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Application of the Widom insertion formula to transition rates in a lattice
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We consider diffusion of particles on a lattice in the so-called dynamical mean-field regime (memory effects
are neglected). Interactions are local, that is, only among particles at the same lattice site. It is shown that
a statistical mechanics analysis that combines detailed balance and Widom’s insertion formula allows for the
derivation of an expression for transition rates in terms of the excess chemical potential. The rates reproduce
the known dependence of self-diffusivity as the inverse of the thermodynamic factor. Soft-core interactions and
general forms of the excess chemical potential (linear, quadratic, and cubic with the density) are considered.
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I. INTRODUCTION

The study of transport processes in a perfect lattice is of
fundamental importance as a first step to understand, for ex-
ample, diffusion in more complex and realistic systems, such
as surfaces and solids [1–5]. One of the simplest models of
this kind is the Langmuir gas [6,7] (see also [[8], Sec. 7.1] and
[[2], Sec. 2.6.2.3], characterized by site exclusion due to hard-
core interaction; only one particle is allowed at each lattice
site. Even in this case it is difficult to derive a closed analytical
result for the tracer diffusivity [1,6,9,10], the main difficulty
being the presence of memory effects: backward jumps are
more probable than jumps in other directions because when a
particle moves it leaves behind an empty site.

We are interested in general interactions macroscopically
represented by the excess chemical potential μex, a function of
temperature T and density ρ, with the limitation that there is
not a phase transition. In the limit of small concentration, ρ →
0, interactions can be neglected and μex vanishes. For diffu-
sion on surfaces and in solids, the Darken equation [1,2,5,11]
gives a connection between the tracer and the collective dif-
fusion coefficients, that is, between the diffusion of a tagged
particle and the diffusion produced by a concentration gradi-
ent. The connection is given through the so-called thermody-
namic factor, defined as � = β

∂μ

∂ ln ρ
, where μ is the chemical

potential and β = (kBT )−1; or, in terms of the excess chem-
ical potential, as � = 1 + βρ

∂μex

∂ρ
(see, e.g., [[2], Sec. 2.6]).

The Darken equation manifests the decisive importance of
the thermodynamic factor in the description of diffusion pro-
cesses. It can be shown that the thermodynamic factor is
directly related to particle number fluctuations.

A correction factor has to be included if memory effects
are present. We consider the dynamical mean-field (DMF)
regime [1] in which memory effects can be neglected. This
approximation holds when there are many particles in each
site (e.g., for soft-core interaction instead of hard core); in
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this case, the jump of one particle is a small perturbation of
the initial state.

The Widom insertion formula [12] relates the excess chem-
ical potential with the insertion energy, that is, the energy
needed to insert one particle. The main purpose of this paper
is to demonstrate that the Widom insertion formula, combined
with detailed balance, provides relevant information for tran-
sition rates. Knowledge of transition rates is necessary when
performing nonequilibrium simulations with kinetic Monte
Carlo (if only the energy change is known, transition rates
are generally obtained with Glauber or Metropolis algorithms,
which do not guarantee a correct timescale for simulations
out of equilibrium). Moreover, with transition rates, the DMF
tracer diffusivity is immediately obtained. The results are
checked with numerical simulations for soft-core interaction
and for excess chemical potential linear, quadratic, and cubic
with density.

The approach sketched in this Introduction is based on
previous work on diffusion in solids [13,14], that made possi-
ble to reproduce, using a formula with three free parameters,
experimental results of the intrinsic diffusivity of different
binary mixtures [15]. Here, the intention is to reformulate and
generalize calculations, partially present in those references,
starting from fundamental concepts of statistical mechanics,
and to numerically check some results. The systems analyzed
are discrete: particles jump between neighboring sites in a
d-dimensional lattice. Different local interactions, among par-
ticles in the same cell, are considered; interactions between
particles in different cells are neglected.

The paper is organized as follows. In Sec. II, the theory
is developed. From detailed balance, transition rates of a
tagged particle are written in terms of the configuration energy
(Sec. II A). The Widom insertion formula (Sec. II B), is used
to obtain an expression for transition rates; the result includes
an undetermined function of the average concentration. From
transition rates, collective diffusion and DMF tracer diffusion
coefficients are obtained (Sec. II C). Some calculations are
written in the Appendices in order to present a clearer picture
of the main lines of reasoning. In Sec. III, numerical results
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are compared with the theory. Applications to surface diffu-
sion are discussed in Sec. IV. Summary and conclusions are
presented in Sec. V.

