and render the strip graphs 4-regular. Finally,
given that d3〈k〉[sq,(Ly )P,sd]/(d p)3 contains the factor (2p − 1),
it follows that

a3,[sq,(Ly )P,sd] = 0. (4.19)

G. Relation between small-p and small-r series
expansions of 〈k〉[sq,(Ly )P,sd]

From our calculations of 〈k〉[sq,(Ly )P] and 〈k〉[sq,(Ly )sd], we
find that in all cases, the small-p and small-r Taylor series ex-
pansions of 〈k〉[sq,(Ly )P], and separately the small-p and small-r
Taylor series expansions of 〈k〉[sq,(Ly )sd], are closely related and
are of the form

〈k〉[sq,(Ly )P,sd] = 1 − 2p +
∞∑

=Ly

h[sq,(Ly )P,sd], p (4.20)

and

〈k〉[sq,(Ly )P,sd] =
∞∑

=Ly

h[sq,(Ly )P,sd],r, (4.21)

where, as before, the subscript P, sd means that the equality
holds separately for the square-lattice strips with periodic or
self-dual transverse boundary conditions. Thus, except for the
first two terms in the small-p series, all of the coefficients in
both of these series, from the respective O(pLy ) and O(rLy )
orders to infinity, are the same. Since the radii of convergence

of these series are determined by the behavior of the small-p
and small-r series as the order goes to infinity (e.g., by the
ratio test), this equality of the coefficients is in accord with the
property discussed in the preceding subsection, that the poles
are at the same positions in the p plane and in the r plane for
each of these strips, so that the pole (or complex-conjugate
pair of poles) that is closest to the origin is the same in the
p and r planes, and hence the small-p and small-r series
expansions have the same radius of convergence. In contrast,
for other infinite-length, finite-width strips of various lattices,
the radius of convergence of the small-p expansion is not
in general equal to the radius of convergence of the small-r
expansion.

H. Some general properties of the numerator
and denominator polynomials in 〈k〉�s

For many of the infinite-length, finite-width lattice strips
�s for which we have calculated the exact expressions 〈k〉�s ,
we find that the degree of the numerator, as a polynomial
in p or r, is greater, by one unit, than the degree of the
denominator, i.e.,

degp

(
N�s

) = degp

(
D�s

) + 1 (4.22)

for these strips. These include the [sq, (Ly)BCy ] strips with
BCy = F, P, sd; the [hc, (Ly)BCy ] strips with BCy = F, P; and
the [tri, (Ly)F ] strips. This is not the case with the [tri, (Ly)P]
strips. For the [tri, (Ly)P] strips for which we have obtained
〈k〉[tri,(Ly )P], namely, those with widths Ly = 2, 3, 4, we find
that

degp

(
N[tri,(Ly )P ]

) = degp

(
D[tri,(Ly )P ]

) + 2Ly. (4.23)

Calculations of 〈k〉�s for larger values of Ly would be neces-
sary to determine if these patterns persist for wider strips.

We find that the numerator N[�,(Ly )BCy ] in 〈k〉[�,(Ly )BCy ] al-
ways contains a prefactor (abbreviated PF) equal to (1 −
p) = r raised to a certain power depending on [�, (Ly)BCy ],
which we denote by deg[PF(N[�,(Ly )BCy ] )]. This power is equal
to the minimum power of r in the small-r expansion of
N[�,(Ly )BCy ]. In Table I we list the values of deg(N[�,(Ly )BCy ] ),
deg[PF(N[�,(Ly )BCy ] )], and deg(D[�,(Ly )BCy ] ) for the strips for
which we have calculated the average cluster numbers
〈k〉[�,(Ly )BCy ].

V. STRIPS OF THE SQUARE LATTICE

A. 3F square-lattice strip

As noted above, in [17] we calculated 〈k〉[sq,2F ]. Here we
make use of our more powerful calculational method de-
scribed in Sec. III to obtain exact results on infinite-length
lattice strips with substantially greater widths. As the first
of our results for explicit expressions of 〈k〉�s on infinite-
length lattice strips, we present our calculation of this average
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cluster number for the [sq, 3F ] strip:

〈k〉[sq,3F ] = (1 − p)3(3 + 4p − 3p2 − 8p3 + 9p4 + 12p5 − 26p6 + 9p7 + 11p8 − 11p9 + 3p10)

3(1 + p − p2)(1 − p + p2)(1 − p2 − 2p3 + 6p4 − 2p5 − 3p6 + 3p7 − p8)

= r3(3 + 4r − 7r2 + 5r3 + 8r4 − 31r5 − 61r7 + 47r8 − 19r9 + 3r10)

3(1 + r − r2)(1 − r + r2)(1 − r − r2 + 9r3 − 14r4 + 13r5 − 10r6 + 5r7 − r8)
. (5.1)

As indicated, it is useful to express this and other average
cluster numbers 〈k〉[�,(Ly )BCy ] as functions of p and also, equiv-
alently, as functions of r. As noted above, in Table I we list
the degrees of the numerator and denominator of 〈k〉[sq,3F ] as
polynomials in p or equivalently in r, together with the degree
of the prefactor (1 − p).

When evaluated at p = pc,sq, 〈k〉[sq,3F ] has the value

〈k〉[sq,3F ]|p=pc,sq = 147
670 = 0.219 403. (5.2)

In Table II we list this critical value. It is of interest to compare
the critical value (5.2) with 〈k〉c,sq on the infinite square lattice.
For this purpose, we list the values of the ratio (1.7) for the
present lattice strips and others in Table II. Tables I and II
also list the corresponding results for the other infinite-length,
finite-width lattice strips with various widths and transverse
boundary conditions denoted by BCy for which we have cal-
culated 〈k〉[�,(Ly )BCy ].

It is instructive to study derivatives of 〈k〉[sq,3F ] and to apply
these to calculate the coefficients a[sq,3F ], j in Eq. (2.6) for the
first several values of j. Doing this, we obtain the results

a1,[sq,3F ] = − 16 355

3 × (67)2
= −1.214 450, (5.3)

a2,[sq,3F ] = 297 238 112

33 × 52 × (67)3
= 1.464 119, (5.4)

and

a3,[sq,3F ] = 1 004 115 424

33 × (67)4
= 1.845 528. (5.5)

We list these values in Table III, which also lists the analogous
values of these coefficients for other infinite-length lattice
strips. In Eqs. (5.3)–(5.5) we have indicated the factoriza-
tions of the denominators. In general, the numerators of these
expressions do not have similarly simple factorizations; for
example, the numerators of aj,[sq,3F ] for j = 1, 2 have the
respective factorizations 5 × 3271, and 25 × 9 288 691. For
an infinite two-dimensional lattices �, the leading singular-
ity in 〈k〉� occurs in the |p − pc,�|2−α = |p − pc,�|8/3 term
in Eq. (2.5), but, as a consequence of our theorem (4.1), it
follows that 〈k〉�s does not have any branch-point singularities
such as |p − pc,�|8/3.

The Taylor series expansions of 〈k〉[sq,3F ] for small p and r
are

〈k〉[sq,3F ] = 1 − 5
3 p + 2

3 p4 + p6 − p7 + 7
3 p8 − 4p9 + O(p10)

(5.6)

and

〈k〉[sq,3F ] = r3 + 7
3 r4 + 2r5 − 11

3 r6 − 9r7 − 49
3 r8

+ 86
3 r9 + O(r10). (5.7)

For comparison with results for other strips, we list the first
few terms of these series in Table IV.

Of the 12 poles of 〈k〉[sq,3F ] in the complex-p plane, the
ones nearest to the origin are a complex-conjugate pair at

p[sq,3F ],np = −0.400 758 ± 0.399 068i, (5.8)

of magnitude

|p[sq,3F ],np| = 0.565 564, (5.9)

which is therefore the radius of convergence of the small-p
series for 〈k〉[sq,3F ], as indicated in Table V. In the complex-r
plane, the pole of 〈k〉[sq,3F ] nearest to the origin occurs at the
value

r[sq,3F ],np = −0.411 578, (5.10)

of magnitude |r[sq,3F ],np| = 0.411 578, which is thus the radius
of convergence of the small-r series for 〈k〉[sq,3F ]. Note that
for this infinite-length strip, we have the generic behavior that
1 − |r[sq,3F ],np| is not equal to |p[sq,3F ],np|.

