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We study a phase transition in parameter learning of hidden Markov models (HMMs). We do this by
generating sequences of observed symbols from given discrete HMMs with uniformly distributed transition
probabilities and a noise level encoded in the output probabilities. We apply the Baum-Welch (BW) algorithm, an
expectation-maximization algorithm from the field of machine learning. By using the BW algorithm we then try
to estimate the parameters of each investigated realization of an HMM. We study HMMs with n = 4, 8, and 16
states. By changing the amount of accessible learning data and the noise level, we observe a phase-transition-like
change in the performance of the learning algorithm. For bigger HMMs and more learning data, the learning
behavior improves tremendously below a certain threshold in the noise strength. For a noise level above the
threshold, learning is not possible. Furthermore, we use an overlap parameter applied to the results of a maximum
a posteriori (Viterbi) algorithm to investigate the accuracy of the hidden state estimation around the phase
transition.
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I. INTRODUCTION

Phase transitions [1,2] are phenomena of central interest
in physics and, in particular, statistical physics and thermo-
dynamics. Classically, phase transitions are studied for actual
physical system like liquid-vapor transitions of gases, fer-
romagnetic transitions of magnets, or the super conduction
phase transition of metals. The behavior of phase transitions
becomes more interesting if (quenched) disordered systems
are studied. Well-known examples are the percolation tran-
sition, the spin glass-paramagnet transition of spin glasses,
or the localization transition of disordered Bose systems. For
decades, phase transitions in “nonphysical” systems have also
been studied, e.g., the jamming transition in transport models
like the Nagel-Schreckenberg model [3], the transition to an
epidemic state in disease spreading [4], “easy-hard” phase
transitions in optimization problems [5], or the transition to
synchronicity of brain activity as described by the Kuramoto
model [6]. Also, information-theoretic phase transitions with
respect to analyzing (large) sets of data have become a field of
interest, e.g., when finding communities in networks [7–10],
analyzing the complexity of data generated by random sys-
tems [11], learning of patterns in neural networks [12], and
detecting causality in Bayesian networks [13]. Many of these
information-theoretic phase transitions seek to distinguish be-
tween phases where the desired information, can be obtained
from the given data, and for phases where this is not possible.

Investigating these phase transitions allows one to under-
stand the fundamental limitations of learning and extracting
information from the data in general and in dependence of
the used models and algorithms. This is a fundamental way to
look at many problems and approaches which are considered
in the field of machine learning [14,15]. It has become in

recent years of major interest not only for ubiquitous appli-
cations but also for fundamental scientific studies. Note that,
interestingly, machine-learning models like neural networks
have been used also as tools to extract phase transitions in
different system like Ising systems [16–18].

Nevertheless, in this work we are interested in the first
mentioned connection between phase transitions and data
analysis. In particular, we address the question whether there
exists a transition between a phase where the fundamen-
tal parameters of a model can be extracted from the given
data, and a phase where not. Specifically, we study the
behavior of learning of parameters of elementary hidden
Markov models (HMMs) [19,20] by computer simulations
[21]. HMMs are widespread in data analysis and modeling,
e.g., speech-recognition [19], biological sequence analysis
[22], or analysis of gestures [23].

HMMs have been used often as tools, also in physical
contexts, e.g., to treat data in experimental physics [24] or
analyze phase transitions in physical systems [25]. However,
they have, to the best of our knowledge, only rarely been the
object of interest in a physical study, in particular, with respect
to phase transitions occurring in the HMMs. For example, the
entropy of a binary HMM was calculated [26] by a mapping to
a one-dimensional Ising model. Lathouwers and Bechhoefer
have investigated [27] transitions with respect to whether the
reconstruction of a hidden sequence is possible or not depend-
ing on whether data can be kept in memory. Allahverdyan and
Galstyan have investigated [28,29] the maximum a posteriori
(Viterbi) sequence as a function of a noise parameter and
found transitions between regions where almost full sequence
reconstruction is possible and regions where it is not.

In contrast to these previous works, as mentioned, we are
not interested in analyzing the properties or performance of
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a given HMM, with known parameters, with respect to the
given data, but we are interested whether it is possible to
learn the unknown parameters of an HMM from the given
data. Specifically, we will numerically generate data for an
HMM with given “ground-truth” parameter set. We control
some noise via the emission probabilities. Subsequently we
try to learn the parameters again using the BW algorithm
[20,30]. We analyze the learning of the transition and emission
probabilities specifying an HMM. We are interested whether
there exists a sharp transition between a “learning phase” and
a phase where the determination of the parameters fails. As
we will see below, this is indeed the case.

The remainder of the paper is organized as follows: In
Sec. II, we present the definition of an HMM and state the
ensemble of random HMMs we have used. In Sec. III, we
explain the algorithms we applied to simulate HMMs, to cal-
culate posterior probabilities and to learn the parameters from
the data. In Sec. IV, we define the measurable quantities we
have recorded. In Sec. V, we present our simulation results.
We finish with a summary and discussion in Sec. VI.