II. THEORY

We have a d-dimensional lattice. Each site, identified with
index i, is a cell with ni particles. A generic cell is considered
as an open system connected with a reservoir, constituted by
the rest of the lattice, that imposes a temperature T and chemi-
cal potential μ. There are � microscopic states for one particle
in a cell; � can be taken as a measure of the cell’s volume, and
we define the density as ni/�. Density spatial and temporal
variations are smooth, hence local thermal equilibrium holds.
The model can also be interpreted as the discretization of a
continuous system where the cell size is much larger than the
interaction range, and the interaction energy at cell walls is
neglected with respect to the bulk.

A. Detailed balance

Let us consider a jump process between cells 1 and 2,
that have n1 and n2 particles, respectively. The initial state,
A, is determined by the number of particles in the two cells:
A = {n1, n2}. State A undergoes a transition to state B = {n1 −
1, n2 + 1}, in which cells 1 and 2 have n1 − 1 and n2 + 1
particles. The transition rate from A to B is WA,B, and WB,A

is the corresponding rate for the inverse process.
The detailed balance relationship is

PA WA,B = PB WB,A, (1)

where PA and PB are the probabilities of states A and B. Local
thermal equilibrium is a sufficient condition for the validity of
this relationship.

The canonical partition function of n particles in a cell is
Z (n, T,�), or Zn for brevity. If the lattice is the discretiza-
tion of a continuous system, then Zn = Z0,n 〈e−βU (q1,...,qn )〉0,
where U (q1, . . . , qn) is the interaction energy of n particles
at positions q1, . . . , qn in the cell (see, e.g., [[16], Sec. 5.1]).
The average 〈 〉0 is computed with the probability distribution
of noninteracting particles; Z0,n is the partition function of
the ideal gas, given by V n/(λ3nn!), where λ is the thermal de
Broglie wavelength and V is the cell’s volume. For particles
in a lattice, the state is given by their positions, there is no
velocity, and the canonical partition function is

Zn =
∑

ω

e−βEω = �n

n!
〈e−βEω 〉, (2)

where the sum is over all microstates of n particles, and Eω

is the interaction energy of microstate ω. The sum is replaced
by the total number of microstates, �n/n!, times the canonical
average of the Boltzmann factor. Let us notice that, in the
lattice, � plays the role of V/λ3 for the continuous system.
In the limit of small concentration, interactions are neglected
and the canonical partition function is Z0,n = �n/n!.

The grand partition function of a cell is

Q(μ, T,�) =
∞∑

n=0

eβμnZn. (3)

The probability Pn of having n particles in a cell is Pn =
eβμnZn/Q and the probabilities of states A and B are PA =
Pn1 Pn2 and PB = Pn1−1Pn2+1 (this approximation is equivalent
to writing the partition function of two cells with n1 and n2

particles as the product Zn1Zn2 , since interaction energy at the
walls is neglected). Then, detailed balance (1) implies

Zn1Zn2 WA,B = Zn1−1Zn2+1 WB,A. (4)

It is useful to define the configuration energy of n particles,
φn, as

e−βφn = 〈e−βEω 〉 = Zn

Z0,n
. (5)

In the thermodynamic limit we have that Zn
T L= e−βF , with F

the free energy; symbol “
T L=” means that the equality holds

in the thermodynamic limit. Therefore, φ
T L= Fex, with Fex the

excess free energy. But it is important not to take the ther-
modynamic limit yet in order to keep nonextensive terms that
turn out to be relevant for transition rates. Combining Eqs. (3)
and (5), the grand partition function can be written as

Q =
∞∑

n=0

�n

n!
e−βφn eβμn. (6)

Now, using the configuration energy, the detailed balance
relationship (4) is

WA,B

WB,A
= e−β(φn2+1−φn2 )

e−β(φn1 −φn1−1 )

Z0,n1−1Z0,n2+1

Z0,n1Z0,n2

= e−β(φn2+1−φn2 )

e−β(φn1 −φn1−1 )

n1

n2+ 1
.

