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Stationary nonequilibrium bound state of a pair of run and tumble particles
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We study two interacting identical run-and-tumble particles (RTPs) in one dimension. Each particle is driven
by a telegraphic noise and, in some cases, also subjected to a thermal white noise with a corresponding diffusion
constant D. We are interested in the stationary bound state formed by the two RTPs in the presence of a
mutual attractive interaction. The distribution of the relative coordinate y indeed reaches a steady state that we
characterize in terms of the solution of a second-order differential equation. We obtain the explicit formula for
the stationary probability P(y) of y for two examples of interaction potential V (y). The first one corresponds to
V (y) ∼ |y|. In this case, for D = 0 we find that P(y) contains a δ function part at y = 0, signaling a strong
clustering effect, together with a smooth exponential component. For D > 0, the δ function part broadens,
leading instead to weak clustering. The second example is the harmonic attraction V (y) ∼ y2 in which case, for
D = 0, P(y) is supported on a finite interval. We unveil an interesting relation between this two-RTP model with
harmonic attraction and a three-state single-RTP model in one dimension, as well as with a four-state single-RTP
model in two dimensions. We also provide a general discussion of the stationary bound state, including examples
where it is not unique, e.g., when the particles cannot cross due to an additional short-range repulsion.
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I. INTRODUCTION

Interacting active particles is a subject of much current
interest both theoretically and experimentally [1–7]. An active
particle, in contrast to a passive particle, has an autonomous
self-propelled motion, which is modeled by a driving “active”
noise, which has a finite persistence time. For example, a com-
monly studied model is the so-called run-and-tumble particle
(RTP)—a motion exhibited by Escherichia coli bacteria [5,7].
In this simplest RTP model, the particle chooses a direction
at random and moves ballistically with a constant speed v0

in that direction during an exponentially distributed random
run time with mean γ −1. Then it tumbles, i.e., it changes its
direction at random and again moves ballistically with speed
v0, performing a new run. Thus, runs and tumbles alternate.
The tumbling rate γ and the speed v0 are the two parameters
in this simplest RTP model. For example, in one dimension,
the position x(t ) of the RTP evolves via the stochastic equation

dx(t )

dt
= v0 σ (t ), (1)

where σ (t ) is a telegraphic noise that takes values σ (t ) = ±1
and changes from one state to another with a constant rate
γ . Thus, this “active noise” σ (t ) has zero mean 〈σ (t )〉 = 0
and its auto-correlation function decays exponentially in time
〈σ (t )σ (t ′)〉 = e−2γ |t−t ′|. Therefore, the active process x(t ) is
non-Markovian since the driving noise has a finite memory
characterized by the persistence time γ −1. In fact, much be-
fore the current interest in the context of active matter, this
RTP model in one-dimension has been studied extensively
both in the mathematics and the physics literature where it

is known as “persistent” random walk [8–12]. In the limit
γ → ∞, the active noise reduces to a “passive” δ-correlated
noise. At long times, the effect of activity becomes some-
what insignificant since a free RTP is known to converge
to a Brownian motion with an effective diffusion constant
Deff = v2

0/(2γ ). Thus, the presence of activity is detected only
in the effective diffusion constant Deff . One can also add a
thermal noise in Eq. (1),

dx(t )

dt
= v0 σ (t ) +

√
2 Dξ (t ), (2)

where ξ (t ) is a Gaussian white noise with zero mean and a
correlator 〈ξ (t )ξ (t ′)〉 = δ(t − t ′). Here also the system be-
comes diffusive at late times with an effective diffusion
constant Deff = v2

0/(2γ ) + D [2,13]. Thus, the effect of an
additional thermal noise, in this simple setting, is just to renor-
malize the effective diffusion constant at late times.

There are two natural generalizations of this single-free-
RTP dynamics described above in Eq. (1). The first concerns
the long-time stationary state of the RTP in the presence of an
external confining potential. In this case, the evolution Eq. (2)
has an additional external force F (x) = −U ′(x), with U (x)
being the confining potential,

dx(t )

dt
= F (x) + v0 σ (t ) +

√
2 Dξ (t ). (3)

Here, at late times, the system reaches a stationary state which
is typically non-Boltzmann, thus retaining the effect of activ-
ity even at late times [11,14–20]. The second generalization is
to study several RTPs with pairwise interactions (repulsive or
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FIG. 1. Typical trajectories of the relative coordinate y as a function of time t [obtained by solving numerically the equation of motion
Eq. (6)] for the three different models for which we compute here exactly the stationary distribution P(y, t → ∞): (a) V (y) = c̄|y| with D = 0,
(b) V (y) = c̄|y| with D > 0, and (c) V (y) = λy2/2 with D = 0. In case (a), the system exhibits strong clustering characterized by the presence
of a δ function at y = 0 in the steady state [see Eq. (32)] and clearly seen on the figure where y sticks to zero from time to time, while in case
(b) the system exhibits only weak clustering since the thermal noise (i.e., D > 0) broadens the δ function [see Eq. (60)]. Finally, in case (c),
the relative coordinate y is bounded in the steady state, as indicated by the vertical dotted lines [see, e.g., Eq. (97)].

attractive) between them. In the presence of interactions, RTPs
are known to exhibit interesting collective effects, such as
clustering and jamming [1,3,7,21,22]. While there have been
several studies on the effect of interactions between RTPs,
there still are very few exact results available. For example,
even for two RTPs on a ring with hard-core repulsion between
them, the steady state exhibits clustering and the solution
is nontrivial [21–24]. Note that with repulsive interactions
between the RTPs, the steady state will exist only in a finite
size system. In an infinite system with two particles, while
there is no steady state, other dynamical properties have been
studied—for example, the probability that two particles do not
cross each other up to time t has been computed exactly and it
was shown to be already nontrivial due to the presence of the
active noise [25].

To obtain a steady state for a system of RTPs in an infi-
nite system (in the frame of the center of mass), one needs
to introduce an attractive interaction between the RTPs. For
instance, in the simplest setting of two particles with attractive
interactions between them, one would expect to see clustering
in the steady state in the form of a bound pair. The stationary
properties of such bound pairs, even in an infinite system,
are difficult to describe analytically. In fact, there are hardly
any analytical results available in the literature on such bound
pairs.

In this paper, we study a simple model of two RTPs on an
infinite line with attractive interaction between them. We pro-
vide exact analytical results for the steady-state distribution
of the interparticle distance for different types of attractive
interactions. These results provide a complete characteriza-
tion of the bound pair. Even though our system is extremely
simple, it turns out that the stationary state of the bound pair
has a very rich structure which depends on the shape of the

interaction. In some cases, e.g., for a linear interaction po-
tential, and when the particles are driven purely by active
noise [see Fig. 1(a)], one finds that the clustering is “strong,” a
signature of which is the presence of a Dirac δ function in the
steady-state distribution of the interparticle distance. In that
case, adding the thermal noise broadens the δ function, indi-
cating a “weak” clustering [see Fig. 1(b)], with exponential
decay of the steady-state distribution of the interparticle dis-
tance. In other cases, e.g., for a harmonic interaction potential,
the interparticle distance in the steady state remains bounded
in a finite interval [see Fig. 1(c)].