B. 4F square-lattice strip

We calculate

〈k〉[sq,4F ] = N[sq,4F ]

D[sq,4F ]
, (5.11)

where the numerator and denominator polynomials N[sq,4F ]

and D[sq,4F ] are given in Eqs. (A1) and (A2) in the Appendix.
At p = pc,sq, 〈k〉[sq,4F ] has the value

〈k〉[sq,4F ]|p=pc,sq = 27 229
145 196 = 0.187 533. (5.12)

This and the other exact values of 〈k〉�,(Ly )BCy
evaluated at

p = pc,� for moderately wide strips of the square lattice with
various transverse boundary conditions do not have particu-
larly simple factorizations. For example, the factorizations of
the numerator and denominator of Eq. (5.12) are 27 229 =
73 × 373 and 145 196 = 22 × 36 299.

For the coefficient a1,[sq,4F ] we calculate

a1,[sq,4F ] = − 14 241 087 916
11 858 556 609 = −1.200 912. (5.13)

The analytic expressions for the coefficients a2,[sq,4F ] and
a3,[sq,4F ] are sufficiently lengthy that we only give the floating-
point values:

a2,[sq,4F ] = 1.833 688 (5.14)

and

a3,[sq,4F ] = 2.277 750 5. (5.15)

The Taylor series expansions of 〈k〉[sq,4F ] for small p and
r are listed in Table IV. Of the 45 poles of 〈k〉[sq,4F ] in the
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complex-p plane, the pole nearest to the origin is

p[sq,4F ],np = −0.492 588, (5.16)

which thus sets the radius of convergence of the small-p
series for 〈k〉[sq,4F ] as |p[sq,3F ],np| = 0.492 588. Note that this
is smaller than the physical singularity of 〈k〉sq on the infinite
square lattice, at p = pc,sq = 1/2, as indicated in Table V. In
the complex-r plane, the poles of 〈k〉sq,4F nearest to the origin
are the complex-conjugate pair

r[sq,4F ],np = −0.317 578 ± 0.244 625i, (5.17)

of magnitude |r[sq,4F ],np| = 0.400 871, which is thus the radius
of convergence of the small-r series expansion of 〈k〉[sq,4F ].

Note that for this strip, we again have the generic behavior
that 1 − |r[sq,4F ],np| is not equal to |p[sq,4F ],np|.

C. 3P square-lattice strip

Results for infinite-length strips with periodic transverse
boundary conditions have the advantage, relative to those
with free transverse boundary conditions, that they are free
of boundary effects, although of course they still reflect the
finite transverse size of the strips. In [17] we calculated
〈k〉[sq,2P]. We present here our calculation of the average
cluster number for the infinite-length strip of the square
lattice with width Ly = 3 and periodic transverse boundary
conditions:

〈k〉[sq,3P] = (1 − p)3(3 + 3p − 3p2 − 14p3 + 18p4 − p5 − 13p6 + 11p7 − 3p8)

3(1 − p2 − 2p3 + 11p4 − 11p5 − p6 + 10p7 − 10p8 + 5p9 − p10)

= r3(1 + 3r + 5r2 − 5r3 − 7r4 + 16r5 − 20r6 + 13r7 − 3r8)

3(1 − r2 − 2r3 + 11r4 − 11r5 − r6 + 10r7 − 10r8 + 5r9 − r10)
. (5.18)

At p = pc,sq = 1/2, this has the value

〈k〉[sq,3P]|p=pc,sq = 11
78 = 0.141 025 6. (5.19)

As is evident from Eq. (5.18) and is also true for all of
the other (Ly)P strips of the square lattice for which we have
calculated 〈k〉[sq,(Ly )P], the poles in the complex-p and -r planes
have the same values. The coefficients a1,[sq,3P] and a3,[sq,3P]

are given by our general results (4.18) and (4.19). For a2,[sq,3P]

we calculate

a2,[sq,3P] = 77 024
34 983 = 2.201 755. (5.20)

The first few terms of the small-p and small-r Taylor series
expansions of 〈k〉[sq,3P] are given in Table IV. Since the poles
of 〈k〉[sq,3P] are the same when expressed in the variables p and
r, it follows that the poles nearest to the origin in the complex-
p and -r planes have the same value. This is

p[sq,3P],np = r[sq,3P],np = −0.354 731 ± 0.319 907i, (5.21)

with magnitude

|p[sq,3P],np| = |r[sq,3P],np| = 0.477 676. (5.22)

These poles thus determine the radii of convergence of the
respective small-p and small-r Taylor series expansions of
〈k〉[sq,3P] as 0.477 676. As indicated in Table V, this radius
of convergence is smaller than pc,sq = rc,sq = 1/2.

D. 4P square-lattice strip

For this strip we calculate

〈k〉[sq,4P] = N[sq,4P]

D[sq,4P]
, (5.23)

where the numerator and denominator polynomials N[sq,4P]

and D[sq,4P], which are rather lengthy, are given in Eqs. (A3)
and (A4) in the Appendix. At p = pc,sq = 1/2, 〈k〉[sq,4P] has
the value

〈k〉[sq,4P]|p=pc,sq = 677
5572 = 0.121 500. (5.24)

For a2,[sq,4P] we calculate

a2,[sq,4P] = 3 398 556 656
1 298 160 381 = 2.617 979. (5.25)

In 〈k〉[sq,4P], the nearest poles to the origin in both the
complex-p plane and the complex-r plane are at

p[sq,4P],np = r[sq,4P],np = −0.424 294, (5.26)

which determine the radii of convergence of the re-
spective small-p and small-r Taylor series expansions of
〈k〉[sq,4P]. This radius of convergence is again smaller than
pc,sq = rc,sq = 1/2.

E. 5P square-lattice strip

We calculate

〈k〉[sq,5P] = N[sq,5P]

D[sq,5P]
, (5.27)

where N[sq,5P] and D[sq,5P] are given in Eqs. (A5) and (A6) in
the Appendix. At p = pc,sq = 1/2, this has the value

〈k〉[sq,5P]|p=pc,sq = 85 013
753 370 = 0.112 844. (5.28)

This is only 15% larger than the value for the infinite square
lattice

R[sq,5P],c = 1.150 571, (5.29)

where R[�,(Ly )BCy ],c was defined in Eq. (1.7).
For a2,[sq,5P] we calculate

a2,[sq,5P] = 1 275 302 677 055 206 848
439 932 074 289 972 983 = 2.898 863. (5.30)

The small-p and small-r Taylor series expansions of 〈k〉[sq,5P]

are given in Table IV. Of the 62 poles of 〈k〉[sq,5P] when ex-
pressed as a function of p, which are the same when expressed
as a function of r, the nearest poles to the origin in both the
complex-p and -r planes are the complex-conjugate pair

p[sq,5P],np = r[sq,5P],np = −0.371 844 ± 0.169 863i, (5.31)
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with magnitude

|p[sq,5P],np| = |r[sq,5P],np| = 0.408 805. (5.32)

These poles thus determine the radii of convergence of the
respective small-p and small-r Taylor series expansions of
〈k〉[sq,5P] as 0.408 805. As was the case with the 3P and
4P strips of the square lattice, this radius of convergence is
smaller than pc,sq = rc,sq = 1/2.

F. Square-lattice strips with self-dual transverse boundary
conditions and Ly = 2

Since the square lattice is self-dual, it is also useful to
employ boundary conditions for strip graphs of the square
lattice that obey this property even for finite Lx and Ly [32,42].
We denote the average cluster number for the strip of the
square lattice with width Ly and self-dual transverse bound-
ary conditions by 〈k〉[sq,(Ly )sd]. In [17] we calculated 〈k〉[sq,1sd].
Here, for the 2sd strip of the square lattice, we calculate

〈k〉[sq,2sd] = (1 − p)3(2 − 2p − 4p2 + 15p3 − 17p4 + p5 + 24p6 − 34p7 + 24p8 − 10p9 + 2p10)

2(1 − 2p + 9p3 − 18p4 + 16p5 + 5p6 − 32p7 + 44p8 − 35p9 + 18p10 − 6p11 + p12)

= r3(1 − 3r2 + 9r3 − 2r4 − 19r5 + 38r6 − 38r7 + 24r8 − 10r9 + 2r10)

2(1 − 2r + 9r3 − 18r4 + 16r5 + 5r6 − 32r7 + 44r8 − 35r9 + 18r10 − 6r11 + r12)
. (5.33)

At p = pc,sq = 1/2, 〈k〉[sq,2sd] has the value

〈k〉[sq,2sd]|p=pc,sq = 17
118 = 0.144 068. (5.34)

The comparison of this with the value of 〈k〉sq,c for the infinite
square lattice is indicated by the ratio

R[sq,2sd],c = 1.468 937 2. (5.35)

For a2,[sq,2sd] we calculate

a2,[sq,2sd] = 235 936
107 911 = 2.186 394. (5.36)

The first few terms of the small-p and small-r series ex-
pansions of 〈k〉[sq,2sd] are given in Table IV. In 〈k〉[sq,2sd], the
nearest pole to the origin in the complex-p and -r planes is

p[sq,2sd],np = r[sq,2sd],np = −0.483 656 7, (5.37)

which sets the radius of convergence of the small-p and small-
r series expansions for 〈k〉[sq,2sd].