II. DEFINITIONS

Here we present the definitions we use in the present work,
in particular, of the hidden Markov model. HMMs consist of
a finite set of n (hidden) states and a finite or infinite set of
emission symbols. A chain generated by an HMM starts in
some initial state, which is randomly chosen with probabili-

ties given by a vector
−→
A0 = (A0

1, . . . A0
n). Transitions between

states i, j occur at discrete steps with probabilities Ai j , which
is the probability to go into state j in the next step if the
HMM is in state i in the current step. These probabilities are
collected in an n × n transition matrix A. Since the probability
to be in a certain state depends only on the previous state,
the sequence of states, denoted by −→x = (x1, . . . . , xL ) (L:
length of sequence), forms a Markov chain. Nevertheless, the
states are hidden, i.e., cannot be observed. Instead, at each
state a randomly draw symbol is emitted, creating a sequence−→y = (y1, . . . . , yL ). Here we consider the discrete case where
each time one symbol from an m letter alphabet is emitted.
Let Bik denote the probability to emit symbol k in state i.
These probabilities are collected in the n × m matrix B. The
regular conditions for probabilities apply, i.e., all entries are
nonnegative and the entries are normalized:

n∑
i=1

A0
i = 1,

n∑
j=1

Ai j = 1 ∀i ∈ {1, ..., n},

m∑
k=1

Bik = 1 ∀i ∈ {1, ..., n}. (1)

Here and in the following, we will always use letter i, j to in-
dicate states and the letter k to indicate an emission symbol. In
summary, each HMM is characterized by the set of parameters

θ = (
−→
A0, A, B). In this work, the HMMs are chosen in a way

that there are as many emission symbols as states, i.e., m = n.

Furthermore, A and B are chosen to have a specific structure.
For the transition matrices, we consider a full ensemble of
quenched disorder matrices which all have the form

Ai j =
{

pT if i = j,
1−pT

n−1 otherwise.
(2)

Furthermore, we consider more sparse ensembles. For the
symmetric ensemble, we allow only two transitions out of any
state to its two neighbouring states.

Ai j =

⎧⎪⎨
⎪⎩

pT if i = j,
1−pT

2 if |i − j| = 1 mod n,

0 otherwise.

(3)

Third, the asymmetric ensemble, only a transition to one
neigbouring state is possible:

Ai j =

⎧⎪⎨
⎪⎩

pT if i = j,

1 − pT if i − j = 1 mod n,

0 otherwise.

(4)

For each disorder realization matrix we usually draw, if not
mentioned otherwise, pT uniformly from the interval [0.85,1].
Thus, for each matrix pT is the probability for remaining in
the current hidden state. For big values of pT , the transition
into other hidden states different from the current state is less
probable, i.e., the hidden state chain will exhibit less fluctu-
ations. We have restricted the values to pT � 0.85 to reduce
the fluctuations which makes our simulations less demanding
in terms of statistics. Nevertheless, for some test cases, we
also allow smaller values of pT which leads to harder learning
problems. Together with small data sets it may even turn out
to be impossible to provide reasonable estimates of HMM
parameters through learning, as we elaborate in the results
section.

Furthermore, for each disorder realization the vector of
initial-state probabilities consist of a set of U (0, 1) uniformly
drawn random numbers. We require that the sum of these
numbers is normalized to one, i.e.,

A0
i = ri/

n∑
i=1

ri with ri ∼ U (0, 1). (5)

Here one could also consider other choices. However, a
nonuniform distribution would presumably be even slightly
easier to estimate. As the vector �A0 only makes up a small
subset of the parameters �, no strong impact of the precise
choice of the initialization can be expected, though. Thus, we
do not consider variants here.

The emission matrices have the form

Bik =
{

pE if i = k,
1−pE

m−1 otherwise,
(6)

where pE ∈ [1/m, 1] is a fixed (external) parameter that con-
trols the output noise level of the HMM. The case when
pE has the value 1 corresponds to an HMM with no noise
at all. In this case each emission symbol of a hidden state
corresponds to the hidden state itself and no other symbols are
emitted. The lower bound pE = 1

m represents an HMM with a
maximum noise level. In this case columns of B are all the
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same, therefore the hidden states can not be distinguished by
their emission probabilities.

For each given HMM, we generate Markov chains of states
and corresponding sequences of emitted symbols. Note that
for each HMM, and correspondingly each sequence, the pa-
rameters actually used are called ground-truth parameters.
The aim of our work is to see how well the learned parameters
agree with the ground truth, see below for our measurable
quantities. All results will be averages over a suitable number
of matrices drawn from this ensemble. Note that the ensem-
bles we study are inspired by the nondisordered, i.e., fixed
matrices which were considered previously for the smallest
possible case of n = 2 states [28] and for larger systems [27].

For all our work we consider different values of pE, but
all averages over different transition matrices A will be per-
formed for fixed values of pE, i.e., the same matrix B. All
results are then analyzed as a function of the parameter value
pE. We expect that in the limit pE → 1 it will be much easier
for any algorithm to learn the parameters from the sequence
of visible symbols, while for the limit pE → 1

m it will become
impossible. In particular, we are interested in whether between
these limiting values there exists a transition from an “easy”
learning phase, at large values of pE to a “hard” learning phase
for small values of pE.