The rest of the paper is organized as follows. In Sec. II,
we introduce precisely our model and summarize the main
results. In Sec. III, we focus on the special case of a linear
attractive potential V (y) = c̄|y| for which we compute exactly
the stationary state, both in the absence (Sec. III A) and in the
presence (Sec. III B) of the thermal noise. In Sec. IV, we study
the case of a general V (y), but in the absence of thermal noise.
Finally, we conclude in Sec. V.

II. THE MODEL AND A SUMMARY OF THE RESULTS

In this paper, we consider two interacting RTPs on the line
described by the equation of motion

dx1

dt
= f (x1 − x2) + v0 σ1(t ) +

√
2D ξ1(t ),

dx2

dt
= f (x2 − x1) + v0σ2(t ) +

√
2D ξ2(t ),

f (−y) = − f (y), (4)

where σ1(t ) = ±1 and σ2(t ) = ±1 are two independent tele-
graphic noises with flipping rate γ . In addition, both particles
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are also driven by thermal noises, represented by independent
Gaussian white noises ξ1(t ) and ξ2(t ) of zero mean and corre-
lators 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′). We assume that both of them
have the same diffusion constant D. The two RTPs interact via
a potential energy V (x1 − x2) and in Eq. (4) f (y) = −V ′(y)
is the interparticle force. Equivalently, denoting w = (x1 +
x2)/2 and y = x1 − x2, one has

dw

dt
= v0

2
[σ1(t ) + σ2(t )] +

√
D η̃(t ), (5)

dy

dt
= 2 f (y) + v0 [σ1(t ) − σ2(t )] +

√
4D η(t ), (6)

where η(t ) = [ξ1(t ) − ξ2(t )]/
√

2 and η̃(t ) = [ξ1(t ) +
ξ2(t )]/

√
2 are two independent Gaussian white noises

with zero mean, each with a δ-correlator. The center of
mass w undergoes a free RTP motion similar to Eq. (2) and
clearly does not reach a stationary state. Hence, we will
focus here only on the relative coordinate y(t ) which evolves
independently of w(t ). In other words we study the system
in the center of mass frame. By comparing Eqs. (3) and (6),
we see that the dynamics of the relative coordinate y(t ) in
Eq. (6) can be interpreted as the dynamics of the position of
a single RTP with three internal states (−2v0, 0, 2v0), and
subjected to an external force 2 f (y). If f (y) is sufficiently
attractive, then we expect that the relative coordinate will
reach a stationary state, leading to a stationary bound state
of the pair of particles. Denoting by P(y, t ) the distribution
of the relative coordinate at time t , our goal is to evaluate its
stationary limit P(y, t → ∞). Note that the only difference
between Eqs. (3) and (6) is that the driving active noise in
the former case has two states, while in the latter it has three
states. In the former case, Eq. (3), the stationary position
distribution for arbitrary f (y) is exactly known, at least
for D = 0. In contrast, when the driving active noise has
three states, as in Eq. (6), it is more difficult to compute the
stationary distribution of the relative coordinate for arbitrary
f (y), even for D = 0. In this paper we derive a second-order
differential equation, see Eq. (84), which is obeyed by this
stationary distribution P(y, t → ∞). It is challenging to solve
it analytically for a general f (y), but here we obtain explicit
solutions for two special cases of f (y) as discussed below.

To compute the stationary state, we start from the Langevin
Eq. (6) for the relative coordinate y(t ), and write down the
corresponding Fokker-Planck (FP) equation. However, due to
the finite memory of the active noises σ1(t ) and σ2(t ), the
process is Markov only when one keeps track of the two
internal degrees of freedom σ1(t ) and σ2(t ), in addition to y(t ).
This obliges us to define Pσ1,σ2 (y, t ) as the joint probability
density for the relative coordinate to be at y at time t and that
the internal “spins” σ1(t ) and σ2(t ) take values σ1 and σ2 at
time t . One can then write down the four coupled FP equations
for Pσ1,σ2 (y, t ) corresponding to σ1 = ±1 and σ2 = ±1. The
distribution of the relative coordinate P(y, t ) is then obtained
by summing over the four internal states,

P(y, t ) =
∑

σ1=±1,σ2=±1

Pσ1,σ2 (y, t ). (7)

However, for general f (y), solving these FP equations, even
in the stationary state, turns out to be rather hard. There is

however one special case, namely, when V (y) = c̄ |y| [cor-
responding to f (y) = −c̄ sgn(y)], for which one can obtain
the stationary state explicitly for arbitrary D � 0. We present
this solution in detail in Sec. III, first in the absence of the
thermal noise (D = 0) and then in the presence of the thermal
noise D > 0. This allows us investigate the effect of thermal
noise on the stationary state. Our main result is that, when
D = 0, the stationary state P(y, t → ∞) has two parts: (i)
an exponentially decaying part and (ii) a δ function at y = 0
[see Eqs. (31) and (35)]. As mentioned above, the presence
of this δ function is a signature of strong clustering. When
D > 0 is switched on, the δ-function part gets smeared and the
stationary state consists only of decaying exponentials [see for
instance Eq. (60)]. Thus, the effect of the thermal noise in the
stationary state is to weaken the clustering. The second case
for which we find an explicit solution is the harmonic potential
V (y) = λy2/2, which we study only for D = 0. In that case,
the support of the stationary distribution of the relative coordi-
nate is a single interval, where P(y) exhibits some power-law
singular behavior near the edges and at the center y = 0, with
exponents depending on the parameters γ and λ. It turns out
that in this harmonic case the stationary solution is identical
to the solution of another three-state model that was studied
recently [19], even though the dynamics of the two models
are quite different. In the presence of a D > 0, although we
did not study it, we expect the support to extend to the full
real axis.

Before proceeding to the technical details, let us briefly
comment on the possible physical realizations of the model
in Eq. (6). As discussed above, in Eq. (6), the relative coor-
dinate y can be interpreted as the position of a single RTP
subjected to an external confining potential 2V (y) and with
three internal states (−2v0, 0, 2v0) for the driving telegraphic
noise, as well as a diffusive noise

√
4D η(t ). The external

confining potential and the ensuing attractive force towards
y = 0 mimics the presence of a nutrient gradient for the RTP,
e.g., as for an E. coli bacteria searching for food. The only
difference, in this model, from the standard RTP is that the
bacteria has three velocity states. In particular the state v = 0
is the new one. This has the following interpretation. When
the internal state v is zero, the particle is at rest (but still
with a diffusive noise). This may mimic a local diffusive
search by a bacteria, before it switches to positive or negative
velocities to explore a larger region. This is thus similar to
intermittent search strategies commonly employed by various
animals during their foraging period [26].

Another interpretation of Eq. (6) for the special case where
f (y) = −c̄ sgn(y) where sgn(y) is the sign function, is that it
can be considered as a generalized active version of the so-
called “dry-friction” model introduced by de Gennes [27] and
subsequently studied by others [28–30].

III. STATIONARY SOLUTION FOR THE LINEAR
INTERACTION POTENTIAL

In this section we will study the stationary state of the
interparticle distance y(t ) in the presence of an attractive
potential V (y) = c̄|y|, with c̄ > 0 (similar to the Coulomb
interaction between two opposite charges in one dimension).
This corresponds to a force f (y) = −V ′(y) = −c̄ sgn(y). In
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this case, the evolution equation for y(t ) in Eq. (6) reads

dy

dt
= −2c̄ sgn(y) + v0 [σ1(t ) − σ2(t )] +

√
4D η(t ). (8)

In general, for arbitrary f (y) in Eq. (6), it is not easy to
compute the stationary state in the presence of the thermal
noise (D > 0). However, in this special case when f (y) =
−c̄ sgn(y), we show below that the stationary state for y(t )
can be fully characterized, both for D = 0 and for D > 0.