G. 3sd square-lattice strip

For the 3sd strip of the square lattice, we calculate

〈k〉[sq,3sd] = N[sq,3sd]

D[sq,3sd]
, (5.38)

where N[sq,3sd] and D[sq,3sd] are given in Eqs. (A7) and (A8) in
the Appendix. At p = pc,sq = 1/2, this has the value

〈k〉[sq,3sd]|p=pc,sq = 2051
15 474 = 0.132 545. (5.39)

For a2,[sq,3sd] we calculate

a2,[sq,3sd] = 4 105 669 781 114 576
1 664 338 698 530 559 = 2.466 847 5. (5.40)

The poles in 〈k〉[sq,3sd], nearest to origin in the complex-p
and -r planes are the complex-conjugate pair

p[sq,3sd],np = r[sq,3sd],np = −0.341 129 ± 0.289 364i, (5.41)

with magnitude

|p[sq,3sd],np| = |r[sq,3sd],np| = 0.447 326, (5.42)

which is thus the radius of convergence of the small-p and
small-r series expansions of 〈k〉[sq,3sd].

Thus, the square-lattice strips with periodic transverse
boundary conditions and the square-lattice strips with self-
dual transverse boundary conditions most closely replicate the
properties of the infinite square lattice, namely, absence of
boundary effects and self-duality. For this reason, one expects
that for a given width Ly, the values of 〈k〉 and its critical
value at p = pc,sq, 〈k〉[sq,(Ly )P]|p=psq,c or 〈k〉[sq,(Ly )sd]|p=psq,c , will
be closer to the values on the infinite square lattice than is the
case for free transverse boundary conditions, and our exact
results confirm this general expectation.

VI. TRIANGULAR-LATTICE STRIPS

A. 3F triangular-lattice strips

In [17] we presented calculations of 〈k〉[tri,2F ] and 〈k〉[tri,2P].
Here, again making use of our more powerful calculational
methods, we calculate

〈k〉[tri,3F ] = (1 − p)4(3 + 2p − 3p2 − 14p3 + 48p4 − 62p5 + 7p6 + 90p7 − 144p8 + 123p9 − 66p10 + 21p11 − 3p12)

3(1 − p − 2p3 + 22p4 − 56p5 + 72p6 − 29p7 − 76p8 + 179p9 − 210p10 + 166p11 − 94p12 + 37p13 − 9p14 + p15)

= r4(2 + 2r + r2 − r3 − 4r4 + 2r5 + 7r6 − 27r8 + 42r9 − 33r10 + 15r11 − 3r12

3(1 − r + r2 − 2r3 + 2r4 + 7r5 − 17r6 + 22r7 − 28r8 + 29r9 − 12r10 − 13r11 + 23r12 − 16r13 + 6r14 − r15)
.

(6.1)

At p = pc,tri,

〈k〉[tri,3F ]|p=pc,tri = 306 241 − 2 163 343s + 2 302 182s2

3(25 781 − 182 124s + 193 812s2)
= 0.271 486 6. (6.2)
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Here and below we use the symbol s = sin(π/18), as defined
in Eq. (2.11). In obtaining this and analytic evaluations of
〈k〉[�,(Ly )BCy ]|p=pc,� for other strips of the triangular lattice and
for strips of the honeycomb lattice, we have used the trigono-
metric identity sin3(π/18) = (1/8)[6 sin(π/18) − 1], which
enables us to reduce any (finite-degree) polynomial in s to a
polynomial of degree 2. We also note an analytic result for the
[tri, 2F ] strip that was not given before:

〈k〉[tri,2F ]|p=pc,tri = 2(1 − 6s + 6s2)

1 − 2s + 4s2
= 0.359 575. (6.3)

In Table IV we list the first few terms in the small-p and
small-r series expansions of 〈k〉[tri,3F ]. The poles in 〈k〉[tri,3F ]

nearest to the origin in the complex-p plane are the complex-
conjugate pair

p[tri,3F ],np = −0.300 743 ± 0.259 341i, (6.4)

with magnitude

|p[tri,3F ],np| = 0.397 120, (6.5)

which sets the radius of convergence of the small-p series
for 〈k〉[tri,3F ]. The pole in 〈k〉[tri,3F ] nearest to the origin in the
complex-r plane occurs at

r[tri,3F ],np = −0.599 392, (6.6)

which sets the radius of convergence of the small-r series for
〈k〉[tri,3F ] as 0.599 392. These values are listed in Table V.

B. 4F triangular-lattice strips

For the 4F strip of the triangular lattice, we calculate

〈k〉[tri,4F ] = N[tri,4F ]

D[tri,4F ]
, (6.7)

where the numerator and denominator polynomials are given
in Eqs. (A9) and (A10) in the Appendix. At p = pc,tri,

〈k〉[tri,4F ]|p=pc,tri = 7 325 865 108 433 807 − 51 751 213 463 154 938s + 55 072 491 066 145 656s2

8(225 167 815 542 115 − 1 590 625 477 629 565s + 1 692 708 277 627 262s2)
.

= 0.229 460. (6.8)

The pole in 〈k〉[tri,4F ] nearest to the origin in the complex-p
plane occurs at

p[tri,4F ],np = −0.335 309, (6.9)

with magnitude |p[tri,4F ],np| = 0.335 309, which sets the radius
of convergence of the small-p series for 〈k〉[tri,4F ]. The poles in
〈k〉[tri,4F ] nearest to the origin in the complex-r plane are the
complex-conjugate pair

r[tri,4F ],np = −0.419 061 ± 0.379 572i, (6.10)

with magnitude

|r[tri,4F ],np| = 0.565 408, (6.11)

which sets the radius of convergence of the small-r series for
〈k〉[tri,4F ]. In contrast to the situation with the 2F and 3F strips
of the triangular lattice, |p[tri,4F ],np| < ptri,c and |r[tri,4F ],np| <

rtri,c. Thus, for this strip, the radii of convergence of the small-
p and small-r series are not set by the respective physical
critical values pc,tri and rc,tri, on the infinite triangular lattice,
but instead by unphysical singularities.

C. 3P triangular-lattice strip

We denote the average cluster number for the infinite-length strip of the triangular lattice with width Ly and periodic transverse
boundary conditions by 〈k〉[tri,(Ly )P]. For the 3P strip of the triangular lattice, we calculate

〈k〉[tri,3P] = N[tri,3P]

D[tri,3P]
, (6.12)

where the numerator and denominator polynomials are given in Eqs. (A11) and (A12) in the Appendix. At p = pc,tri,

〈k〉[tri,3P]|p=pc,tri = 2(74 704 191 − 527 723 687s + 561 591 818s2)

9(939 965 − 6 640 082s + 7 066 228s2)
= 0.146 651. (6.13)

We note an analytic result that was not given in [17], namely,

〈k〉[tri,2P]|p=pc,tri = 3(251 − 1774s + 1888s2)

2(33 − 240s + 256s2)
= 0.190 910. (6.14)

The poles in 〈k〉[tri,3P] nearest to the origin in the complex-p plane are the complex-conjugate pair

p[tri,3P],np = −0.227 780 5 ± 0.175 218i, (6.15)

with magnitude

|p[tri,3P],np| = 0.287 376, (6.16)
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which sets the radius of convergence of the small-p series for 〈k〉[tri,3P]. The pole in 〈k〉[tri,3P] nearest to the origin in the complex-r
plane is

r[tri,3P],np = −0.594 760, (6.17)

which sets the radius of convergence of the small-r series for 〈k〉[tri,3P] as 0.594 760. These radii of convergence are both smaller
than the respective critical values pc,tri and rc,tri.