(7)

The rate WA,B refers to the transition of one particle from
cell 1 to cell 2; the jumping particle is any of those present
in cell 1. For the description of tracer diffusion we need,
instead, the transition rate of one tagged particle; the rate for
one specific particle in cell 1 is WA,B/n1 since all particles
are equivalent. Let us define Wn1,n2 as the transition rate for
one tagged particle that jumps from cell 1 to cell 2, with n1

and n2 particles in each cell; the order of subscripts in Wn1,n2

indicates the direction of the jump. Then, Wn1,n2 = WA,B/n1

and Wn2+1,n1−1 = WB,A/(n2 + 1), and Eq. (7) becomes

Wn1,n2 e−β(φn1 −φn1−1 ) = Wn2+1,n1−1 e−β(φn2+1−φn2 ). (8)

B. Widom insertion formula and transition rates

The Widom insertion formula ([12]; see also [[17], p. 30])
is a relationship between the excess chemical potential, μex,
and the interaction energy needed to insert one additional
particle. It can be written as

e−βμex = 〈e−β 
φn〉, (9)

where 
φn = φn+1 − φn and the angular brackets represent
the average in the grand canonical ensemble (see Appendix A
for a derivation). Equation (9) in the thermodynamic limit

implies that φ′ T L= μex, a result that, of course, is consistent

with φ
T L= Fex. As usual in thermodynamics, φn is taken as

a continuous function of n. The following notation is used
to indicate derivatives with respect to the number of parti-
cles: φ′ = ∂φn

∂n |n=n̄. Whenever φ or its derivatives are written
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without subindex, it is assumed that they are evaluated at the
average number of particles, n̄.

Using (9), it can be shown that (see Appendix B)

φn2+1 − φn2 = μex,n2 + εn2 + h.t., (10)

φn1 − φn1−1 = μex,n1 + εn1 + h.t., (11)

with

εn2 = − 1

2β

�′
n2

�n2

+ μ′
ex,n2

/2, (12)

εn1 = − 1

2β

�′
n1

�n1

− μ′
ex,n1

/2, (13)

where μex,ni ∼ O(�0) and εni ∼ O(�−1) (each time a deriva-
tive with respect to ni is applied, the power order in � is
reduced by 1). Higher order terms of 1/� are represented
by “h.t.” in (10) and (11). Replacing (10) and (11) in (8), we
obtain

Wn1,n2 e−β(μex,n1 +εn1 +h.t.) = Wn2+1,n1−1 e−β(μex,n2 +εn2 +h.t.). (14)

Writing Wn2+1,n1−1 = Wn2,n1 + ∂n2Wn2,n1 − ∂n1Wn2,n1 + h.t., we
have

Wn1,n2 e−βμex,n1 (1 − βεn1 + h.t.) = (
Wn2,n1︸ ︷︷ ︸
O(�0 )

+ ∂n2Wn2,n1 − ∂n1Wn2,n1 − βεn2Wn2,n1︸ ︷︷ ︸
O(�−1 )

+h.t.
)

e−βμex,n2 . (15)

Terms at different orders can be separated:

O(�0) : Wn1,n2 e−βμex,n1 = Wn2,n1 e−βμex,n2 , (16)

O(�−1) : −βεn1Wn1,n2 e−βμex,n1 = (
∂n2Wn2,n1 − ∂n1Wn2,n1 − βεn2Wn2,n1

)
e−βμex,n2 . (17)

Let us notice that the main idea in this procedure is to separate
orders 0 and 1, the orders at which we have information, but
higher order terms are not neglected. Using (16) in (17) we
get

(∂n2 − ∂n1 ) ln Wn2,n1 = β(εn2 − εn1 )

= − �′
n2

2�n2

+ β

2
μ′

ex,n2
+ �′

n1

2�n1

+ β

2
μ′

ex,n1
,

(18)

where expressions (12) and (13) for εni were used in the last
line.