A. Without thermal noise, D = 0

In this subsection we study the process in Eq. (8) in the
absence of thermal noise D = 0. We note that y(t ) in Eq. (8)
is actually a non-Markov process, since σ1(t ) and σ2(t ) have
a finite memory. To write a FP equation, we need to recast
first the dynamics into a Markovian form. This is usually
done by enlarging the phase space—here, e.g., by considering
the evolution of the triplet {y(t ), σ1(t ), σ2(t )}. This leads us
to define Pσ1,σ2 (y, t ) as the joint probability density function
(PDF) that at time t , the relative coordinate takes the value y
and the internal states take values σ1 and σ2, respectively. To
obtain the time evolution of this PDF, we evolve the system
from time t to t + �t , with �t 	 1, and consider the changes
(loss and gain) in Pσ1,σ2 (y, t ). By keeping terms up to order
O(�t ), we get the following FP equation:

∂t Pσ1,σ2 = −∂y
{
[−2c̄ sgn(y) + v0(σ1 − σ2)]Pσ1,σ2

}
− 2γ Pσ1,σ2 + γ

(
P−σ1,σ2 + Pσ1,−σ2

)
. (9)

In Eq. (9), σ1 and σ2 can both take values ±1 and we recall
that γ is the rate at which the telegraphic noises σ1(t ) and
σ2(t ) change signs. In Eq. (9) the first term on the right-
hand side (r.h.s.) describes the standard advection due to the
drift term in the Langevin Eq. (8), while the second and
the third terms describe, respectively, the loss and gain by
flipping one of the σi’s. Note that on the r.h.s. there is no
term involving P−σ1,−σ2 . This is because to arrive at (σ1, σ2)
from (−σ1,−σ2) would involve a simultaneous flipping of
both σ1 and σ2 whose probability is γ 2�t2. Hence, Eq. (9)
describes actually four coupled equations depending on the
four values of {σ1, σ2}, namely, P++(y, t ), P+−(y, t ), P−+(y, t )
and P−−(y, t ). The first term on the r.h.s. of Eq. (9) describes
the convection in the presence of an external force, while the
rest of the terms denote the loss and gain due to the flipping
of the telegraphic noise. The total probability P(y, t ) is then
obtained by summing over the internal degrees of freedom as
in Eq. (7).

Before analyzing the FP Eq. (9) let us investigate the
Langevin equation and see what we may anticipate for the
evolution of the system. It reads

dy

dt
= −2 c̄ sgn(y) + v0 [σ1(t ) − σ2(t )]. (10)

Consider for instance the case when [σ1(t ), σ2(t )] are either
(+,+) or (−,−), in which case dy

dt = −2c̄ sgn(y). Therefore,
for y(0) > 0 the time evolution is y(t ) = y(0) − 2c̄t and y(t )
vanishes in finite time. At all later times it remains zero until
one of the σi(t ) changes sign provided v0 > c̄. This is a clus-
tering effect which will lead to the appearance of a δ-function
component, ∝ δ(y) in Pσ1,σ2 (y, t ). In fact, when v0 < c̄ we

expect that the total probability P(y, t ) converges to δ(y) in
finite time and remains there. In contrast, for v0 > c̄ we expect
a non trivial stationary distribution, where the δ function at
y = 0 coexists with a continuous background.

We expect the system to reach a stationary state in the
long time limit t → ∞. For simplicity of notations, we will
denote the stationary state by Pσ1,σ2 (y) = Pσ1,σ2 (y, t → ∞).
The stationary solution can be obtained from Eq. (9) by setting
∂t Pσ1,σ2 = 0 in the left-hand side (l.h.s.) of Eq. (9). This leads
to

0 = −∂y
{
[−2c̄ sgn(y) + v0(σ1 − σ2)]Pσ1,σ2

}− 2γ Pσ1,σ2

+ γ
(
P−σ1,σ2 + Pσ1,−σ2

)
. (11)

Since up to the sign of y the equation is linear with constant
coefficients, it is natural to look for exponential solutions. In
addition, as discussed below Eq. (10), we anticipate also the
presence of a δ function at y = 0. This leads us to look for a
solution of the form

Pσ1,σ2 (y) = Aε
σ1,σ2

e−μ|y| + Bσ1,σ2δ(y), (12)

where μ > 0 (to be fixed later) and ε = sgn(y). For a given
σ1, σ2, there is no reason a priori, that the solution Pσ1,σ2 (y)
is symmetric around y = 0, even though the potential V (y) =
c̄|y| is symmetric around y = 0. This is because the dynamics
of y also depends explicitly on σ1 and σ2, and not just on y
alone. Hence, we put different sets of constants in front of
the exponentials in Eq. (12) for y > 0 and y < 0 and they are
denoted by different vectors A+

σ1,σ2
and A−

σ1,σ2
. Note that each

of them is a four-component column vector; hence, we have
eight different unknown constants. However, they are related
via the symmetry relations A+

σ1,σ2
= A−

σ2,σ1
. This follows from

the fact that Eq. (9) is invariant under the simultaneous change
y → −y and (σ1, σ2) → (σ2, σ1). Hence, it suffices to know
for instance just the vector A+, which has thus four unknown
constants. In addition, the amplitudes of the δ function defined
in Eq. (12) also form a four-component column vector, with
four additional unknown constants. Therefore, in total, we
have eight constants to determine.

By analyzing Eq. (11) around y = 0, we arrive at two types
of conditions. The first one is that upon injecting the form
of Eq. (12) in Eq. (11) there should be no term generated
proportional to δ′(y) which implies that for any σ1, σ2,

(σ1 − σ2)Bσ1,σ2 = 0. (13)

As a consequence we obtain B+− = B−+ = 0. In addition,
due to the symmetry y → −y and (σ1, σ2) → (−σ1,−σ2) we
expect that B++ = B−−. Summarizing,

B+− = B−+ = 0, B++ = B−−. (14)

Hence, for the vector B, we have only one unknown constant
to determine. Combining Aε (with ε = ±1) and B, we then
have a total of five unknown constants to determine. Hence,
we need five relations to fix them. One of them is provided by
the normalization condition, namely,

∫∞
−∞ P(y) dy = 1. The

rest of the four conditions can be derived by integrating the
FP Eqs. (11) over a small region across y = 0. This reads{

[2c̄ sgn(y) − v0(σ1 − σ2)]Pσ1,σ2

}0+

0−

− 2γ Bσ1,σ2 + γ
(
B−σ1,σ2 + Bσ1,−σ2

) = 0, (15)

044103-4



STATIONARY NONEQUILIBRIUM BOUND STATE OF A … PHYSICAL REVIEW E 104, 044103 (2021)

where the second term comes from the contribution of the δ

function in Eq. (12). Evaluating the first term gives{
[2c̄ sgn(y) − v0(σ1 − σ2)]Pσ1,σ2

}0+

0−

= 2c̄
(
A+

σ1,σ2
+ A−

σ1,σ2

)− v0(σ1 − σ2)
(
A+

σ1,σ2
− A−

σ1,σ2

)
.