D. 4P triangular-lattice strip

For the 4P triangular lattice strip, we calculate

〈k〉[tri,4P] = N[tri,4P]

D[tri,4P]
, (6.18)

where N[tri,4P] and D[tri,4P] are given in Eqs. (A13) and (A14) in the Appendix. At p = pc,tri,

〈k〉[tri,4P]|p=pc,tri = 574 004 215 646 387 707 017 − 4 054 867 821 476 682 227 104s + 4 315 100 205 943 310 268 010s2

2(8 584 252 854 733 404 261 − 60 640 688 209 720 609 514s + 64 532 472 500 426 786 720s2)

= 0.131 378. (6.19)

Relative to the critical value 〈k〉c,tri for the infinite triangular lattice,

R[tri,4P,c] = 1.174 651. (6.20)

Interestingly, this ratio is approaching reasonably close to unity already when the strip width has the modest value of Ly = 4, if
one uses periodic transverse boundary conditions. The approach to the infinite-width limit is slower if one uses free transverse
boundary conditions. This is similar to the behavior that we found for the square lattice and, as in that case, one can understand
it as a consequence of the absence of any boundaries for PBCy.

The pole in 〈k〉[tri,4P] nearest to the origin in the complex-p plane occurs at

p[tri,4P],np = −0.260 779, (6.21)

which sets the radius of convergence of the small-p series for 〈k〉[tri,4P] as 0.260 779. The pole in 〈k〉[tri,4P] nearest to the origin in
the complex-r plane occurs at

r[tri,4P],np = −0.570 571, (6.22)

which sets the radius of convergence of the small-r series for 〈k〉[tri,4P] as 0.570 571. Both of these radii of convergence are
smaller than the respective critical values pc,tri and rc,tri.

VII. HONEYCOMB-LATTICE STRIPS

A. 3F honeycomb-lattice strip

We calculated the average cluster number for the infinite-length 2F strip of the honeycomb lattice in Ref. [17]. Here we
calculate

〈k〉[hc,3F ] = (1 − p)2(3 + 2p − 2p2 − 5p3 − p4 + 5p5 + p6 + 4p7 − 10p8 + 7p10 − 3p11)

3(1 − p2 + p3)(1 − 2p3 + p4 + 2p6 − 2p8 + p9)

= r2(1 + 5r − 4r2 + 14r3 − 41r4 + 87r5 − 167r6 + 226r7 − 190r8 + 95r9 − 26r10 + 3r11)

3(1 − r + 2r2 − r3)(1 − 3r + 10r2 − 14r3 + 17r4 − 26r5 + 30r6 − 20r7 + 7r8 − r9)
. (7.1)

At p = pc,hc, this has the value

〈k〉[hc,3F ]|p=pc,hc = −12 803 + 90 443s − 96 244s2

12(772 − 5453s + 5803s2)
= 0.160 002. (7.2)

We note a related analytic result

〈k〉[hc,2F ]|p=pc,hc = −55 + 392s − 408s2

8(5 − 32s + 34s2)
= 0.204 751. (7.3)

The poles in 〈k〉[hc,3F ] nearest to the origin in the complex-p plane are the complex-conjugate pair

p[hc,3F ],np = −0.492 595 ± 0.542 272i, (7.4)

with magnitude

|p[hc,3F ],np| = 0.732 604, (7.5)
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which sets the radius of convergence of the small-p series for 〈k〉[hc,3F ]. The poles in 〈k〉[hc,3F ] nearest to the origin in the
complex-r plane are the complex-conjugate pair

r[hc,3F ],np = 0.123 348 ± 0.377 252i, (7.6)

with magnitude

|r[hc,3F ],np| = 0.396 906, (7.7)

which sets the radius of convergence of the small-r series for 〈k〉[hc,3F ].

B. 4F honeycomb-lattice strip

For the 4F strip of the honeycomb lattice, we calculate

〈k〉[hc,4F ] = N[hc,4F ]

D[hc,4F ]
, (7.8)

where N[hc,4F ] is a polynomial of degree 72 in p containing a factor of (1 − p)2 and D[hc,4F ] is a polynomial of degree 71 in p
that we have calculated. At p = pc,hc,

〈k〉[hc,4F ]|p=pc,hc

= −113 592 578 275 136 635 723 243 683+8 024 381 665 694 504 094 459 981 670s−8 539 368 606 495 326 857 081 040 364s2

16(53 721 138 617 890 198 824 050 135 − 379 495 673 336 597 286 155 883 324s+403 850 860 315 586 504 368 203 856s2)

= 0.138 340 7. (7.9)

The poles in 〈k〉[hc,4F ] nearest to the origin in the complex-p plane are the complex-conjugate pair

p[hc,4F ],np = −0.552 838 ± 0.373 251i, (7.10)

with magnitude

|p[hc,4F ],np| = 0.667 042, (7.11)

which sets the radius of convergence of the small-p series for 〈k〉[hc,4F ]. The poles in 〈k〉[hc,4F ] nearest to the origin in the
complex-r plane are the complex-conjugate pair

r[hc,4F ],np = −0.212 449 ± 0.136 692i, (7.12)

with magnitude

|r[tri,4F ],np| = 0.252 625, (7.13)

which sets the radius of convergence of the small-r series for 〈k〉[hc,4F ].

C. 2P honeycomb-lattice strip

Strips of the honeycomb lattice require that Ly be even. For the 2P strip of the honeycomb lattice we calculate

〈k〉[hc,2P] = 〈k〉[sq,2F ]. (7.14)

For the value evaluated at p = pc,hc, we find

〈k〉[hc,2P] = −3 + 22s − 20s2

4(1 − 2s)2
= 0.127 450. (7.15)

D. 4P honeycomb-lattice strip

For the 4P honeycomb strip, we calculate

〈k〉[hc,4P] = N[hc,4P]

D[hc,4P]
, (7.16)

where N[hc,4P] and D[hc,4P] are given in Eqs. (A15) and (A16) in the Appendix. At p = pc,hc, this has the value

〈k〉[hc,4P]|p=pc,hc = 736 538 075 855 − 5 203 035 904 036s + 5 536 955 158 472s2

32(−19 547 696 983 + 138 088 406 531s − 146 950 612 867s2)
= 0.089 833 7. (7.17)

The pole in 〈k〉[hc,4P] nearest to the origin in the complex-p plane is

p[hc,4P],np = −0.585 767, (7.18)
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which sets the radius of convergence of the small-p series for 〈k〉[hc,4P] as 0.585 767. The pole in 〈k〉[hc,4P] nearest to the origin in
the complex-r plane is

r[hc,4P],np = −0.270 891, (7.19)

which sets the radius of convergence of the small-r series for 〈k〉[hc,4P] as 0.270 891.

VIII. COMPARATIVE DISCUSSION

As noted in the Introduction, our main results here include
(i) the theorem (4.1), showing that the average cluster number
per site on infinite-length lattice strips with width Ly and
specified transverse boundary conditions BCy, 〈k〉[�,(Ly )BCy ], is
a rational function of the bond occupation probability p; (ii)
the calculation of the exact expressions for 〈k〉[�,(Ly )BCy ] as a
function of p; (iii) exact values of these average cluster num-
bers at p = pc,�, the critical bond occupation probability for
the corresponding infinite-length lattices; (iv) a study of the
Ly dependence of these values (discussed further below); (v)
calculations of d j〈k〉[�,(Ly )BCy ]/(d p) j with j = 1, 2, 3, evalu-
ated at p = pc,�, for infinite-length lattice strips �s with a
resultant determination of coefficients in the expansion of
〈k〉[�,(Ly )BCy ] in Eq. (2.5); and (vi) a study of the poles in
〈k〉[�,(Ly )BCy ] and the insight that these yield concerning the
role of unphysical singularities setting the radii of conver-
gence in small-p and small-r series expansions of various
quantities in percolation on infinite two-dimensional lattices.
That is, one encounters this phenomenon even for finite-width
strips of modest widths, before the limit Ly → ∞ is taken to
obtain 〈k〉�.