Let us define νn2,n1 such that

ln Wn2,n1 − ln νn2,n1 = −1

2
ln �n2 + β

2
μex,n2 − 1

2
ln �n1

− β

2
μex,n1 , (19)

where the right-hand side is defined in such a way that, when
operator ∂n2 − ∂n1 is applied, the right-hand side of Eq. (18) is
obtained. Equivalently,

Wn2,n1 = νn2,n1

1

(�n2�n1 )1/2

eβμex,n2 /2

eβμex,n1 /2 . (20)

The expression for Wn1,n2 is obtained by exchanging n1 ↔ n2.
Using this ansatz in Eqs. (16) and (18) we obtain the following
conditions for νn2,n1 :

νn2,n1 = νn1,n2 , (21)

∂n2 ln νn2,n1 = ∂n1 ln νn2,n1 . (22)

The solution of these equations is a function that depends on
the sum n1 + n2. Then, we can write νn2,n1 = νn2+n1 and the

transition rate is

Wn2,n1 = νn2+n1

e−βμex,n1 /2

�
1/2
n1︸ ︷︷ ︸

ψn1

eβμex,n2 /2

�
1/2
n2︸ ︷︷ ︸

ϕn2

. (23)

We arrived at an expression for the transition rate that is the
product of νn1+n2 times two functions, ψn1 and ϕn2 , that depend
on n1 and n2, respectively. Both, ψn1 and ϕn2 , tend to 1 in the
limit of small concentration. This is the form of the transition
rate that can be deduced taking advantage of the information
provided by the Widom insertion formula. Function νn1+n2 is
unknown, but now we can advance with a physical interpreta-
tion. Since ν depends on n1 + n2, it corresponds to an effect
of the average concentration of both cells. The average con-
centration modifies, for example, the substratum for diffusion
on a surface or in a solid, that is, it modifies the activation
energy (the energy that a particle has to overcome to start
a jump [[4], Sec. 5.3.5]). This type of information depends
on microscopic specific characteristics of the system and, as
expected, cannot be deduced with the coarse-grained general
approach that is carried out here. In the examples used for
numerical simulations, in Sec. III, a constant value of ν is
assumed. For surface diffusion, ν depends, in general, on con-
centration (see Sec. IV). Nevertheless, the fact that ν depends
on the sum n1 + n2 implies that it cannot be a function of the
excess chemical potential, because μex depends either on n1

or n2, not on the sum, since particles in different cells do not
interact, and μex is not extensive.

C. Diffusivity

Diffusion processes are mainly characterized by two coeffi-
cients. The collective diffusion coefficient, Dc, gives the decay
rate of long wavelength fluctuations of particle concentration.
More specifically, it is the coefficient that relates particle
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current, J , with concentration gradient in the first Fick’s law.
On the other hand, the single-particle or tracer diffusion coef-
ficient is defined in terms of the mean-square displacement of
one tagged particle, D = 〈
x2〉/2t , for large values of time t ;
for simplicity we consider diffusion in one direction, along
the x axis. Both coefficients are, in general, different; they
coincide when interactions can be neglected. If the tagged
particle interacts with particles of the same type, the tracer
diffusivity is equivalent to the self-diffusion coefficient.

Let us consider the current in one direction and a smooth
spatial variation of the linear concentration ci = ni/a, where a
is the cell’s size. The particle current between a pair of generic
cells 1 and 2 is

J = n1Wn1,n2 − n2Wn2,n1 , (24)

where n1 and n2 are similar to n̄. Using (23),

J = νn1+n2

(�n1�n2 )1/2
(n1e−β
μex/2 − n2eβ
μex/2)

	 ν

�
[n1 − n2 − β(n1 + n2)
μex/2]

	 − ν

�

n

[
1 + βn̄


μex


n

]
= −ν 
n

= −νa2 
c

a
, (25)

where 
n = n2 − n1 and 
μex = μex,n2 − μex,n1 . The propor-
tionality factor between current and concentration gradient is,
as mentioned before, the collective diffusion coefficient, then

Dc = νa2. (26)

Let us consider the DMF approximation for tracer diffu-
sivity. We denote the tracer diffusivity by DMF to indicate that
memory effects are neglected. The tagged particle performs a
random walk with an average jump rate W and jump size a.
The diffusion coefficient is obtained in the continuous limit
of the random walk, and the result is DMF = Wa2 (see [[18],
Sec. 3.8.2]). From Eq. (23), the average jump rate in equilib-
rium is W = ν/�, then

DMF = νa2/�. (27)

Combining Eqs. (26) and (27), we recover the Darken equa-
tion [11]:

DMF = Dc/�, (28)

that is known to hold when memory effects are neglected [1].
The present procedure provides additional information, since
we have the transition rates and two separate expressions for
collective and tracer diffusivities.