(16)

Substituting Eq. (16) in Eq. (15) gives us the four required
conditions, namely,

2c̄
(
A+

σ1,σ2
+ A−

σ1,σ2

)− v0(σ1 − σ2)
(
A+

σ1,σ2
− A−

σ1,σ2

)
− 2γ Bσ1,σ2 + γ

(
B−σ1,σ2 + Bσ1,−σ2

) = 0, (17)

for σ1 = ±1 and σ2 = ±1. These four conditions Eq. (17) in
addition to the normalization condition provide us exactly five
relations to determine the five unknown constants. In addition,
we need to determine the value of μ, to which we now turn to.

To determine μ, we insert Eq. (12) in Eq. (11) in the
stationary state and find that the amplitude vector Aε must
satisfy

Mε (μ) ·

⎛
⎜⎜⎜⎜⎝

Aε
++

Aε
+−

Aε
−+

Aε
−−

⎞
⎟⎟⎟⎟⎠ = 0, (18)

where we have defined the 4 × 4 matrices M±(μ) as

Mε (μ) = (−2μc̄ − 2γ ) I + M(εμ),

M(μ) =

⎛
⎜⎜⎜⎜⎝

0 γ γ 0

γ 2μv0 0 γ

γ 0 −2μv0 γ

0 γ γ 0

⎞
⎟⎟⎟⎟⎠. (19)

The relations in Eq. (18) provide a set of four linear equations
for the Aε

σ1,σ2
. The solutions for the Aε

σ1,σ2
are identically zero,

unless the determinant of Mε (μ) vanishes. This condition
that det Mε (μ) = 0 actually fixes the value of μ. To com-
pute the determinant, we need to evalute the eigenvalues of
Mε (μ), which thanks to Eq. (19), amounts to computing the
eigenvalues of the matrix M(μ). They are given by

(
0, 0,−2

√
γ 2 + μ2v2

0, 2
√

γ 2 + μ2v2
0

)
, (20)

and the associated eigenvectors are given by the columns of
the 4 × 4 matrix Ô,

Ô =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 1√
2

c√
2

s
2

s
2

0 s√
2

− 1
2 (1 + c) 1

2 (1 − c)

0 − s√
2

− 1
2 (1 − c) 1

2 (1 + c)

1√
2

c√
2

s
2

s
2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

c = −μv0√
γ 2 + μ2v2

0

, s = γ√
γ 2 + μ2v2

0

, (21)

with c2 + s2 = 1. We will denote the four column vectors,
respectively, by (V 1,V 2(μ),V 3(μ),V 4(μ)). Each of the V α

with α = 1, 2, 3, 4 is a four-column vector and they form an
orthonormal basis. Hence, we get

det Mε (μ) = (−2μc̄ − 2γ )2
(−2μc̄ − 2γ − 2

√
γ 2 + μ2v2

0

)
× (−2μc̄ − 2γ + 2

√
γ 2 + μ2v2

0

) = 0. (22)

We can obtain different solutions for μ by setting each of
the factors [corresponding to four different eigenvalues of
Mε (μ)] to zero. However, it turns out that only the last eigen-
value [corresponding to the last factor in Eq. (22)] gives a real
positive solution for μ which reads

μ = μ∗ = 2c̄γ

v2
0 − c̄2

, (23)

where we recall that we are studying the case v0 > c̄, such that
there is a bound state, i.e., where the distribution is localized in
space (exponentially decaying tail). The solution for Aε , corre-
sponding to this fourth eigenvalue is therefore Aε ∝ V 4(εμ),
i.e.,

Aε
σ1,σ2

= aV 4
σ1,σ2

(εμ∗) = a

⎛
⎜⎜⎜⎝

s
2

1
2 (1 − εc)
1
2 (1 + εc)

s
2

⎞
⎟⎟⎟⎠,

c = −μ∗v0√
γ 2 + (μ∗)2v2

0

= −2v0c̄

v2
0 + c̄2

,

s = γ√
γ 2 + (μ∗)2v2

0

= v2
0 − c̄2

v2
0 + c̄2

, (24)

where a is an a priori unknown amplitude determined be-
low, and c and s are given in Eq. (21) with μ∗ given in
Eq. (23). Note that the symmetry Aε

σ1,σ2
= A−ε

σ2,σ1
discussed

above implies that a does not depend on ε. This is because,
under this symmetry, the eigenvector V 4

σ1,σ2
(εμ∗) in Eq. (24)

remains invariant, hence a cannot depend on ε. Thus, we have
reduced the problem of determining 4 unknown constants in
the column-vector A+

σ1,σ2
to the problem of determining just

one constant a. Thus, to summarize, at this stage, we have
two unknowns a and B++ to determine. To proceed, we first
rewrite the condition Eq. (17) explicitly,

2c̄a

⎛
⎜⎝

s
1
1
s

⎞
⎟⎠+ v0a

⎛
⎜⎝

0
2c
2c
0

⎞
⎟⎠

+

⎛
⎜⎝

−2γ γ γ 0
γ −2γ 0 γ

γ 0 −2γ γ

0 γ γ −2γ

⎞
⎟⎠
⎛
⎜⎝

B++
B+−
B−+
B−−

⎞
⎟⎠ = 0. (25)

Next, we use Eq. (14) to eliminate B+−, B−+, and B−− in
favour of B++. This gives the two relations

2ac̄s − 2γ B++ = 0, (26)

2a(c̄ + v0c) + 2γ B++ = 0, (27)
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which are actually equivalent using the values for c and s from
Eq. (24). This leads to the single relation

B++ = a c̄
v2

0 − c̄2

γ
(
v2

0 + c̄2
) . (28)

We are then left with one unknown constant a to determine
and this will be fixed by the normalization condition. Injecting
these results in the form of Eq. (12) and summing over σ1, σ2

we obtain the total probability

P(y) =
∑

σ1=±1,σ2=±1

Pσ1,σ2 (y) = a(s + 1)e−μ∗|y| + 2B++δ(y)

= 2a

[
v2

0

v2
0 + c̄2

e−μ|y| + c̄
v2

0 − c̄2

γ
(
v2

0 + c̄2
)δ(y)

]
. (29)

Imposing the normalization condition
∫ +∞
−∞ dyP(y) = 1 then

allows us to determine a as

a = 1

2

c̄γ

v2
0 − c̄2

, (30)

which leads to the final explicit result for the stationary prob-
ability Pσ1,σ2 (y),

Pσ1,σ2 (y) = γ c̄

4
(
v2

0 + c̄2
) e

− 2γ c̄

v2
0−c̄2 |y|

⎛
⎜⎜⎜⎜⎝

1
v0+c̄
v0−c̄ θ (y) + v0−c̄

v0+c̄ θ (−y)
v0−c̄
v0+c̄ θ (y) + v0+c̄

v0−c̄ θ (−y)

1

⎞
⎟⎟⎟⎟⎠

+ 1

2

c̄2

v2
0 + c̄2

δ(y)

⎛
⎜⎝

1
0
0
1

⎞
⎟⎠, (31)

as well as the total probability,

P(y) = c̄γ v2
0

v4
0 − c̄4

e
− 2γ c̄

v2
0−c̄2 |y| + c̄2

v2
0 + c̄2

δ(y). (32)

In Fig. 2 we compare our theoretical results for Pσ1,σ2 (y) in
Eq. (31) for v0 = 1, c̄ = 1/2, γ = 1/2 and D = 0 with nu-
merical simulations, showing a perfect agreement [note that,
to keep the figure readable, the Dirac δ components of P++(y)
and P−−(y) are not shown there although they are clearly seen
on the simulations—see also Fig. 1—and we have checked
that their associated weight fully agrees with the prediction in
Eq. (31)]. In Fig. 3 we compare our result for the total proba-
bility P(y) in Eq. (32) for two different values of c = 0.5 and
c = 0.8 (and v0 = 1, γ = 1/2, and D = 0) with numerical
simulations, showing also a very good agreement.