III. ALGORITHMS

In this work, the parameter learning is executed by the
Baum-Welch algorithm [30]. The algorithm is an expectation-
maximization algorithm which seeks parameters θ∗ that
maximize the data likelihood P(−→y 1, ...,−→y N |θ ) of a given
training data set {−→y 1, . . . ,−→y N }, i.e.,

θ∗ = argmaxθP(−→y 1, ...,−→y N |θ ). (7)

Given an HMM model and initial parameters �, the train-
ing data set can be considered the input to the algorithm, and
the parameters �∗ can be considered the output. The BW
algorithm is, like EM algorithms in general, an iterative proce-
dure that can converge to local optima of the data likelihood.
The BW algorithm is the very standard choice and preferable,
e.g., to Viterbi training [20], because the latter one does not
necessarily improve the likelihood in each iteration.

For comprehensiveness, we outline the algorithm here,
details can be found in the literature [20]. One starts with

first-guess initializations θ = (
−→
A0, A, B), which are uniformly

drawn here within the members of the ensemble, respectively,
i.e., obeying the same constraints like normalization, etc. In
each iteration, the algorithm proceeds in two steps which
will be presented in more detail in the following sections: In
the expectation step, the E-step, the BW algorithm calculates
the expected times of transitions between two hidden states,
the expected times of symbol emissions by hidden states and
the expected number of times a sequence starts with a certain
hidden state. Based on these calculations in the maximization
step, the M-step, the new parameters are calculated. The algo-
rithm guarantees a step-wise decrease of the Kullback-Leibler
distance between the probability distributions over symbol se-
quences of the data and the model [31], i.e., the data likelihood
increases monotonously.

A. E step

This step requires a sum over all hidden paths −→x =
(x1, . . . . , xL ) which are compatible with one given ob-
servation −→y (taken from −→y 1, ...,−→y N ). For this purpose,
so-called forward-variables fi(l ) and backward-variables bi(l )
in Eq. (8) are calculated:

fi(l ) = P(y1, ..., yl , xl = i), with l ∈ {1, ..., L},
bi(l ) = P(yl+1, ..., yL|xl = i), with l ∈ {1, ..., L − 1}. (8)

The forward variable fi(l ) describes the joint probability
that the hidden state i occurs at the lth position of a sequence
and the first l observations were emitted. The backward vari-
able bi(l ) expresses the conditional probability that the last
L − l observations occur conditioned on the lth hidden state xl

being i [20]. There are recursive calculation rules that enable
one to get forward and backward variables for every position
within a sequence, see [19]. Combining the product rule for
probabilities P(X,Y ) = P(X |Y )P(Y ) with the definitions of
A, B and Eq. (8), one obtains [20]

P(xl = i, xl+1 = j|−→y , θ ) = fi(l ) Ai j B jyl+1 b j (l + 1)

P(−→y )
. (9)

Equation (9) represents the conditional probability for get-
ting the two consecutive hidden states i and j at the positions
l and l + 1 under the condition that the whole observation
sequence −→y is known. P(−→y ) can be calculated by using the
Forward-variables for l = L as

P(−→y ) =
n∑

i=1

fi(L). (10)

Using Eqs. (9) and (10) and by averaging over the data set
expected counts (denoted by an over bar) for the transition,
emission and initial-state probabilities can be obtained as

Ai j =
N∑

n=1

1

P(−→y n)

L−1∑
l=1

f n
i (l ) Ai j B jyn

l+1
bn

j (l + 1), (11)

Bik =
N∑

n=1

1

P(−→y n)

L∑
{l=1|yn

l =k}
f n
i (l ) bn

i (l ), (12)

A0
i =

N∑
n=1

1

P(−→y n)
A0

i Biyn
1

bn
i (1). (13)

B. M step

In the M step, the parameters are updated similar to the case
of maximum-likelihood estimation for Gaussian distributions
[20]. Here, the parameter updates are given by normalizing
the expected counts Eqs. (11)–(13):

Anew
i j = Ai j∑n

j′=1 Ai j′
, (14)

Bnew
ik = Bik∑m

i′=1 Bi′k
, (15)

(
A0

i

)new = A0
i∑n

i′=1 A0
i′
. (16)
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E and M steps are repeated until convergence to a,
possibly local, likelihood optimum. In this work for conver-
gence we consider the relative change of the data likelihood
P(−→y 1, ...,−→y N |θ ) before and after the parameter update from
Eqs. (14)–(16). When the relative change is smaller than a
threshold ε, the BW algorithm is terminated.

As we will see below, to which set of parameters the
BW algorithm converges depends on the choice of the initial
parameter set. Therefore, as we will detail below, we use BW
with ten random restarts and select from the 10 outcomes the
“best” one, i.e., that one with highest posterior probability.

C. Viterbi algorithm

For some of our simulations, we also computed the
maximum a posteriori (MAP) path, i.e., the (hidden) path−→
x∗ of states that maximizes for each observation −→y and

given HMM parameters θ the path probability P(
−→
x∗ |−→y , θ ).

This can be done by the Viterbi algorithm [32]. Similar to
the forward-backward algorithm, it computes iteratively the
Viterbi-variable vi(l ). It is describing the probability of the
most probable l steps path conditioned to it ends in state l and
conditioned to the first l letters of the observed sequence. The

hidden state sequence
−→
x∗ can be obtained by backtraceing.