Here we give some further comparative discussion of these
results. First, our exact results strengthen and extend two
monotonicity relations that we found in our previous study
[17]. We find that for fixed p ∈ (0, 1), 〈k〉[�,(Ly )BCy ] is a mono-
tonically decreasing function of the strip width Ly for all of
the lattices considered here. (At the end points of the physical
interval in p, the values are fixed, as 〈k〉[�,(Ly )BCy ] = 1 at p = 0
and 〈k〉[�,(Ly )BCy ] = 0 at p = 1, independent of Ly.) Second, for
fixed Ly, 〈k〉[�,(Ly )BCy ] is a monotonically decreasing function
of p in the physical interval 0 � p � 1.

Furthermore, with our present exact analytic results, we
have strengthened the finding from our previous study in [17]
that for a given lattice type and set of transverse boundary
conditions, over the range of strip widths Ly that we have
studied, the behavior of 〈k〉[�,(Ly )BCy ] is consistent with the in-
ference that, for a fixed p ∈ (0, 1), the average cluster number
on the infinite-length strip, 〈k〉[�,(Ly )BCy ], approaches 〈k〉� as
Ly → ∞. (This is automatic for the two end points p = 0 and
p = 1, where 〈k〉�s = 1 and 〈k〉�s = 0.)

In particular, for each type of infinite-length, finite-width
lattice strip �s for which we have calculated exact expressions
for 〈k〉�s , as Ly increases, the evaluation with p set equal to
the critical bond occupation probability for the correspond-
ing infinite two-dimensional lattice �, p = pc,�, approaches
the known critical value for the infinite lattice 〈k〉�|p=pc,� .
As expected, for a given width Ly, the deviation from this
critical value for the infinite two-dimensional lattice is small-
est for the infinite-length strips with periodic transverse
boundary conditions, since these remove boundary effects,
as contrasted with the strips with free transverse boundary

conditions:

|〈k〉[�,(Ly )P]|p=pc,� − 〈k〉�|p=pc,� |
< |〈k〉[�,(Ly )F ]|p=pc,� − 〈k〉�|p=pc,� |. (8.1)

Thus, with periodic transverse boundary conditions, the only
finite-size effect that remains on the infinite-length lattices
is the fact that Ly is finite, i.e., there is a finite-length path
crossing the lattice strip in a transverse direction. For a given
infinite-length square-lattice strip of width Ly, the deviation of
the average cluster number at p = pc,sq from its value on the
infinite square lattice is also smaller with self-dual boundary
conditions, as contrasted with free transverse boundary condi-
tions:

[〈k〉[sq,(Ly )sd]|p=pc,sq − 〈k〉sq|p=pc,sq ]

< [〈k〉[sq,(Ly )F ]|p=pc,sq − 〈k〉sq|p=pc,sq ]. (8.2)

Our work here is complementary to the calculation in
Ref. [20] of 〈k〉sq,diag|p=pc,sq on infinite-length diagonal strips
of arbitrary widths (with toroidal boundary conditions) on
the square lattice, since we calculate 〈k〉�,(Ly )BCy

as a func-
tion of p, not just for the single value p = pc,�, while
Ref. [20] calculates the values only at p = pc,sq. (Another
difference is that we have also calculated exact values of
〈k〉�,(Ly )BCy

for triangular and honeycomb lattices and in [17]
for the kagome lattice.) As the strip width increases, the
approach to the value 〈k〉c,sq in Eq. (2.12) is comparably
rapid. For example, for the index N = 3 (corresponding to a
width across the diagonal of 3

√
2 = 4.243), Ref. [20] obtains

〈k〉sq,diag = 79/672 = 0.117 560, which lies between our val-
ues 〈k〉sq,4P |p=pc,sq = 677/5572 = 0.121 500 in Eq. (5.24) and
〈k〉sq,5P |p=pc,sq = 85 013/753 370 = 0.112 844 in Eq. (5.28).
This is in accord with one’s expectation, since the width 3

√
2

is intermediate between the widths Ly = 4 and Ly = 5.
An important result of our calculations is the comparison

with the formula for the finite-size correction to 〈k〉c,� de-
rived in [15,16], given above in Eq. (1.4), both concerning
the constant 5

√
3/24 in the O(1/L2

y ) term and concerning
the universality of this finite-size correction as regards the
type of lattice, with the geometrical factors (4.9) and (4.10)
incorporated. For this comparison, we list in Table VI the
values of b̃�,Ly that we extract from our fit to Eq. (4.8) for the
infinite-length strips of the square, triangular, and honeycomb
lattices. As is evident from this table, as Ly increases, our
results approach the value b̃ = 5

√
3/24 in [15] (see also [16])

and furthermore are consistent with being equal for all three
of these types of lattices, in agreement with the universality
property of this finite-size correction. Indeed, with rather
modest strip widths, we find excellent agreement with the
value of b̃ in Eq. (1.4). This is a valuable universality check
using exact results for different types of lattice strips, includ-
ing square, triangular, and honeycomb lattices.
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Another interesting application of our calculations of
〈k〉[�,(Ly )BCy ] on these infinite-length lattice strips is to inves-
tigate how the small-p and small-r Taylor series expansions
compare with those for the corresponding infinite two-
dimensional lattices. The entries in Table IV are useful for this
purpose. As is evident from this table, for the infinite-length
[�, (Ly)P] strips, which are 
 regular, we find that the small-p
expansions have the general form 〈k〉�s = 1 − (
/2)p + · · · ,
where the ellipsis denotes higher-order terms, in accord with
Eq. (4.15). This form for the first two terms is the same as
with the infinite two-dimension lattices. For the infinite-length
strips that are not 
 regular, such as those with free transverse
boundary conditions, we find that the small-p expansion has
the form 〈k〉�s = 1 − (
eff/2)p + · · · , where 
eff was de-
fined in Eq. (3.5).

Concerning the rest of the small-p series, by inspecting
the series for 〈k〉[�,(Ly )BCy ] on infinite-length lattice strips of
a given lattice � with some specified transverse boundary
conditions, one can see how, as a function of increasing strip
width Ly, coefficients of certain terms for these strips approach
the values that they have in the corresponding small-p or
small-r expansion of 〈k〉� on the infinite two-dimensional
lattice �. For example, consider the (Ly)F strips of the square,
triangular, and honeycomb lattices. One sees that the coef-
ficient of the respective linear terms in the small-p series
expansions increase monotonically toward the respective val-
ues 4, 6, and 3, in agreement with the discussion above.

The next higher-order term in the small-p expansion of
〈k〉sq for the infinite square lattice is p4, and one can see from
Table IV how, as the width Ly of the (Ly)F square-lattice strips
increases from 2 to 4, the coefficient of the p4 term in the
series expansion of 〈k〉[sq,(Ly )F ] increases toward 1, taking on
the respective values 1/2, 2/3, and 3/4. Similarly, the next
term higher than linear in the small-p expansion of 〈k〉tri on
the infinite triangular lattice is 2p3, and the coefficients of the
p3 terms in 〈k〉[tri,(Ly )F ] increase toward this value, as 1, 4/3,
and 3/2 with Ly = 2, 3, and 4, respectively. Finally, the next
term higher than linear in the small-p expansion of 〈k〉hc on
the infinite honeycomb lattice is (1/2)p6, and the coefficients
of the p6 terms in 〈k〉[hc,(Ly )F ] increase toward 1/2, taking on
the values 1/4, 1/3, and 3/8 as Ly increases from 2 to 4.

For the infinite-length strips with periodic transverse
boundary conditions, the linear terms in p are equal to their
values for the corresponding infinite two-dimensional lattices,
and again the rest of the small-p series become more similar
to the series for the two-dimensional lattices as the width
increases. As an example, consider the [sq, (Ly)P] strips. The
small-p series for 〈k〉[sq,2P] has a nonzero p2 term, but it is
absent in the series expansion of 〈k〉[sq,3P] on the next wider
strip of this type. In turn, the small-p series for 〈k〉[sq,3P] con-
tains a nonzero p3 term, but it is absent in the series expansion
of 〈k〉[sq,4P] on the next wider strip of this type. The small-p
series expansion of 〈k〉[sq,5P] matches not just the linear term,
but also the p4 term of 〈k〉sq exactly. Corresponding comments
apply for the (Ly)P strips of the triangular and honeycomb
lattices. One might anticipate some special properties of the
small-p series expansions of 〈k〉[sq,(Ly )sd] owing to the inclusion
of the self-duality property. Interestingly, one sees that with all
three widths for which we have calculated 〈k〉[sq,(Ly )sd], namely,
Ly = 1, 2, and 3, the small-p expansions match not just the

linear term, but also the p4 term in 〈k〉sq exactly. Over this
range of Ly values, one observes that the coefficient of the p3

term decreases monotonically, consistent with its vanishing as
Ly → ∞. Analogous comments apply for the small-r series
expansions of 〈k〉[�,(Ly )BCy ].