Note also that for each state (σ1, σ2) one can check from
Eq. (31) that

∫ +∞
−∞ dyPσ1,σ2 (y) = 1

4 , hence each of the four
states is equiprobable in the stationary solution, as expected.
The variance of the position is

∫ +∞

−∞
dy y2 P(y) = v2

0

2γ 2c̄2

(
v2

0 − c̄2
)2

v2
0 + c̄2

. (33)

In the passive limit γ , v0 → +∞ with Deff = v2
0/(2γ ), as

well as c̄, fixed, the weight of the δ function vanishes as c̄2/v2
0
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FIG. 2. Plot of Pσ1,σ2 (y) vs y for v0 = 1, c̄ = 1/2, γ = 1/2 and
D = 0. The symbols correspond to numerical simulations for σ1 =
±1, σ2 = ±1, obtained by solving Eq. (10), while the solid line cor-
responds to the exact result in Eq. (31). Note that P++(y) = P−−(y)
and P+−(y) = P−+(−y) as consequences of the unicity of the station-
ary state and of the symmetries discussed below in Eq. (72). Note
that P+−(y) as well as P−+(y) are both discontinuous at y = 0, in
agreement with Eq. (31). Instead, P++(y) = P−−(y) exhibit a Dirac
δ component ∝ δ(y) which, for clarity, is not shown on the figure,
although it is clearly seen on the simulation and its weight is in full
agreement with the prediction in Eq. (31).

and one recovers the standard Gibbs-Boltzmann distribution

P(y) → c̄

2Deff
e−c̄|y|/Deff , Pσ1,σ2 (y) → 1

4

c̄

2Deff
e−c̄|y|/Deff ,

(34)
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FIG. 3. Plot of the total probability density P(y) vs y for two
different values of the interaction strength c̄ = 0.5 and c̄ = 0.8 for
v0 = 1, γ = 1/2 and D = 0. The symbols are the results of numer-
ical simulations, obtained by solving Eq. (10), while the solid lines
correspond to the exact result in Eq. (32). Note that, for clarity, the
Dirac δ component ∝ δ(y) is not shown here although it is clearly
seen in the simulations and its weight is in full agreement with the
prediction in Eq. (32).
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for all σ1, σ2. Therefore, the δ peak in Eq. (32) in the station-
ary distribution is an explicit signature of the activity in the
system. Note that even for finite v0, the non-δ function part
of P(y) in Eq. (32) retains a pure symmetric-exponential form
∝ e−μ|y|, as in the passive case, albeit with a different decay
rate μ = 2γ c̄/(v2

0 − c̄2) from the passive case ∝ e−c̄|y|/Deff .
When v0 → c̄+ each term in P(y) in Eq. (32) goes to 1

2δ(y)
and the size of the bound state goes to zero. To investigate the
fine structure inside the critical regime, one can rescale y by
the typical size of the bound state. Denoting y = v0−c̄

γ
ỹ one

obtains the scaling form in the critical region as

P(y)dy = P̃(ỹ)dỹ, P̃(ỹ) = 1

4
e−|ỹ|

⎛
⎜⎝

0
1
1
0

⎞
⎟⎠+ 1

2
δ(ỹ)

⎛
⎜⎝

1
0
0
1

⎞
⎟⎠.

(35)
The first part shows that when they have opposite veloci-
ties σ1 = −σ2 the two RTPs form a (very small) exponential
bound state (weak clustering), while when they have identical
velocities they are bound at exactly the same position in space
(strong clustering).

B. With thermal noise, D > 0

We now switch on a nonzero value of D in Eq. (8). As a
result, the FP equation for Pσ1,σ2 (y, t ) changes from Eq. (9) to

∂t Pσ1,σ2 = −∂y
{
[−2c̄ sgn(y) + v0(σ1 − σ2)]Pσ1,σ2

}− 2γ Pσ1,σ2

+ γ
(
P−σ1,σ2 + Pσ1,−σ2

)+ 2D∂2
y Pσ1,σ2 , (36)

where only the last term on the r.h.s., involving the second
derivative with respect to y, is D-dependent. We now look for a
stationary solution, setting ∂t Pσ1,σ2 = 0 on the l.h.s of Eq. (36).
Since D > 0 this solution will obey:

(i) continuity of Pσ1,σ2 (y) at y = 0,

(ii) a jump in the derivative at zero, with the matching
condition

P′
σ1,σ2

(0+) − P′
σ1,σ2

(0−) = −2
c̄

D
Pσ1,σ2 (0). (37)

These give two sets of four conditions, since they hold for any
σ1, σ2. As discussed in Sec. II, we anticipate that the presence
of a finite D will smear out the δ function and replace it
by a cusp at y = 0 and exponential decaying profile, whose
width will vanish as D → 0+. Since, up to the sign of y,
Eq. (36) is linear with constant coefficients, it will be a linear
superposition of exponentials for y > 0 and y < 0 separately.
We thus look for a particular solution of the form

Pσ1,σ2 (y) = Aε
σ1,σ2

e−μ|y|, (38)

where ε = sgn(y).
Let us start by determining μ. Inserting Eq. (38) in Eq. (36)

in the stationary state we find that the amplitude vector
Aε must satisfy the same condition Eq. (18) where now
the matrix M±(μ) has an additional D-dependent diagonal
term

Mε (μ) = (−2μc̄ + 2Dμ2 − 2γ ) I + M(εμ), (39)

with M(μ) given in Eq. (19). The eigenvalues of Mε (μ) and
their associated eigenvectors are then

−2μc̄ + 2Dμ2 − 2γ , V 1, (40)

−2μc̄ + 2Dμ2 − 2γ , V 2(εμ), (41)

−2μc̄ + 2Dμ2 − 2γ − 2
√

γ 2 + μ2v2
0, V 3(εμ), (42)

−2μc̄ + 2Dμ2 − 2γ + 2
√

γ 2 + μ2v2
0, V 4(εμ), (43)

where the eigenvectors Ô = [V 1,V 2(μ),V 3(μ),V 4(μ)] are
given (in column form) in Eq. (21) and depend on μ via c̄
and s. As in the previous subsection, the value of μ is fixed by
the condition

det Mε (μ) = (−2μc̄ + 2Dμ2 − 2γ )2

× (−2μc̄ + 2Dμ2 − 2γ − 2
√

γ 2 + μ2v2
0

)
× (−2μc̄ + 2Dμ2 − 2γ + 2

√
γ 2 + μ2v2

0

)
= 0. (44)

1. First two eigenvectors

Setting the first factor in Eq. (44) to 0 (corresponding to the
sectors of the two first eigenvectors V 1 and V 2) we get

−2μc̄ + 2Dμ2 − 2γ = 0. (45)

Taking the positive root we obtain

μ = μ1 = μ2 = c̄ +
√

c̄2 + 4Dγ

2D
, (46)

which corresponds to a component of Pσ1,σ2 (y) proportional

to e− c̄+
√

c̄2+4Dγ

2D |y|. In the limit D → 0 this component yields
the δ(y) term obtained in the previous section for D = 0 [see
Eq. (31)].