IV. SETUP, PARAMETERS, AND
MEASURABLE QUANTITIES

We applied the BW algorithm to ensembles of HMMs,
as described by Eqs. (2)–(6), for three different HMM sizes
n ∈ {4; 8; 16}. We have tested several values for the conver-
gence parameter ε. We show results for ε = 10−7 because for
higher values the convergence was a bit worse and for even
smaller values the results do not change substantially. To see
the influence of an increase of the available data, we have
performed all numerical experiments for six different sizes
(N, L) of the learning sets, for each HMM size, respectively.

The convergence of the BW algorithm depends on the ini-
tial parameter set. Thus, we have, for each given realization of
an HMM under consideration, run the BW algorithm 10 times
with independently drawn initial parameters, each resulting
in a locally optimum estimate θ∗

r (r = 1, . . . , 10). To select
the best parameter set θ̃ among the 10 outcomes of the 10
runs, we have used, to avoid over-fitting effects, a second
data set −→z 1, ...,−→z N always of the size N = 200, L = 100.
Note that in practical applications one can always split the
available data into two halves. The final best estimate θ ′
is the one that exhibits the maximum joint data probability
P(−→z 1, ...,−→z N |θ∗

r ) (r = 1, . . . , 10). For practical reasons, we
consider log likelihood when possible, as usual. For technical
convenience, when we add up probabilities, we always first
scale them by the smallest probability, then perform the sum,
and then rescale, as it is often done [20].

All results presented below, for each considered value of
pE, we have performed an average over different realizations
from the ensemble of HMMs. For n = 4, we considered 1000
realizations, for n = 8 we studied 600 realizations, and for
n = 16 we found 200 realizations to be sufficient.

Note that during the learning process it is assumed that the
generating HMM-parameters and the hidden state sequences

−→x 1, ...,−→x N of the learning data are unknown. Since we use
artificially generated data they are nevertheless available to us
and we can use them as ground truth for comparison and eval-
uation of the learning process. For our purposes, we measure
the total error Etot [Eq. (17)], which is the sum of the absolute
differences between actual and estimated parameters:

Etot =
n∑

i=1

∣∣A0
i − Ã0

i

∣∣ +
n∑

i=1

n∑
j=1

|Ai j − Ãi j |

+
m∑

i=1

n∑
k=1

|Bik − B̃ik|. (17)

This quantity consists of differences for probabilities where
certain probabilities sum up to one due to the normalization.
For two sets {C1, . . . ,Cl} and {C̃1, . . . , C̃l} of probabilities
with

∑l
i=1 Ci = 1 and

∑l
i=1 C̃i = 1, the sum

∑
i |Ci − C̃i| can

at most attain the value 2, for example, for the case C1 =
1,Ci = 0 (i > 1) and C̃2 = 1, C̃i = 0 (i 	= 2). If, e.g., one re-
duces C1 a bit, C1 = C1 − δ and adds this, e.g., at C3 = C3 + δ,
then the total sum of the differences will be still 2. Thus,
one cannot exceed 2. Hence, the error Etot can at most reach
2(1 + n + m), i.e., is, in particular, linear in the number of
states for n = m with Etot � 4n + 2. In general, also estimated
parameters very different from the ground-truth parameters
can make up a successful run (e.g., in degenerated cases
when a model’s likelihood is invariant under certain parameter
permutations). In our case and for the way we choose the
generating parameters in Eqs. (2)–(6), we found Eq. (17) to
measure the degree of success of a given run usally well.
Nevertheless, it may happen that the BW algorithm permutes
the states. For example, it may attribute the typical, i.e., high-
probability, output “1” to state 3, output “2” to state 4, output
“3” to state 1, and output “4” to state 2. Thus, the algorithm
will obtain corresponding transition permuted rates, e.g., the
estimated transition probability for A34 corresponds actually
to the transition between states 1 and 2. Hence, even if all
parameters are estimated very well, a one-to-one comparison
using Eq. (17) will indicate a large error, due to this “misnam-
ing” of the states. To avoid this, for calculating the final error,
we always take the minimum error over all permutations of
the states.

Another way to test the estimated HMMs is to obtain, for
each training sequence −→y n (n = 1, . . . , N), the most-likely
hidden path x∗n

1 , . . . x∗n
L by applying the Viterbi algorithm to an

HMM with the estimated parameters θ̃ . This can be compared
to the actual paths xi

1, . . . xi
L. The fraction of agreeing hidden

states is given by the so-called overlap q, which is a frequently
used quantity in the physics of disordered systems:

q =
∑N

n=1

∑L
l=1 δ

(
xn

l , x∗n
l

)
N L

. (18)

Here δ(xn
j , x∗n

j ) = 1 if the hidden state of the learning set xi
j is

equal to the hidden state of the Viterbi sequence x∗i
j and oth-

erwise zero. This means q ∈ [0; 1] with q = 1 corresponds to
a 100% reconstruction of the hidden sequences −→x 1, ...,−→x N .
Note that q = 1 is not common because even when using
the true parameters of an HMM, the Viterbi path is only the
most-likely one, but very often not the actually generated one.
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FIG. 1. The evolution of the total error Etot as a function of the
BW step for an HMM with n = m = 16 and three differently data
set sizes, but the same initial parameters. Note that the initial value
Etot (t = 0) is consistent with the upper bound 4n + 2 = 66.