Finally, we have used our exact calculations of 〈k〉[�,(Ly )BCy ]

for these lattice strips to answer an intriguing question con-
cerning the presence of unphysical singularities that were
found, in analyses of small-p and small-r series calculations
of average cluster numbers on two-dimensional lattices [7,8],
to be closer to the respective origins in these planes than
the physical pc,� and rc,� = 1 − pc,� for these lattices. The
question is whether such unphysical singularities (which are
manifested as poles in Padé approximants of series) would
also be encountered in the exact expressions for 〈k〉[�,(Ly )BCy ].
Our earlier analytic results in [17] showed the presence of
poles, but were limited to rather narrow strip widths. With
our present calculations of 〈k〉�s for considerably greater strip
widths, we have answered this question, in the affirmative.
This is evident in Table V. Furthermore, we find that with all
of the strips for which we have performed exact calculations,
for a given type of lattice strip � and specified transverse
boundary conditions BCy, the magnitude of the pole(s) of
〈k〉[�,(Ly )BCy ] nearest to the origin in the complex p plane de-
creases monotonically with increasing Ly, and similarly, the
magnitude of the pole(s) of 〈k〉[�,(Ly )BCy ] nearest to the origin in
the r plane decreases monotonically with increasing Ly. Thus,
the corresponding radii of convergence of the small-p and
small-r series also decrease with increasing Ly. One knows
rigorously that the small-p and small-r series expansions of
〈k〉� for infinite-length strips of arbitrarily large width, and
also for the infinite lattices �, are Taylor series with finite
radii of convergence, given the connection via (2.4) with the
Potts model. This follows because vp = p/(1 − p), so that
the small-p and small-r expansions in this bond percolation
problem correspond, respectively, to high-temperature and
low-temperature expansions in the Potts model. In general,
the high- and low-temperature expansions of a discrete spin
model such as the Potts model are Taylor series expansions
with finite radii of convergence. Our results are thus consistent
with the inference that, as Ly → ∞, the magnitude of the
pole(s) nearest to the origin in the complex-p plane and the re-
sultant radius of convergence of the small-p series expansions
of 〈k〉[�,(Ly )BCy ] will approach the value obtained from analyses
of small-p series expansions of 〈k〉� on the corresponding
infinite two-dimensional lattices. A similar comment applies
to the poles in the r plane. For example, regarding the poles
in the p plane, from analyses in Ref. [8] of small-p series
expansions for the average cluster number on the square lattice
〈k〉sq, evidence was reported for an unphysical singularity
at p = −0.41 ± 0.02 (see also [7]). Our results, as listed in
Table V, show a decrease in the magnitude of the unphysical
pole(s) nearest to the origin in the complex-p plane consistent
with the inference that with increasing strip width Ly, this
magnitude approaches this value �0.41 [8] obtained from
series analyses for the infinite square lattice. Indeed, the mag-
nitude of the complex-conjugate pair of poles nearest to the
origin in the [sq, 5P] strip is already equal to 0.41 to two
significant figures. Our exact results on these lattice strips thus
give additional insight into this phenomenon of unphysical
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singularities closer to the origin than pc,� that were noticed
in early series analyses [7,8].

IX. CONCLUSION

In this paper we have presented a number of new exact
results for average cluster numbers 〈k〉�,(Ly )BCy

in the bond
percolation problem on infinite-length lattice strips of the
square, triangular, and honeycomb lattices with various trans-
verse boundary conditions. We have proved a theorem that
〈k〉[�,(Ly )BCy ] is a rational function of the bond occupation prob-
ability p. We have evaluated our expressions for 〈k〉[�,(Ly )BCy ]

with p set equal to the critical values p = pc,� for the cor-
responding infinite two-dimensional lattices. We have also
calculated coefficients of 〈k〉[�,(Ly )BCy ] in an expansion around
p = pc,�. Using our calculations on infinite-length strips of
several different widths and lattices types, we have checked

and found excellent agreement with the functional form and
coefficient describing the finite-size correction to the infinite-
width limit. Finally, we have carried out a study of the poles
in the expressions for 〈k〉[�,(Ly )BCy ] and how these determine
the radii of convergence of the small-p and small-r Taylor
series expansions of these quantities. In turn, this has given in-
sight into the appearance of unphysical singularities that were
found in early series expansions of 〈k〉� on two-dimensional
lattices �.
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APPENDIX: SOME DETAILED RESULTS OF CALCULATIONS

We list here numerator and denominator polynomials in Eq. (4.1) for various infinite-length strips that are too lengthy to give
in the main text:

N[sq,4F ] = (1 − p)3(4 + 5p − 13p2 − 22p3 + 13p4 + 120p5 − 35p6 − 342p7 + 67p8 + 800p9 − 42p10 − 2243p11

+ 2042p12 + 867p13 − 1632p14 + 2066p15 − 8992p16 + 14 900p17 − 3933p18 − 15 767p19 + 19 105p20

− 10 149p21 + 17 236p22 − 37 363p23 + 39 047p24 − 19 238p25 − 6431p26 + 58 942p27 − 158 184p28

+ 235 049p29 − 176 732p30 − 19 602p31 + 213 240p32 − 267 764p33 + 182 599p34 − 59 067p35 − 17 833p36

+ 35 509p37 − 24 007p38 + 10 257p39 − 2997p40 + 589p41 − 71p42 + 4p43), (A1)

D[sq,4F ] = 4(1 − 4p2 + 8p4 + 21p5 − 45p6 − 50p7 + 125p8 + 106p9 − 262p10 − 388p11 + 1257p12 − 911p13 − 353p14

+ 1392p15 − 3441p16+7214p17−7659p18−33p19+10 102p20 − 13 234p21+12 476p22 − 17 624p23 + 25 847p24

− 24 760p25 + 10 265p26 + 17 864p27 − 67 400p28 + 131 039p29 − 160 372p30 + 101 976p31 + 31 616p32

− 155 851p33 + 192 656p34 − 139 509p35 + 55 077p36 + 4708p37 − 24 705p38 + 20 289p39 − 10 358p40 + 3729p41

− 961p42 + 171p43 − 19p44 + p45), (A2)

N[sq,4P] = (1 − p)4(4 + 8p − 16p3 − 39p4 + 112p5 − 20p6 − 208p7 + 315p8 − 223p9 + 248p10 − 647p11

+ 1106p12 − 1318p13 + 1453p14 − 766p15 − 2735p16 + 8742p17 − 12 662p18 + 10 502p19 − 4091p20

− 1358p21 + 3122p22 − 2307p23 + 1033p24 − 297p25 + 51p26 − 4p27), (A3)

D[sq,4P] = 4(1 − p + p2)(1 + p − 2p2 − 3p3 − 3p4 + 41p5 − 36p6 − 62p7 + 140p8 − 131p9 + 120p10 − 226p11

+ 460p12 − 649p13 + 688p14 − 480p15 − 654p16 + 3216p17 − 5785p18 + 5926p19 − 3292p20 + 99p21

+ 1578p22 − 1584p23 + 912p24 − 351p25 + 90p26 − 14p27 + p28), (A4)

N[sq,5P] = (1 − p)4(5 + 15p + 10p2 − 40p3 − 115p4 − 29p5 + 660p6 + 132p7 − 1709p8 − 877p9 + 3950p10

+ 2877p11 − 7215p12 − 8662p13 + 7196p14 + 40 393p15 − 53 232p16 + 13 204p17 − 51 313p18 + 19 634p19

+ 377 380p20 − 503 109p21 − 570 329p22 + 1 553 036p23 − 65 274p24 − 2 873 234p25 + 4 621 549p26

− 7 720 349p27 + 15 352 272p28 − 16 433 567p29 − 12 262 362p30 + 78 782 168p31 − 158 447 809p32

+ 214 186 307p33 − 230 019 014p34 + 216 228 871p35 − 186 980 567p36 + 142 532 407p37 − 68 762 291p38

− 55 618 898p39 + 243 770 621p40 − 473 742 752p41 + 674 493 935p42 − 757 917 965p43 + 682 330 188p44