2. The two other eigenvectors

The third and the fourth factors in Eq. (44) (corresponding
to the eigenvectors V 3 and V 4) lead to the pair of equations

−μc̄ + Dμ2 − γ + ν

√
γ 2 + μ2v2

0 = 0, (47)

with ν = −1 for V 3 and ν = +1 for V 4. For D = 0 one finds
the solutions μ = 0 and μ = 2c̄γ

v2
0−γ 2 found previously. For D >

0, let us use dimensionless units. We write μ = γ

v0
μ̃ and look

for the positive roots μ̃ of

fη(μ̃) = −gμ̃ + D̃μ̃2 − 1 + ν
√

1 + μ̃2 = 0, (48)

in terms of the two dimensionless parameters

g = c̄

v0
, D̃ = Dγ

v2
0

. (49)

Taking the square of Eq. (48) one finds a quartic equation for
μ̃. However, one can easily check that there is a trivial solution
μ̃ = 0, which is of course discarded since we need μ̃ > 0.
This leads to a cubic equation for μ̃,

−2g + μ̃(2D̃ + 1 − g2) + 2gD̃μ̃2 − D̃2μ̃3 = 0. (50)
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Note that after squaring Eq. (48) the ν-dependence has
disappeared. Thus, the information about the associated
eigenvenctor (V 3 or V 4) has been lost. Hence, we need to rein-
ject the solution for μ̃ [from Eq. (50)] back into the original
unsquared Eq. (48) to recover the eigenvector dependence.
Indeed, by noting that

√
1 + μ̃2 > 0 and ν = ±1, it follows

from Eq. (48) that

ν = sgn(1 + gμ̃ + D̃μ̃2), (51)

with ν = −1 associated to V 3 while ν = +1 associated to V 4.
To solve the cubic Eq. (50) we first rewrite it in the standard

form, by writing μ̃ = t + 2g/(3D̃), which gives t3 + pt +
q = 0 with

p = −6D̃ + g2 + 3

3D̃2
, q = 2g(9D̃ + g2 − 9)

27D̃3
, (52)

and the discriminant is given by

�2 = − (4p3 + 27q2) = 4D̃−6[(D̃2 + 10D̃ − 2)g2

+ (2D̃ + 1)3 + g4]. (53)

It is easy to see that �2 is always positive, hence there are
three real roots indexed by k = 0, 1, 2 and given by the Car-
dano formula [31]

tk = 2

√
− p

3
cos

[
1

3
arccos

(
3q

2p

√
−3

p

)
− 2πk

3

]
,

k = 0, 1, 2. (54)

This leads to three possible roots in the original variable μ̃

μ̃k = 2g

3D̃
+ 2

3

√
6D̃ + g2 + 3

D̃2

× cos

{
1

3
cos−1

[
− g(9D̃ + g2 − 9)

(6D̃ + g2 + 3)
3/2

]
− 2πk

3

}
. (55)

By investigating Eq. (55) using Mathematica, we find that

μ̃0 > μ̃1 > 0, μ̃2 < 0. (56)

Since μ̃2 < 0 we discard this root. Thus, the only allowed
roots are μ̃0 and μ̃1. Now using Eq. (51), we find that the
values of ν associated to these two roots are, respectively,
ν = −1 for μ̃0 and ν = +1 for μ̃1. Thus, μ̃0 is associated
to the eigenvector V 3 while μ̃1 is associated to V 4. Hence, in
summary the only positive roots are

μ3 = γ

v0
μ̃0, V 3,

μ4 = γ

v0
μ̃1, V 4. (57)

To conclude, the general solution is

Pσ1,σ2 (y) = {[
b1V

1
σ1,σ2

+ b2V
2
σ1,σ2

(μ2)
]
θ (y)

+ [
b′

1V
1
σ1,σ2

+ b′
2V

2
σ1,σ2

(−μ2)
]

× θ (−y)}e−μ2|y| + [
b3V

3
σ1,σ2

(μ3)θ (y)

+ b′
3V

3
σ1,σ2

(−μ3)θ (−y)
]
e−μ3|y|

+ [
b4V

4
σ1,σ2

(μ4)θ (y) + b′
4V

4
σ1,σ2

× (−μ4)θ (−y)]e−μ4|y|. (58)
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FIG. 4. Plot of Pσ1,σ2 (y) vs y for v0 = 1, c̄ = 1/2, γ = 1/2 and
D = 1/2. The symbols correspond to numerical simulations for σ1 =
±1, σ2 = ±1 while the solid line corresponds to the exact result in
Eq. (A16). Note that P++(y) = P−−(y) P+−(y) = P−+(−y) as a con-
sequences of the unicity of the stationary state and of the symmetries
discussed below in Eq. (72).

To determine the eight coefficients bi, b′
i we can use (i) the

continuity of Pσ1,σ2 (y) at y = 0 (four equations), (ii) the four
matching conditions Eq. (37),

P′
σ1,σ2

(0+) − P′
σ1,σ2

(0−) = −2
c̄

D
Pσ1,σ2 (0), (59)

and then the normalization condition for the total probability
P(y) = ∑

σ1=±1

∑
σ2=±1 Pσ1,σ2 (y), i.e.,

∫ +∞
−∞ dyP(y) = 1. This

is performed in the Appendix, leading to the result given in
Eq. (A16). In Fig. 4, we compare this analytical predictions
for Pσ1,σ2 (y) in Eq. (A16) for a specific set of the parameters
of the model to numerical simulations, showing an excellent
agreement.

To conclude this section, we provide our explicit results for
the final result for the total probability P(y),

P(y) = 1

2
( c2

μ2
+ b̃3

s3−1
μ3

+ b̃4
s4+1
μ4

) [c2e−μ2|y|

+ b̃3(s3 − 1)e−μ3|y| + b̃4(s4 + 1)e−μ4|y|], (60)

b̃3 = s2(c̄ − Dμ4)

(c3 + c4)c̄ − D(c4μ3 + c3μ4)
,

b̃4 = s2(c̄ − Dμ3)

(c3 + c4)c̄ − D(c4μ3 + c3μ4)
, (61)

and we recall that

ci = − μiv0√
γ 2 + μ2

i v
2
0

, si = γ√
γ 2 + μ2

i v
2
0

, (62)

where μ2 is given in Eq. (46), and μ3 and μ4 are given in
Eqs. (55)–(57). For instance, for c̄ = 1/2, D = 1/2, v0 = 1,
and γ = 1/2 we find

P(y) = 0.020441 e−3.3234y + 0.0868356 e−1.61803y

+ 0.157553 e−0.357926y, (63)
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FIG. 5. Plot of the total probability density P(y) vs y for two
different values the diffusion constant D = 1/2 and D = 1/8 and for
c̄ = 0.5, v0 = 1, γ = 1/2. The symbols are the results of numerical
simulations while the solid lines correspond to the exact results in
Eq. (63) for D = 1/2 and in Eq. (64) for D = 1/8.

while for c̄ = 1/2, D = 1/8, v0 = 1, and γ = 1/2 we find

P(y) = 0.0523053 e−12.331y + 0.397104 e−4.82843y

+ 0.220603 e−0.533482y. (64)

These theoretical predictions in Eqs. (63) and (64) are com-
pared to numerical simulations in Fig. 5, showing a very good
agreement.