V. RESULTS

First, we study the behavior of the BW algorithm. In Fig. 1
the evolution of the total error Etot is shown for one realization
of the full ensemble as a function of the step t of the BW
algorithm. We consider three different learning data set sizes,
but in all three cases with the same set of starting parameters
θ where each parameter was drawn uniformly from [0,1].
Initially, the parameter set is very different Etot ≈ 57 from the
ground-truth parameters of the original HMM, but during its
evolution, the error is decreased until it levels off at parameter
values still different from the ground-truth ones, i.e., Etot � 0.
One also can see that for larger data set sizes, the error is
decreased more and faster, but once a certain size is reached,
no more improvement is obtained. Below we will see that
the combined size NL acts like a system size in the theory
of phase transitions, which allows us to extrapolate the phase
transition point from “hard” to the “easy” learning phase.

Since for the previous example the algorithm was not
able to recover the ground-truth parameters, we next study
what influence the initial parameter set has. For three
different random initial parameter sets the log-likelihood
ln{P[−→y 1, ...,−→y N |θ (t )]} of the learning data for the current
parameter set θ (t ) is shown as function of the iteration t . One
can observe in Fig. 2 that initially the growth in log-likelihood
is fast, similar to the improvement seen for Etot in Fig. 1. After
some iterations also these values level more or less off. One
sees that indeed for different initial parameters different final
log-likelihoods are reached. The same is true for the error
(not shown here). This illustrates the usefulness of repeated
BW runs, from which the one with the highest log-likelihood
for the test data set is chosen. Therefore, the influence of
“unfortunate” choices for the initial parameters is reduced.
Actually for case (III) the log-likelihood is nearly equal to the
ground truth, which was used to generate the data. This is an
indication that indeed a very good estimate of the parameters
was obtained [33], which is supported by the fact that for this
case the error in parameters is Etot,III = 0.050, i.e., very small.

A. Total error of the full ensemble

In Fig. 3 the total error Etot is shown as a function of
rescaled probability pEm for m = n = 4 and six different

ln

FIG. 2. The evolution of the log-likelihood as a function of the
BW step for an HMM of size n = m = 16 with three differently
initial parameter sets θ I, θ II, and θ III as starting point of the BW
algorithm. The log-likelihood was calculated for the learning set. The
solid line shows the ground truth. The corresponding total errors after
leveling off are: Etot,I = 17.005, Etot,II = 4.362, and Etot,III = 0.050.

learning set sizes (N, L). It is visible that for each learning set
size the largest Etot-value, i.e., the worst results, can be found
for pEm = 1 ↔ pE = 0.25. This meets the expectations since
pE = 0.25 corresponds to the largest noise level. For increas-
ing pEm, the total error decreases and reaches a minimum for
pE → 1. This corresponds to a nonexisting noise level, where
the full information about the states can be obtained from the
data. Hence, Fig. 3 shows clearly that the parameter-learning
improves if the noise level is decreased. Furthermore, it is
visible that the learning gets better by increasing the size of
the learning data set. The behavior for N = 1125 and L = 100
shows that the biggest improvement occurs roughly in the
interval pEm ∈ [1.3; 1.4]. The very steep decrease of the curve
indicates a sharp change from a nonlearning to a learning
behavior, i.e., a phase transition in the information theoretic
sense. A similar drop of Etot is observable for the learning sets
N = 450, L = 100 and N = 225, L = 100, which shows that
the learning set sizes are large enough to observe the limiting

FIG. 3. The total error Etot as a function of the noise parameter
pE, multiplied by the number of symbols m = 4 for six different
learning set sizes. Each data point is the average result over 1000
simulations. The error bars are smaller than symbol size. For the
three largest learning set sizes, the curves differ only slightly, which
indicates that the results for the thermodynamic limit will look
similar.
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FIG. 4. The total error Etot as a function of the noise parameter
pE, multiplied by the number of symbols m = 4 for a large learning
set NL = 40 000 but different values of L and N . Each data point is
the average result over 1000 simulations. The error bars are smaller
than symbol size.

behavior. The three smallest learning sets show a less steeper
decrease, indicating stronger finite-size effects. It can also be
seen that the decline shifts to the left with increasing size of
the learning data set, which we will below use to determine a
phase-transition point.

To verify whether the choice of the learning-set size as sys-
tem size is justified, we have performed additional simulations
for a fixed value of NL = 40 000 while varying both values.
As visible in Fig. 4, the results for different partitions (N, L)
of the learning set do not differ much. Only the case L = 10
of very short runs is just slightly harder to estimate. This
is probably because initial states provide less information,
in particular, for the present uniform distribution. Thus, if
the fraction of initial states in the data set is high, then the
error for estimating the transition {Ai j} parameters will also
be higher. Only estimating the initial parameters {A0

i } will
be more accurate, but this somehow is outweighed by the
fact that there are more transition parameters than parameters
for the initial states. Anyway, the difference for the L = 10
case is really small. We have obtained a very similar result
for NL = 10 000 (not shown here). We conclude our data for
L = 100 should represent well the limit of “large enough”
length of the individual runs, but for completeness, we also
show below sometimes results for L = 10 as well.