− 487 268 491p45+263 968 633p46−92 180 540p47+443 325p48+27 880 668p49 − 24 713 816p50 + 14 007 915p51

− 5 985 845p52 + 2 011 895p53 − 535 627p54 + 111 561p55 − 17 625p56 + 1993p57 − 144p58 + 5p59), (A5)
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D[sq,5P] = 5(1 + p − 2p2 − 6p3 − 3p4 + 26p5 + 103p6 − 244p7 − 142p8 + 516p9 + 420p10 − 1159p11 − 928p12 + 1992p13

+ 1578p14 + 2395p15 − 23 040p16 + 39 567p17 − 38 811p18 + 26 672p19 + 64 051p20 − 272 943p21 + 288 026p22

+ 249 844p23 − 779 755p24 + 77 897p25 + 2 020 147p26 − 4 713 372p27 + 8 356 354p28 − 12 526 447p29

+ 9 141 812p30 + 17 671 571p31 − 77 282 022p32 + 157 595 007p33 − 229 642 624p34 + 269 077 829p35

− 270 785 628p36 + 242 608 396p37 − 188 685 316p38 + 99 894 346p39 + 41 909 295p40 − 247 536 567p41

+ 498 168 300p42 − 733 592 566p43 + 871 224 361p44 − 853 561 993p45 + 688 825 282p46 − 448 046 653p47

+ 220 169 597p48 − 63 265 190p49−13 220 314p50+33 003 789p51 − 26 681 313p52+15 080 448p53 − 6 672 527p54

+ 2 389 811p55 − 697 964p56 + 165 068p57 − 31 003p58 + 4465p59 − 464p60 + 31p61 − p62), (A6)

N[sq,3sd] = (1 − p)3(3 − 3p − 21p2 + 37p3 + 97p4 − 265p5 − 275p6 + 1559p7 − 735p8 − 4454p9 + 6397p10 + 7719p11

− 25 594p12 + 461p13 + 76 993p14 − 100 105p15 − 48 081p16 + 240 589p17 − 133 404p18 − 299 125p19

+ 397 672p20 + 468 568p21 − 1 660 402p22 + 1 467 662p23 + 705 502p24 − 2 859 795p25 + 2 447 284p26

− 148 761p27 + 71 758p28 − 4 717 102p29 + 10 333 853p30 − 9 242 363p31 − 2 195 761p32 + 18 554 630p33

− 29 140 317p34 + 26 914 438p35 − 13 774 889p36 − 2 046 623p37 + 12 789 267p38 − 15 764 460p39

+ 13 053 019p40 − 8 354 879p41 + 4 320 752p42 − 1 833 211p43 + 638 949p44 − 181 329p45 + 41 088p46

− 7182p47 + 912p48 − 75p49 + 3p50), (A7)

D[sq,3sd] = 3(1 − 2p − 5p2 + 19p3 + 13p4 − 112p5 + 32p6 + 542p7 − 883p8 − 788p9 + 3568p10 − 1056p11 − 9489p12

+ 11 669p13+18 234p14 − 61 546p15+42 562p16+71 008p17 − 151 651p18+24 638p19 + 201 958p20 − 77 630p21

− 616 216p22 + 1 248 416p23 − 776 173p24 − 859 257p25 + 2 199 256p26 − 1 891 602p27 + 827 535p28

− 1 633 704p29 + 5 205 016p30 − 8 217 812p31 + 5 395 624p32 + 4 995 137p33 − 18 179 344p34 + 25 979 096p35

− 23 240 423p36 + 11 597 999p37 + 2 383 494p38 − 12 270 154p39 + 15 475 815p40 − 13 388 744p41 + 9 080 298p42

− 5 043 522p43+2 332 946p44 − 902 428p45+290 686p46 − 77 040p47 + 16 440p48 − 2725p49 + 330p50

− 26p51 + p52), (A8)

N[tri,4F ] = (1 − p)4(2 − 5p − 4p2 + 41p3 − 52p4 − 80p5 + 164p6 + 838p7 − 4165p8 + 8517p9 − 8197p10 − 1589p11

+ 13 355p12 − 8786p13 − 4606p14 − 61 665p15 + 374 163p16 − 1 043 384p17 + 1 905 928p18 − 2 421 614p19

+ 1 878 238p20 + 140 422p21 − 3 349 440p22 + 6 775 564p23 − 9 239 709p24 + 9 983 576p25 − 9 009 248p26

+ 6 948 032p27 − 4 628 988p28+2 674 993p29 − 1 339 759p30+578 446p31 − 213 006p32+65 734p33 − 16 546p34

+ 3259p35 − 470p36 + 44p37 − 2p38), (A9)

D[tri,4F ] = 2(1 − 4p + 4p2 + 18p3 − 60p4 + 43p5 + 80p6 + 225p7 − 2534p8 + 8252p9 − 15 122p10 + 15 527p11 − 3457p12

− 12 950p13 + 17 747p14 − 40 206p15 + 232 540p16 − 868 823p17 + 2 151 018p18 − 3 857 167p19 + 5 099 429p20

− 4 529 584p21 + 1 058 496p22 + 5 305 640p23 − 13 128 301p24 + 20 075 271p25 − 24 025 016p26 + 24 060 724p27

− 20 745 034p28 + 15 614 712p29 − 10 330 842p30 + 6 022 412p31 − 3 090 155p32 + 1 389 384p33 − 542 808p34

+ 181 832p35 − 51 206p36 + 11 780p37 − 2122p38 + 280p39 − 24p40 + p41), (A10)

N[tri,3P] = (1 − p)6(3 + 9p − 50p3 + 84p4 − 24p5 − 192p6 + 554p7 − 844p8 + 812p9 − 516p10

+ 246p11 − 151p12 + 143p13 − 112p14 + 56p15 − 16p16 + 2p17), (A11)

D[tri,3P] = 3(1 − 3p2 − 3p3 + 68p4 − 187p5 + 190p6 + 162p7 − 1035p8 + 2404p9 − 3822p10

+ 4494p11 − 3954p12 + 2580p13 − 1215p14 + 391p15 − 77p16 + 7p17), (A12)

N[tri,4P] = (1 − p)6(4 + 12p − 4p2 − 100p3 − 83p4 + 1290p5 − 2067p6 − 2512p7 + 11 219p8 + 3776p9 − 91 473p10

+ 237 866p11 − 238 434p12 − 355 578p13 + 2 194 759p14 − 5 879 228p15 + 10 734 693p16 − 11 817 298p17
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− 3 000 450p18 + 49 716 006p19 − 133 234 513p20 + 226 293 288p21 − 260 526 672p22 + 145 333 622p23

+ 188 864 004p24 − 743 143 968p25 + 1 422 696 984p26 − 2 051 609 680p27 + 2 439 158 465p28 − 2 472 507 822p29

+ 2 176 639 966p30 − 1 694 462 238p31 + 1 200 557 665p32 − 813 001 894p33 + 559 873 482p34 − 405 661 962p35

+ 300 606 573p36 − 214 020 448p37 + 138 935 000p38 − 79 728 612p39 + 39 753 500p40 − 17 021 640p41

+ 6 188 754p42 − 1 884 492p43 + 471 692p44 − 94 508p45 + 14 570p46 − 1622p47 + 116p48 − 4p49), (A13)

D[tri,4P] = 4(1 − 4p2 − 8p3 + 42p4 + 258p5 − 1514p6 + 2760p7 + 81p8 − 7196p9 − 8065p10 + 116 560p11 − 367 969p12

+ 562 624p13 + 89 861p14 − 3 170 072p15 + 10 610 941p16 − 22 666 338p17 + 32 951 037p18 − 21 009 590p19

− 50 850 559p20 + 222 682 606p21 − 494 752 835p22 + 772 870 308p23 − 843 281 180p24 + 417 584 024p25

+ 751 628 022p26 − 2 729 780 780p27 + 5 298 392 040p28 − 7 950 694 944p29 + 10 021 670 376p30

− 10 934 130 274p31 + 10 454 310 676p32 − 8 802 418 934p33 + 6 535 447 502p34 − 4 275 633 432p35

+ 2 459 294 308p36 − 1 239 099 924p37 + 543 948 012p38 − 206 498 264p39 + 67 102 916p40 − 18 406 832p41