IV. MORE GENERAL INTERACTION WITHOUT
DIFFUSION

A. Models and flow diagram

In this section we discuss the case of a more general at-
tractive interaction between the two RTPs, i.e., a more general
force f (y) which is an odd function of y, f (−y) = − f (y). For
simplicity, we will set D = 0 as argued earlier. In this case,
the equations for the center of mass w = (x1 + x2)/2 and the
relative coordinate y = x1 − x2, respectively, in Eqs. (5) and
(6) reduce to

dw

dt
= v0

2
[σ1(t ) + σ2(t )], (65)

dy

dt
= 2 f (y) + v0 [σ1(t ) − σ2(t )]. (66)

In principle, we can write down the FP equation for the joint
distribution Pσ1,σ2 (w, y, t ). This joint distribution obviously
does not reach a steady state, since w(t ) in Eq. (65) cor-
responds to a free RTP motion and hence diffuses at late
times. Only the marginal distribution of the relative coordinate
Pσ1,σ2 (y, t ) = ∫ +∞

−∞ dw Pσ1,σ2 (w, y, t ) reaches a steady state as
t → ∞. Hence, we focus on the y-marginal only. The FP
equation for Pσ1,σ2 (y, t ) reads

∂t Pσ1,σ2 = −∂y
{
[2 f (y) + v0(σ1 − σ2)]Pσ1,σ2

}− 2γ Pσ1,σ2

+ γ
(
P−σ1,σ2 + Pσ1,−σ2

)
. (67)
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σ = +2

y

+v0
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FIG. 6. Dynamical diagrams for the 2 RTPs within the two mod-
els discussed in the text. The interaction force between the RTPs,
f (y) is plotted versus y, the relative coordinate. The fixed points for
the dynamics (66) in each state of the two RTPs are determined by
the roots of the equations f (y) = −v0 (state +−), f (y) = 0 (states
++ and −−) and f (y) = v0 (state −+). These are obtained as the
intersections of the plot of f (y) with the three horizontal lines which
correspond to the three possible values of σ = σ1 − σ2. (a) The har-
monic force model, f (y) = −y, with the three fixed points ã, b̃ and c̃
(see discussion in the text). The flow indicated by the arrows shows
the dynamics of y(t ) in each state. The three fixed points are attractive
and the steady state is supported by the interval [a, c]. (b) The second
model (with a repulsive short range interaction), f (y) = 1

y − y, with

the six fixed points ã, b̃, c̃ and ã′, b̃′, c̃′ (see discussion in the text).
All fixed points are attractive. The steady state is not unique, with
two supports [ã′, c̃′] and [ã, c̃], depending on the initial ordering of
the particles.

Note that for f (y) = −c̄ sgn(y) discussed in Sec. III, this
equation reduces to Eq. (9).

To search for a stationary solution Pσ1,σ2 (y), one must set
the l.h.s. of Eq. (67) to 0. However, before writing the steady-
state equations, it is useful to see what we can anticipate
about the form of this solution, and in particular whether
this solution is unique. This can be investigated by studying
the stability behavior of the Langevin Eq. (66), following
the examples in Refs. [16,20]. We will consider two generic
examples of interactions between the RTPs, which present a
different steady-state behavior. The first example is the har-
monic force f (y) = −λy. In the second example there is in
addition a repulsion between the particles so that they can-
not cross, with f (y) = 1

y − λy. The curves f (y) versus y are
plotted in Fig. 6 for both examples. Note that σ1(t ) − σ2(t )
can take only three values (−2, 0, 2) corresponding, respec-
tively, to the two RTPs being in the states (−+), (++) or
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(−−) and (+−). Hence, to find stationary points for a fixed
two-particle state one must look at the roots of the equations,
respectively, f (y) = v0, f (y) = 0 and f (y) = −v0. In Fig. 6
we have indicated the positions of these roots. In the first
example (harmonic force) there are three of them denoted ã,
b̃, and c̃. Because of the symmetry f (−y) = − f (y) one has
b̃ = 0 and c̃ = −ã = λ/v0. In the second example (with short
range repulsion) there are six of them: three on the y < 0
side (i.e., x1 < x2) denoted ã, b̃, and c̃ and three on the y > 0
positive side (i.e., x1 > x2), denoted ã′, b̃′, and c̃′. Because of
the symmetry f (−y) = − f (y) one has ã′ = −c̃, b̃′ = −b̃, and
c̃′ = −ã. We have indicated by arrows in the figure the flow
diagram for each of the three values of σ = σ1(t ) − σ2(t ).
For both examples considered here all fixed points ã, b̃, c̃
(and ã′, b̃′, c̃′) are attractive [i.e., f ′(y) is negative at the fixed
point]. From the general analysis performed in Ref. [20], we
can predict the support of the steady-state probabilities from
the flow in the Fig. 6.

In the first model (harmonic force) we predict that the
stationary state is unique and that after a finite time the relative
coordinate y(t ) will end up within the interval [ã, c̃]. Once
the particle enters this interval [ã, c̃], it can never go out
via the dynamics in Eq. (66). Hence, we would expect that
the stationary state, if it exists, will be supported only inside
the interval [ã, c̃]. In other words, the stationary probability
density Pσ1,σ2 (y) will strictly vanish outside this interval [ã, c̃].

In the second model (with short range repulsion) the two
RTPs cannot cross, hence it is clear that, depending on the
initial condition, i.e., whether x1(0) > x2(0) or x2(0) > x1(0),
the relative coordinate y(t ) of the two RTPs will end up either
on [ã, c̃] or on [ã′, c̃′]. In that case the stationary solution is
not unique, and there are two possible disconnected supports,
which are images of each other by the symmetry y → −y.

B. Determination of the steady-state solution

We now focus on the case where the stationary solution is
unique (for models in the same class as the harmonic well
where the potential has a single minimum) and show how
to find this solution. Let us rewrite the equation Eq. (67)
in components and set ∂t Pσ1,σ2 (y, t ) = 0, leading to the four
coupled equations

∂t P++ = −2∂y( f (y)P++) − 2γ P++ + γ (P+− + P−+) = 0,

(68)

∂t P+− = −2v0∂yP+− − 2∂y( f (y)P+−)

− 2γ P+− + γ (P++ + P−−) = 0, (69)

∂t P−+ = 2v0∂yP−+ − 2∂y( f (y)P−+)

− 2γ P−+ + γ (P++ + P−−) = 0, (70)

∂t P−− = −2∂y( f (y)P−−) − 2γ P−− + γ (P+− + P−+) = 0.

(71)

These equations [see also Eq. (67)] are invariant under the
change (y, σ1, σ2) → (y,−σ2,−σ1). Since f (y) is an odd
function of y, they are also invariant under the change
(y, σ1, σ2) → (−y,−σ1,−σ2). Since we consider here the

case where the stationary solution is unique, this implies that

Pσ1,σ2 (y) = P−σ1,−σ2 (−y), Pσ1,σ2 (y) = Pσ2,σ1 (−y), (72)

where the second symmetry is obtained by combining the
two symmetries mentioned above. The first corresponds to
reversing the speed of each particle and reversing the direction
of y. Since the confining potential V (y) is symmetric under
y → −y [equivalently f (−y) = − f (y)], the first symmetry in
Eq. (72) is evident when the stationary state is unique. Sum-
ming over σ1, σ2 this also implies that the total probability
P(y) must be an even function of y.