We have studied the behavior of the total error also for
other HMM sizes. Figures 5 and 6 show Etot for m = n = 8
and m = n = 16. For each system size, the parameter learning
behaves qualitatively the same as for n = m = 4. But one ob-
serves that in comparison to the case n = m = 4 the decrease
as a function of pEm seems to become even steeper and its
position shifts slightly to larger parameter values, i.e., away
from the point pEm = 1 of no information. This means, the
size of the no-learning phase becomes bigger on the rescaled
pE axis, indicating that for even larger HMM sizes the phase
transition from no learning to learning will still persist.

B. Finite-size scaling for full ensemble

As mentioned, a left shift of the decline of Etot is observable
for all HMM system sizes in Figs. 3–6 when increasing the

FIG. 5. The total error Etot as a function of the noise parameter
pE, multiplied by the number of symbols m = 8 for a better com-
parison of the different HMM sizes and for six different learning
set sizes. Each data point is the average result of 600 simulations.
The error bars are smaller than symbol size. For the three largest
learning set sizes, the curves differ only slightly, which indicates that
the results for the thermodynamic limit will look similar.

learning data set sizes. This allows us to determine the phase
transition point, which is the position of the steepest point
of decline in the thermodynamic limit. To determine this we
consider the variances σ 2 of the total error as a function of
pEm, which exhibits peaks at the points of steepest decrease
of Etot. To obtain estimates for the peak positions Ppeak (on
the p̃ = pEm scale) we performed Gaussian fits to the peaks.
Figure 7 shows the data used for the fits and the fit results
for n = 4. A shift to the left upon increasing NL is clearly
observable. In addition, the Gaussian fits, i.e., the transition
regions, become narrower for larger learning data sets which
is often observed in standard finite-size scaling theory [34].
By using the peak positions of all learning data sets, we ex-
trapolate the dependence of Ppeak (N, L) to large learning sets.
For that, we used the standard finite-size scaling power-law
ansatz for the finite-size dependence of the phase transition

FIG. 6. The total error Etot as a function of the noise parameter
pE, multiplied by the number of symbols m = 16 for six different
learning set sizes. Each data point is the average result over 200
simulations. The error bars are smaller than symbol size. For the
three largest learning set sizes, the curves differ only slightly, which
indicates that the results for the thermodynamic limit will look
similar.
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FIG. 7. The variance σ 2 of the total error Etot for the system size
m = n = 4 as function of pEm, calculated by using the results of
the 1000 HMM realizations. Data is shown only near the transition
regions, respectively. The lines show the fits to the Gaussians, which
where used to determine the peak positions.

positions for second order phase transitions:

Ppeak (N, L) = p̃∞ + a(NL)−1/ν . (19)

Here, p̃∞ denotes the phase transition point in the thermody-
namic limit NL → ∞ and a is a nonuniversal fit parameter.
ν denotes the exponent governing the finite-size corrections
and describes in the standard theory of continuous phase tran-
sitions the growth of the correlations when approaching the
phase transition point.

The data for the peak positions together with the fit ac-
cording to Eq. (19) for the learning sets of the system size
n = 4 is shown in Fig. 8. One can observe that the fits match
reasonably well given the rather large fluctuations of the
critical-point estimates. Such fluctuations notwithstanding,
the overall behavior allows the phase transition to be well seen
as a continuous phase transition. The resulting fit parameters,
also for the other HMM sizes (which were analyzed in a
similar way, not shown as figures), are collected in Table I.
We observe that the rescaled critical point moves to the right
with increasing HMM size n = m. The critical exponents ν

carry rather large error bars, which is often the case when

FIG. 8. Dependence of Ppeak as a function of the size of learning
data set, indicated by the product NL. The symbols show the posi-
tions of the steepest point of decline which were obtained by the peak
positions of the Gaussian fits from Fig. 7. Error bars are at most of
order symbol size. The line indicates the result of a fit to Eq. (19).

TABLE I. Rescaled critical points p̃∞ (second column) and crit-
ical exponents ν (third column) for the different HMM sizes m (1st
column) as obtained from a fit to Eq. (19). For the largest HMM sizes
the corrections to scaling were large such that the peak position for
small data size was omitted from the fit.

m p̃∞ ν

4 1.2(1) 2.5(10)
8 1.5(1) 2.3(7)
16 2.0(4) 2.1(14)

numerically studying phase transitions. Hence, whether they
are the same for all HMM sizes, i.e., whether the hard-easy
learning transition is universal with respect to HMM size,
cannot be concluded from the data.

C. Changing range of diagonal entry pT

Most of our results are for the case that the probability to
stay in a state, i.e., the diagonal entries of the transition matrix
A. is rather large, i.e., pT ∈ [0.85, 1]. Here we consider two
cases with smaller diagonal values. The smaller the diagonal
values are, the faster the HMM will change state, thus, making
estimates, in particular, of parameters, more difficult.

For the enlarged range pT ∈ [0.5, 1], the results do not look
much different, see Fig. 9, only we observe that the error is
slightly larger in the limit pE → 1 compared to the first case.

The result for very small probabilities to stay in a state,
taken in a range [0.2,0.5], is shown in Fig. 10. Thus, the
states in the Markov chain change extremely rapidly. Here, for
small data set sizes NL the BW algorithm fails to find the true
parameters basically everywhere. Only for higher amounts of
learning data, the BW algorithm again can somehow be suc-
cessful and one observes that the error Etot somehow decreases
when increasing pE. Nevertheless, even for large values of
pE the full true parameters cannot be obtained exactly, only a
pleateau with Etot ≈ 1 is reached. Only a trace of a true phase
transition behavior is visible. Presumable only for an extreme
size of the data set better results might be achievable, if at all,
but this is beyond the scope of our study.