Now, we can interpret the meaning of all terms in the
transition rate (23): νn1+n2 is the effect of the substratum;
(�n1�n2 )−1/2 gives the dependence on the thermodynamic
factor that appears in the Darken equation; and e−β
μex/2 is
a Boltzmann factor with μex corresponding to a mean-field
potential for one tagged particle. Citing [[19], p. 29]: “the
excess chemical potential can be thought of as an effective
mean-field potential acting on the particle due to the presence
of other particles and external forces.”

III. COMPARISON WITH NUMERICAL RESULTS

A. Soft core

Soft core is an illustrative example. Partition function,
configuration energy, and excess chemical potential can be
obtained (in other examples we assume that only the ex-
cess chemical potential is known). We define soft core as a
generalization of hard core: instead of only one particle per
lattice site, the maximum number of particles is an arbitrary
number �. The grand partition function for hard core is that of
the Fermi-Dirac distribution: QHC = 1 + eβμ. The soft-core
partition function is

Q = (1 + eβμ)� =
�∑

n=0

�!

(� − n)!n!
eβμn. (29)

Hard core is recovered when � = 1. With this definition, if
n̄HC is the mean number of particles for hard core, the mean
number of particles for any � is n̄ = � n̄HC. Comparing with
(6),

e−βφn = �!

�n(� − n)!
(30)

and

e−β(φn+1−φn ) = 1 − n

�
. (31)

Using the Widom insertion formula (9), the excess chemical
potential is

e−βμex = 1 − ρ, (32)

with ρ = n̄/�, and the thermodynamic factor is

� = 1

1 − ρ
(33)

[see Eq. (2.106) in Ref. [2]]. With these expressions evaluated
at n1 and n2, we obtain that the transition rate (23) depends
only on the number of particles in the destination cell:

Wn1,n2 = ν(1 − ρ2), (34)

with ρ2 = n2/�. That is, the transition probability to a site is
proportional to the available space, given by 1 − ρ2. The DMF
tracer diffusivity (27) is

DMF/νa2 = 1 − ρ. (35)

This result is numerically reproduced in Fig. 1 for two dimen-
sions and for � = 100. In the same figure, the inset shows
the collective diffusion coefficient Dc against concentration
to verify Eq. (26). These are well-known results that are
reproduced here in order to verify the validity of the pro-
cedure. The collective diffusivity is numerically calculated
in the following way. The system has size Lx×Ly; periodic
boundary conditions are used in the y direction; a constant
flux J of incoming particles is applied at x = 0 and for all
y; at x = Lx particles are removed. The system evolves until
the stationary state is reached. At this state, the density has a
decreasing gradient in the x direction, ∂ρ

∂x , that, in the present
case, is independent of position (or density). The collective
diffusivity is obtained from Dc = −J/ ∂ρ

∂x . In the simulations,
Lx should be large enough to have small values of β
μex
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FIG. 1. Numerical results of the normalized DMF tracer diffu-
sivity against density for soft-core interaction (circles) and effective
boson interaction (triangles), with � = 100; lines correspond to
Eqs. (35) and (42), respectively. Parameters of the Monte Carlo
simulation for soft core: between 300 and 5000 realizations were
performed depending on the density value, each consisting of 1000
Monte Carlo time steps, in a 100×100 square lattice. The inset shows
the normalized collective diffusivity against density (in a 1000×100
square lattice for soft core); it has a constant value as predicted by
Eq. (26) for both interactions. Numerical data for effective boson
interaction were taken from Ref. [20].

in the stationary state and in the whole system. The same
procedure is used for the cases analyzed in the next sections.

B. Effective boson interaction

A system of classical particles that reproduce Bose-
Einstein statistics is considered in this section. Since there are
� microstates for one particle, the grand partition function is

Q =
(

1

1 − eβμ

)�

=
∞∑

n=0

�(� + 1) · · · (� + n − 1)

n!
eβμn,

(36)

where the binomial series was used. Comparing with (6) we
get

e−βφn = �(� + 1) · · · (� + n − 1)

�n
, (37)

and

e−β(φn+1−φn ) = 1 + n

�
. (38)

Then, using Eq. (9), the excess chemical potential is

μex = −β−1 ln(1 + ρ). (39)