+ 4 181 204p42 − 765 524p43 + 108 540p44 − 11 180p45 + 744p46 − 24p47), (A14)

N[hc,4P] = (1 − p)3(4 + 6p + 2p2 − 6p3 − 20p4 + 12p5 + 12p6 − 2p7 − 11p8 + 23p9 − 9p10

− 46p11 + 118p12 − 207p13 + 257p14 − 159p15 − 63p16 + 194p17 − 126p18 + 24p19

− 71p20 + 309p21 − 623p22 + 705p23 − 391p24 − 20p25 + 178p26 − 116p27 + 34p28 − 4p29), (A15)

D[hc,4P] = 4(1 − p2 − p3 − 2p4 + 10p5 − 5p6 − 3p7 + 10p9 − 13p10 − 6p11 + 47p12 − 105p13 + 167p14

− 182p15 + 99p16 + 39p17 − 118p18 + 95p19 − 55p20 + 110p21 − 286p22 + 481p23 − 515p24

+ 317p25 − 43p26 − 104p27 + 98p28 − 43p29 + 10p30 − p31). (A16)

[1] J. W. Essam, Rep. Prog. Phys. 43, 833 (1980).
[2] D. Stauffer and A. Aharony, Introduction to Percolation Theory,

2nd ed. (Taylor and Francis, London, 1991).
[3] B. Bollobás and O. Riordan, Percolation (Cambridge University

Press, Cambridge, 2006).
[4] N. Araújo, P. Grassberger, B. Kahng, K. J. Schrenk, and R. M.

Ziff, Eur. Phys. J.: Spec. Top. 223, 2307 (2014).
[5] M. E. Fisher and J. W. Essam, J. Math. Phys. 2, 609 (1961).
[6] M. F. Sykes and J. W. Essam, Phys. Rev. 133, A310 (1964);

J. W. Essam and M. F. Sykes, J. Math. Phys. 7, 1573 (1966).
[7] M. F. Sykes, D. S. Gaunt, and J. W. Essam, J. Phys. A: Math.

Gen. 9, L43 (1976); M. F. Sykes and M. Glen, ibid. 9, 87 (1976);
M. F. Sykes, D. S. Gaunt, and M. Glen, ibid. 9, 97 (1976); 9, 715
(1976); 9, 725 (1976); 14, 287 (1981).

[8] C. Domb and C. J. Pearce, J. Phys. A: Math. Gen. 9, L137
(1976).

[9] M. E. J. Newman and R. M. Ziff, Phys. Rev. E 64, 016706
(2001), and references therein.

[10] M. F. Sykes and J. W. Essam, Phys. Rev. Lett. 10, 3 (1963);
J. Math. Phys. 5, 1117 (1964).

[11] R. M. Ziff, S. R. Finch, and V. S. Adamchik, Phys. Rev. Lett.
79, 3447 (1997).

[12] H. N. V. Temperley and E. H. Lieb, Proc. R. Soc. London Ser.
A 322, 251 (1971).

[13] S. B. Kelland, Aust. J. Phys. 27, 813 (1974).
[14] R. J. Baxter, H. N. V. Temperley, and S. E. Ashley, Proc. R.

Soc. London A 358, 535 (1978).
[15] P. Kleban and R. M. Ziff, Phys. Rev. B 57, R8075 (1998).

[16] R. M. Ziff, C. D. Lorenz, and P. Kleban, Physica A 266, 17
(1999).

[17] S.-C. Chang and R. Shrock, Phys. Rev. E 70, 056130 (2004).
[18] S.-C. Chang and R. Shrock, J. Stat. Phys. 149, 676 (2012).
[19] S. Mertens, I. Jensen, and R. M. Ziff, Phys. Rev. E 96, 052119

(2017).
[20] A. M. Povolotsky, J. Phys. A: Math. Theor. 54, 22LT01

(2021).
[21] C. M. Fortuin and P. W. Kasteleyn, Physica 57, 536 (1972).
[22] M. P. M. den Nijs, J. Phys. A: Math. Gen. 12, 1857 (1979); B.

Nienhuis, E. K. Riedel, and M. Schick, ibid. 13, L189 (1980);
R. B. Pearson, Phys. Rev. B 22, 2579 (1980); H. W. J. Blöte,
P. Nightingale, and B. Derrida, J. Phys. A: Math. Gen. 14, L45
(1981).

[23] F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
[24] J. L. Cardy, J. Phys. A: Math. Gen. 25, L201 (1992).
[25] N. L. Biggs, R. M. Damerell, and D. A. Sands, J. Comb. Theory

12, 123 (1972).
[26] R. J. Baxter, J. Phys. A: Math. Gen. 20, 5241 (1987).
[27] R. Shrock, Physica A 283, 388 (2000).
[28] S.-C. Chang and R. Shrock, Physica A 296, 234 (2001).
[29] S.-C. Chang and R. Shrock, Ann. Phys. (NY) 290, 124

(2001).
[30] S.-C. Chang and R. Shrock, Physica A 286, 189 (2000).
[31] S.-C. Chang and R. Shrock, Physica A 296, 183 (2001).
[32] S.-C. Chang and R. Shrock, Phys. Rev. E 64, 066116 (2001).
[33] S.-C. Chang and R. Shrock, Int. J. Mod. Phys. B 15, 443

(2001).

044107-21

https://doi.org/10.1088/0034-4885/43/7/001
https://doi.org/10.1140/epjst/e2014-02266-y
https://doi.org/10.1063/1.1703745
https://doi.org/10.1103/PhysRev.133.A310
https://doi.org/10.1063/1.1705067
https://doi.org/10.1088/0305-4470/9/5/002
https://doi.org/10.1088/0305-4470/9/1/014
https://doi.org/10.1088/0305-4470/9/1/015
https://doi.org/10.1088/0305-4470/9/5/008
https://doi.org/10.1088/0305-4470/9/5/009
https://doi.org/10.1088/0305-4470/14/1/028
https://doi.org/10.1088/0305-4470/9/10/004
https://doi.org/10.1103/PhysRevE.64.016706
https://doi.org/10.1103/PhysRevLett.10.3
https://doi.org/10.1063/1.1704215
https://doi.org/10.1103/PhysRevLett.79.3447
https://doi.org/10.1098/rspa.1971.0067
https://doi.org/10.1071/PH740813
https://doi.org/10.1098/rspa.1978.0026
https://doi.org/10.1103/PhysRevB.57.R8075
https://doi.org/10.1016/S0378-4371(98)00569-X
https://doi.org/10.1103/PhysRevE.70.056130
https://doi.org/10.1007/s10955-012-0616-5
https://doi.org/10.1103/PhysRevE.96.052119
https://doi.org/10.1088/1751-8121/abf6fe
https://doi.org/10.1016/0031-8914(72)90045-6
https://doi.org/10.1088/0305-4470/12/10/030
https://doi.org/10.1088/0305-4470/13/6/005
https://doi.org/10.1103/PhysRevB.22.2579
https://doi.org/10.1088/0305-4470/14/2/005
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1088/0305-4470/25/4/009
https://doi.org/10.1016/0095-8956(72)90016-0
https://doi.org/10.1088/0305-4470/20/15/037
https://doi.org/10.1016/S0378-4371(00)00109-6
https://doi.org/10.1016/S0378-4371(01)00142-X
https://doi.org/10.1006/aphy.2001.6143
https://doi.org/10.1016/S0378-4371(00)00225-9
https://doi.org/10.1016/S0378-4371(01)00143-1
https://doi.org/10.1103/PhysRevE.64.066116
https://doi.org/10.1142/S0217979201004630


SHU-CHIUAN CHANG AND ROBERT SHROCK PHYSICAL REVIEW E 104, 044107 (2021)

[34] S.-C. Chang and R. Shrock, Adv. Appl. Math. 32, 44 (2004).
[35] S.-C. Chang and R. Shrock, Physica A 301, 301 (2001).
[36] S.-C. Chang, J. Salas, and R. Shrock, J. Stat. Phys. 107, 1207

(2002).
[37] R. Shrock and S.-H. Tsai, Phys. Rev. E 56, 4111 (1997).
[38] R. Shrock, Phys. Lett. A 261, 57 (1999).

[39] See, e.g., J. V. Uspensky, Theory of Equations (McGraw-Hill,
New York, 1948), p. 264.

[40] S.-C. Chang and R. Shrock, Physica A 347, 314 (2005).
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