FIG. 9. The total error Etot as a function of the scaled noise
parameter pEm for n = m = 4 case of the full ensemble and a larger
range pT ∈ [0.5, 1.0] of the diagonal transition matrix entries.
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FIG. 10. The total error Etot as a function of the scaled noise
parameter pEm for n = m = 4 case of the full ensemble and a shifted
range pT ∈ [0.2, 0.5] of the diagonal transition matrix entries.

Since for the medium values of pT the transition near
pEm ≈ 1.4 looks very similar to the above case pT ∈
[0.85, 1], we do not go into the details here and do not provide
another finite-size scaling analysis.

D. Other ensembles

We have also studied two other ensembles of transitions
matrices which are much sparser, the symmetric and the asym-
metric ensemble as defined in Eqs. (3) and (4), respectively.
Since we are interested only in the general behavior, we
restrict the study to the case m = n = 4. This is justified,
because, as visible in Fig. 11, the behavior is nearly indistin-
guishable from the full ensemble. Only the finite-size effects
near pEm = 1 are smaller here. This means the BW algorithm
does not profit from the fact that most entries of the transition
matrix are zero and the learning behavior is somehow insen-
sitive to the structure of the matrix.

We have performed a finite-size scaling analysis in the
same way as it was done for the full ensemble in Sec. V B.

FIG. 11. The total error Etot as a function of the scaled noise pa-
rameter pEm. The main plot shows the asymmetric ensemble, while
in the inset the symmetric ensemble is shown. Displayed are results
for six different learning set sizes, respectively. Each data point is the
average result over 1000 simulations. The error bars are smaller than
symbol size.

FIG. 12. The variance σ 2 of the total error Etot for the symmetric
ensemble of a system size m = n = 4 as function of pEm, calculated
by using the results of the 1000 HMM realizations. Data is shown
only near the transition regions, respectively. The lines show the fits
to the Gaussians, which where used to determine the peak positions.

Since the results look very similar, we only show in Fig. 12
as an example the bevhavior of the variance σ 2 of the total
error Etot for the symmetric ensemble as function of pEm.
We have also here performed finite-size scaling fits by fitting
peak positions to Eq. (19). We obtained for the symmetric en-
semble p̃∞ = 1.16(14) and ν = 3.1(1.1) For the asymmetric
ensemble the values p̃∞ = 1.11(18) and ν = 3.6(1.4). Inter-
estingly, the values are compatible with the values found for
the m = n = 4 case of the full ensemble, but the error bars,
in particular, for the critical exponent ν are quite large which
prohibits an accurate comparison. The reason is probably that
we have used, for convenience, a smaller number of different
data sizes NL here. Nevertheless, the results indicate that
the transition between the phase where the parameters can
not be learned and the phase where it is possible is at least
possibly universal in the statistical mechanics sense, i.e., does
not depend on details of the model.

E. Overlap

The behavior of the overlap parameter q as a function
of pEm for the full ensemble and n = m = 8 is shown in
Fig. 13. When decreasing the noise, i.e., increasing pEm,
the estimated MAP paths become more and more similar to

FIG. 13. The overlap parameter q for HMMs with the size m =
n = 8 and the same learning sets as in Fig. 5.
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FIG. 14. The overlap parameter q for HMMs with the size n = 4;
n = 8; n = 16 and the largest investigated learning set size as a
function of the noise parameter pE. pE is shown for the interval
[ 1

16 : 1] because its lower bound corresponds to the strongest noise
level for HMMs with m = n = 16. The vertical lines indicate the
extrapolated transition points obtained from the fit of Eq. (19), and
suitably rescaled, i.e., p̃∞/m.

the actual (ground-truth) paths. Since even with the correct
parameters estimating the MAP path often does not lead to
the actual path, the behavior is very smooth. Interesting, near
the phase transition point, the curve exhibits a strong kink,
which indicates the phase transition is visible for q as well,
but less clearly. Note that unlike to the behavior observed
previously [28], there is no alternation between several sharp
kinks and monotonously ascents of q over the whole range
pEm ∈ [1 : 8]. With respect to the finite-size effects of our
results, it can be seen that for growing learning data set size
the transition appears slightly sharper and occurs for smaller
values of pEm, i.e., exhibits the same principle finite-size
behavior as the total error. The results of q for the two largest
sizes are almost indistinguishable, thus can be taken to be very
similar to the result for the thermodynamic limit NL → ∞.

Thus, to compare the behavior for different HMM sizes,
we take always the result obtained for the largest learning
data set. In Fig. 14 a comparison of the overlap parameter
q for the different sized HMMs is shown here as a function
of pE only, because in this way the different curves can be
better distinguished. Note that for smallest HMM even the
largest learning data set used is rather small, because this was
sufficient to estimate the parameters with high accuracy, i.e.,
for a small value of Etot. Nevertheless, here, for the overlap,
this results in stronger fluctuations as compared to the larger
HMMs. Anyway, one observes that the kinks for q(pE) indeed
are very close to the extrapolated transition points (shown as
vertical lines in the figure). Thus, the hard-to-easy learning
phase transition is not only visible in the total error for the
parameters but also in the underlying behavior of the HMMs,
as exhibited by the MAP hidden paths.