This example is qualitatively different from soft core, since
the effective interaction that reproduces boson’s statistics in a
classical system is attractive, resulting in an excess chemical
potential that decreases with concentration. The correspond-
ing thermodynamic factor is

� = 1

1 + ρ
, (40)

and the transition rate is

Wn1,n2 = ν(1 + ρ2). (41)

Including the effect of an external force in the transition rate,
a closed system in equilibrium has Bose-Einstein statistics
(see [20,21]). As for soft core, the transition rate depends
only on concentration in the destination cell. The DMF tracer
diffusivity is

DMF/νa2 = 1 + ρ. (42)

Numerical results shown in Fig. 1 verify this equation for
DMF, and also Eq. (26) for Dc.

C. Linear, quadratic, and cubic excess chemical potential

In order to calculate transition rates (23), only the excess
chemical potential is needed. In this section we consider

βμex = ρk, (43)

with k = 1, 2, and 3, so that interactions, and the excess chem-
ical potential, become relevant when the density, ρ = n̄/�, is
of order 1 or larger. In order to avoid memory effects, a value
� = 100 was used in the simulations; in this way, when the
number of particles is of order 100, one jump represents a
small perturbation and the DMF regime holds.

The thermodynamic factor is

� = 1 + kρk (44)

and the transition rate is

Wn1,n2 = ν
e(ρk

1−ρk
2 )/2(

1 + kρk
1

)1/2(
1 + kρk

2

)1/2 . (45)

The resulting DMF tracer diffusivity is

DMF/νa2 = 1

1 + kρk
. (46)

Figure 2 shows numerical results of DMF/νa2 against density
for k = 1, 2, and 3 in a two-dimensional lattice (details of
the simulation in the figure caption). A good agreement with
Eq. (46) is obtained. The inset contains numerical results of
the normalized collective diffusion coefficient Dc/νa2 as a
function of density for the same cases, showing an approxi-
mately constant value equal to 1 in agreement with Eq. (26).

IV. SURFACE DIFFUSION

Applications of the results to diffusion on surfaces are
discussed here. The DMF approximation for tracer diffusivity
is not valid in general for this case. The so-called correlation
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FIG. 2. Numerical results of the normalized DMF tracer diffusiv-
ity against density for βμex = ρk with k = 1 (blue circles), 2 (orange
triangles), and 3 (green plus sign) in a 50×50 square lattice, with
� = 100. Curves correspond to Eq. (46). Parameters of the Monte
Carlo simulation: between 1000 and 100 realizations were performed
depending on the density value, each consisting of 200 Monte Carlo
time steps, a = 1 and ν = 1/4. Normalized collective diffusivity
against density is shown in the inset for the three mentioned cases,
in which the lattice size is 1000×50 for k = 1 and k = 2, and
10 000×5 for k = 3. The result of an approximately constant value
of Dc verifies Eq. (26); there is a small deviation for k = 3 originated
in numerical difficulties to satisfy the condition of a small excess
chemical potential variation between neighboring sites (it requires a
much larger system length Lx than in the other cases).

factor, ft , has to be included in order to take memory effects
into account:

D = DMF ft . (47)

There is not a general method to obtain ft ; different ap-
proaches are described in, for example, [[4], Chap. 5] or [[5],
Chap. 7] for diffusion in solids.

The following expressions for tracer and collective diffu-
sivity (D and Dc) can be found in the literature on surface
diffusion [1,2,22]:

D = a2W ft , (48)

Dc = a2W �, (49)

where W , the average jump rate, is a function of the coverage
ρ. It is well known that W ∝ 1 − ρ and � = 1/(1 − ρ) for
hard-core interaction (Langmuir gas) [[2], Sec. 2.6.2.3], so
that the dependence on ρ, or �, is canceled in the expres-
sion of Dc for this case. As far as we know, there is not a
general relationship between W and �, for any interaction, in
the literature on surface diffusion. We have shown that this
relationship is W = ν/�, where ν is, in general, a function of
the concentration that cannot be written in terms of the excess
chemical potential (or the thermodynamic factor). Equations
(48) and (49) become

D = a2ν ft/�,

Dc = a2ν.

Now we can interpret ν as the jump rate associated to the col-
lective diffusion coefficient. These expressions are consistent
with the results of Sec. II C [see Eqs. (26) and (27)]. The new
information introduced was W = ν/�.