VI. SUMMARY AND DISCUSSION

In this work we have not used HMMs as mere tools to
analyze the data originating from physical and other sys-
tems. Here, we made HMMs the actual subject of interest
with a physics perspective. This has already been done in

a few previous papers, but we have here addressed a very
different research question. We have analyzed an ensemble
of elementary HMMs with n states and m output symbols
with respect to learning HMM parameters from data. We have
restricted ourselves to m = n. For learning we have used the
Baum-Welch algorithm to estimate the maximum likelihood
parameters. However, we believe that many aspects of our
results also apply for other combinations of n and m and other
algorithms for parameter estimation.

We have varied a noise parameter pE which controls how
much the visible output symbols convey information about the
visited hidden states. In the limit of pE → 1 no noise exists
and perfect learning is possible, while for pE → 1/m the
output is completely random and no learning is possible. From
analyzing the error Etot of the learned to the actually used
parameters, from its variance and from the overlap parameter
q, we obtain clear evidence for the existence of a nontrivial
phase transition between a “hard” learning phase and a “easy”
learning phase. Note that at pE = 1/m clearly no learning is
possible at all. But one could expect that for any pE > 1/m,
if the amount of available data is only large enough, the algo-
rithm could exploit the bias to finally get the true parameters.
For restricting the number of restarts to 10, this is not the
case, the phase transition point is clearly different from the
trivial limit 1/m. The transition seems to persist in the limit
of large HMM sizes n, since the critical point moves even to
the right on the p̃E ≡ pEm scale with increasing HMM size
n = m. Note that it is still possible that in the “hard” phase,
the number of local minima is exponential in the number of
states, thus, maybe there is a range of values of pE where by
using a very large number of restarts one can still find the
ground-truth parameters. To investigate this issue we have, for
m = 8 and the largest data sets available, performed some test
runs in the “hard” region where we started the BW algorithm
always with the ground-truth parameters. Indeed, close to the
phase transition, the BW algorithm always stayed close to the
ground-truth parameters, which means that here the phase is
only “hard” but not “impossible.” Nevertheless, close to pE =
1/m, where the states of the HMM are indistinguishable, the
BW algorithm always iterated away from the ground-truth
parameters, thus, here learning is indeed “impossible.”

When decreasing the diagonal entry pT of the transition
matrix, the problem to determine the parameters using the BW
algorithm becomes harder, but if enough data is provided, the
results look very similar to the case of pT close to unity. Also
for variants of the ensembles, when the transitions matrices
become more sparse as for the symmetric and the asymmetric
ensemble, the appearance of phase transitions was observed,
with very similar curves.

From the finite-size dependence of the critical points, we
have determined the critical exponent ν for the different HMM
sizes. The value seems to be universal with respect to HMM
size and near 2.3, but with a rather large error bar. Thus, there
exists an information-theoretic phase transition in the learning
of the investigated HMMs, similar to transitions observed for
neural networks [12], community detection [7–10] or opti-
mization algorithms [5]. Analyzing this phase transition for
HMMs will allow for a better understanding of the limits of
learning. For example, with more numerical effort, one could
rerun the BW algorithm many times and study the distribution
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of local minima and investigate whether they tend to be very
close to each other in parameter space. Or they could turn
out to be organized hierarchically in clusters, similar to the
“replica-symmetry breaking” of spin-glasses. Such hierarchi-
cal organizations were also found numerically in the solution
landscape of optimization problems [35,36]. But such studies
about the behavior of HMMs and parameter learning might
also be useful for practitioners, to optimize algorithms and to
get to know meaningful application ranges.

From a fundamental point of view, it would be certainly
worthwhile to consider to use mathematical (mean-field)
methods to analytically perform the disorder average and
investigate such phase transitions occurring in HMMs more
thoroughly, expanding previous work on two-state HMMs
which were tackled by mapping it to Ising systems [28,29]
or a direct analysis of the estimation probabilities [27]. Nev-
ertheless, the previous works are for the case of the estimation
of the most probable path, while the present work is for the
estimation of the parameters, which is arguably a significantly
more difficult problem to analyze even for much simpler algo-
rithms, e.g., used in combinatorial optimization [37,38]. Thus,
whether an analytical analysis is possible appears uncertain
to us.

Clearly, we have analyzed only a small set of specific
ensembles of HMMs. We expect, however, that many aspects

of our results, in particular, the existence of one (or more)
nontrivial phase transitions as observed here, hold more gen-
erally. Nevertheless, it would be certainly of interest to study
other HMMs and other types of probabilistic data models to
study and understand phase transitions of their learning algo-
rithms. Also it would be worth investigating different types
of parameter-estimation algorithms, e.g., to investigate how
much the location of the phase transition depends on the algo-
rithm itself. Nevertheless, due to universality often observed
in physical systems, we expect critical exponents (ν in our
case), describing the growth of correlations when approach-
ing continuous phase transitions, to also be universal here.
Furthermore, we expect that there are fundamental limits of
learning, like those observed for community detection [9,10],
where there is a phase which exhibits statistically significant
differences but which provably cannot be exploited by any
algorithm.
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