In the examples of the previous section, a constant value of
ν was assumed for the numerical test. As mentioned before, ν

is not constant in general. It depends on the energy landscape
that a particle has to overcome in order to jump between cells,
and on geometric aspects such as the spatial distribution of
energy wells of different depth. Also, energy barriers may
depend on concentration. Therefore, even if ν is independent
of μex, the collective diffusion coefficient may depend on con-
centration due to features of the energy landscape. A constant
value of ν is an approximation useful to develop simplified
models, but it fails in general for real systems. The result
obtained here for the collective diffusion coefficient indicates
that, if Dc depends on concentration, this dependence is not
a direct effect of the excess chemical potential but, instead, it
is produced by microscopic details such as the modification
of the substratum due to the presence of other particles or
geometrical aspects of the energy landscape. This is a useful
guide for seeking theoretical explanations for concentration-
dependent collective diffusivity in more complex scenarios.
An example is a variational method introduced in [23] (see
also [24–26], where the method has been applied to the cal-
culation of the collective diffusion coefficient of adsorbates in
different surfaces).

V. SUMMARY AND CONCLUSIONS

In summary, combining detailed balance and the Widom
insertion formula, an equation for transition rates is obtained.
Terms of different order in � (the number of microstates
for one particle) are present in the detailed balance relation-
ship. The procedure is based on separation of terms O(�0)
and O(�−1). The equation for the transition rate between
two adjacent cells, with n1 and n2 particles, is proportional
to three factors: an undetermined function representing sub-
stratum effects (νn1+n2 ), the inverse of the thermodynamic
factor [more precisely, 1/(�n1�n2 )1/2] that anticipates Darken
equation, and a Boltzmann factor with the excess chemical
potential (e−β
μex ). A limitation of the theory is that the final
result holds as long as there is not a phase transition, since �

vanishes in that case, and the expansion in terms of the particle
number fluctuations used in Appendix B is no longer valid.
The results were obtained assuming local interactions, only
among particles in the same cell.

The present approach is intended to understand interaction
effects on diffusion at a thermodynamic or macroscopic level,
where interactions are represented by the excess chemical
potential. Using the transition rates, we have shown that μex

has no effect on the collective diffusion coefficient, Dc, while
the DMF tracer diffusivity, DMF, is inversely proportional
to the thermodynamic factor. Numerical simulations confirm
that, for different functions of μex against concentration, DMF

changes but Dc remains constant. Since the simulations were
designed to check the effects of μex, parameter ν was assumed
constant. Parameter ν represents microscopic details, it cannot
be determined at a macroscopic description level in terms of
μex, and, in general, depends on concentration. It is necessary

044104-6



APPLICATION OF THE WIDOM INSERTION FORMULA … PHYSICAL REVIEW E 104, 044104 (2021)

to include microscopic details of the energy landscape to
calculate ν or the collective diffusivity.

One important conclusion is that the Widom insertion
formula provides relevant information for the determination
of transition rates. Transition rates are required to perform
kinetic Monte Carlo simulations of nonequilibrium regimes
with the correct timescale.
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APPENDIX A

A derivation of the Widom insertion formula in the grand
canonical ensemble, Eq. (9), is presented in this Appendix.

Using Eq. (6), the grand partition function is

Q =
∞∑

n=0

1

n!
eβμne−β(φn+μ◦n), (A1)

with μ◦ = −kBT ln(�). First, let us notice that Q reproduces
the behavior of the ideal system when interactions are ne-
glected (φn = 0). In this case, from Q we obtain the following
result for the mean number of particles:

n̄ = eβ(μ−μ◦ ) (ideal case) (A2)

or μ = μ◦ + β−1 ln n̄, i.e., the expression for the ideal chem-
ical potential.

In the general case we have to include the excess chemical
potential,

n̄ = eβ(μ−μ◦ )e−βμex , (A3)

and, from the grand partition function,

n̄ = 1

Q

∞∑
n=0

n

n!
e−β(φn+μ◦n−μn)

= eβ(μ−μ◦ )

Q

∞∑
n=1

1

(n − 1)!
e−β[φn+μ◦(n−1)−μ(n−1)]

= eβ(μ−μ◦ )

Q

∞∑
m=0

1

m!
e−β(φm+1+μ◦m−μm)

= eβ(μ−μ◦ )

Q

∞∑
m=0

1

m!
e−β(φm+1−φm )e−β(φm+μ◦m−μm)

= eβ(μ−μ◦ )〈e−β(φn+1−φn )〉, (A4)

where the summation index was changed in the third line:
m = n − 1. Then, from (A3) and (A4) we have the Widom
insertion formula

e−βμex = 〈e−β 
φn〉,
with 
φn = φn+1 − φn. Let us notice that the present deriva-
tion relies on the grand canonical ensemble average, while the

canonical ensemble average is frequently used in the literature
[[17], p. 30].

APPENDIX B

Expressions for φn2+1 − φn2 and φn1 − φn1−1 are derived
in this Appendix. The starting point is Eq. (9), e−βμex =
〈e−β 
φn〉. We need an approximation for the average in the
right-hand side.

We know that φ
T L= Fex and φ′ T L= μex. The purpose is to

evaluate the difference φ′ − μex up to order �−1. As men-
tioned before, � is a measure of the cell’s volume.

Let us call f (n) = e−β
φn . The number of particles n is a
stochastic variable with mean value n̄ of order �. We approx-
imate

〈 f (n)〉 = f (n̄) + f ′′(n̄)

2
〈
n2〉 + h.t., (B1)

where 
n = n − n̄, 〈
n〉 = 0 and h.t. represents terms
O(�−2) or smaller. This expansion holds as long as there
is no phase transition, since in that case the average squared
fluctuations of particle number diverges. There is a relation-
ship between fluctuations and thermodynamic factor, defined
as � = βn̄ ∂μ

∂ n̄ = 1 + βn̄μ′
ex; it is given by

〈
n2〉 = 1

β2

∂2 lnQ
∂μ2

= 1

β

∂ n̄

∂μ
= n̄/�. (B2)

Using that 
φn = φ′
n + φ′′

n /2 + · · · (this expansion is ob-
tained from the Taylor series of φn+1 around n with 
n = 1),
and that φn ∼ O(�), φ′

n ∼ O(�0), φ′′
n ∼ O(�−1), etc., we

have

f (n̄) = e−βφ′
(1 − βφ′′/2) + O(�−2), (B3)

f ′′(n̄) = e−βφ′
β(βφ′′2 − φ′′′) + O(�−3). (B4)

Going back to the Widom insertion formula, e−βμex = 〈 f (n)〉,
we have

e−βμex = e−βφ′
(1 + βε + h.t.), (B5)

with

ε = −1

2
φ′′ + 1

2
(βφ′′2 − φ′′′)

n̄

�
. (B6)

It can be seen that ε is of order �−1. Taking the logarithm of
(B5), we have

φ′ = μex + ε + h.t. (B7)

The second and third derivatives of φ in (B6) can be obtained
from (B7): φ′′ = μ′

ex + O(�−2) and φ′′′ = μ′′
ex + O(�−3).

Keeping the order �−1 in ε, Eq. (B6) is

ε = −1

2
μ′

ex + 1

2

(
βμ′2

ex − μ′′
ex

) n̄

�

= − μ′
ex + n̄μ′′

ex

2(1 + βn̄μ′
ex)

= − 1

2β

∂

∂ n̄
ln(1 + βn̄μ′

ex)

= − 1

2β

∂

∂ n̄
ln �. (B8)
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Then,

φ′ = μex − 1

2β

�′

�
+ h.t. (B9)

The expression for a specific value of n (instead of n̄) should
have the same form:

φ′
n = μex,n − 1

2β

�′
n

�n
+ h.t. (B10)

so that, when average is applied, Eq. (B9) is recovered (higher
order terms, h.t., are different in both equations). Then, the

second derivative of the configuration energy (that is used
below) is φ′′

n = μ′
ex,n + h.t.

We are interested in the differences φn2+1 − φn2 and φn1 −
φn1−1 that appear in (8); they are

φn2+1 − φn2 = φ′
n2

+ φ′′
n2

/2 + h.t.

= μex,n2 − 1

2β

�′
n2

�n2

+ μ′
ex,n2

/2 + h.t., (B11)

φn1 − φn1−1 = φ′
n1

− φ′′
n2

/2 + h.t.

= μex,n1 − 1

2β

�′
n1

�n1

− μ′
ex,n1

/2 + h.t. (B12)
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