It is convenient to introduce the following quantities:

p1 = P++ + P−−, p2 = P++ − P−−,

q1 = P+− + P−+, q2 = P+− − P−+, P = p1 + q1. (73)

In terms of these quantities Eqs. (68)–(71) simplify to

−∂y[ f (y)p1] − γ p1 + γ q1 = 0, (74)

−∂y[ f (y)p2] − γ p2 = 0, (75)

−∂y[ f (y)q1 + v0q2] − γ q1 + γ p1 = 0, (76)

−∂y[ f (y)q2 + v0q1] − γ q2 = 0. (77)

Amazingly, Eq. (75) for p2(y) completely decouples from
p1, q1 and q2 for arbitrary f (y). In fact p2 is not needed to
obtain p1, q1, and q2. The origin of this simplification will
be discussed below. It therefore remains to solve the three
Eqs. (74), (76), and (77). Adding Eqs. (74) and (76) and using
P = p1 + q1 one finds

∂y(2 f (y)P(y) + 2v0q2(y)) = 0

�⇒ 2 f (y)P(y) + 2v0q2(y) = J, (78)

where J is a constant. We can identify this constant with the
total probability current in the system. This can be seen by
adding the four Eqs. (67) for σ1 = ±1 and σ2 = ±1 which
gives ∂t P = −∂yJ (y) with J (y) = 2 f (y)P(y) + 2v0q2(y). In
the steady state, the probability current must be a constant
since ∂t P = 0. Hence, J (y) = J is independent of y and co-
incides with Eq. (78). Since f (y) is an odd function, P(y)
is even, and q2(y) is also an odd function because of the
symmetry Eq. (72) and of the unicity of the steady state,
Eq. (78) implies that the current J must vanish. Setting J = 0
we get another relation,

f (y)P(y) = f (y)(p1(y) + q1(y)) = −v0q2(y). (79)

We now eliminate q2(y) from Eqs. (76) and (77) by using the
relation in Eq. (79). This gives a pair of coupled equations,
involving P(y) and q1(y),

−∂y( f (y)(q1 − P)) + γ P − 2γ q1 = 0, (80)

−∂y
(
v2

0q1 − f (y)2P
)+ γ f (y)P = 0, (81)

which can be conveniently rewritten as

f P′ + ( f ′ + γ )P = f q′
1 + ( f ′ + 2γ )q1, (82)

f 2P′ + f (2 f ′ + γ )P = v2
0q′

1. (83)
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After differentiating both Eqs. (82) and (83) and performing straightforward manipulations, one can eliminate q1 and write a
closed second-order ordinary differential equation for P(y). We get

f (y)
[
v2

0 − f (y)2
]
P′′(y) +

{[
v2

0 − 3 f (y)2
]
[γ + 2 f ′(y)] + f (y)[ f (y) − v0][ f (y) + v0] f ′′(y)

2γ + f ′(y)

}
P′(y) (84)

+
{

γ
[
v2

0 − 3 f (y)2
]

f ′′(y)

2γ + f ′(y)
− f (y)[γ + 2 f ′(y)][2γ + 3 f ′(y)]

}
P(y) = 0. (85)

One can in principle solve this equation for P(y) using the
boundary conditions given below. Once P(y) is known one
obtains q2(y) = − f (y)P(y)/v0 from Eq. (79). One also ob-
tains q1(y) by integration of Eq. (83). Alternatively, a similar
second-order differential equation can also be derived for
q1(y) by eliminating P(y) from the pair of Eqs. (82) and
(83). We do not write it explicitly here. As argued before, the
stationary solution is expected to be supported over the finite
interval [ã, c̃] where f (ã) = v0 and f (c̃) = −v0. Therefore,
Eq. (84) for P(y) holds for y ∈ [ã, c̃]. In addition, we need
to provide the appropriate boundary conditions to find the
unique solution. These boundary conditions are nontrivial and
we derive them below.

1. Boundary conditions

The main idea is to derive, directly from the Langevin
Eq. (66) how the four probabilities Pσ1,σ2 (y, t ) evolve in a
small time �t exactly at the two edges of the support y =
ã and y = c̃. Let us illustrate this explicitly with the state
P++(y, t ). For this case, the Langevin Eq. (66) says that in
a small time �t the position of the particle evolves by �y =
2 f (y) �t . Therefore, the evolution of the probability density
P++(y, t ) can be written as

P++(y, t + �t ) = (1 − 2γ�t )P++(y − 2 f (y) �t, t )

+γ�t[P+−(y, t ) + P−+(y, t )]. (86)

This is easily explained since in the time interval [t, t + �t]
the velocities (v0σ1(t ), v0σ2(t )) do not change sign with prob-
ability 1 − 2γ�t . Hence, if the particle wants to be at the
location y at time t + �t , then it must have been at y − �y =
y − 2 f (y) �t at time t . This explains the first term in Eq. (86).
In contrast, with probability γ�t , it can come from the state
(+−) or (−+) just by flipping the negative velocity. This
explains the last two terms in Eq. (86). Now we consider this
evolution Eq. (86) exactly at the left edge y = ã where we
recall that f (ã) = v0. Hence, the first term on the r.h.s. of
Eq. (86) reads (1 − 2γ�t )P++(ã − 2v0�t, t ). Since 2v0�t >

0, the argument ã − 2v0�t < ã. This means that the argument
ã − 2v0�t is outside the left edge of the support where, by
definition, there is no particle in the stationary state. Hence,
the first term is identically zero at y = ã. As �t → 0, the last
two terms in Eq. (86) also vanish. This gives us the boundary
condition in the stationary state

P++(y = ã) = 0. (87)

By repeating this argument for each of the states (σ1 =
±1, σ2 = ±1) at the two boundaries ã and c̃, we find the

following set of boundary conditions:

P++(ã) = P++(c̃) = 0, (88)

P−−(ã) = P−−(c̃) = 0, (89)

P+−(ã) = 0, (90)

P−+(c̃) = 0. (91)

Note that, due to the symmetry condition Eq. (72), these
boundary conditions are not all independent. In fact, there are
only four independent boundary conditions. Since our original
stationary states Eqs. (68)–(71) are four first-order differential
equations (albeit coupled), these four boundary conditions
are enough to fix the stationary solution uniquely. Note that
these boundary conditions Eqs. (88)–(91) mean that no jump
is allowed at these points for these probabilities, which must
thus vanish continuously.

Let us now return to the function p2(y) = P++(y) −
P−−(y). Using both symmetries in Eq. (72) for σ1 = σ2 = +
we obtain that

p2(y) = P++(y) − P−−(y) = P++(y) − P++(−y) = 0. (92)

Hence, all the components Pσ1,σ2 (y) of the stationary state can
be determined.

C. Harmonic interactions and mapping to a three state model

To illustrate the method, let us consider the example of
the harmonic interaction f (y) = −λy in which case Eq. (84)
becomes

(γ − 2λ)P′(y)
(
v2

0 − 3λ2y2
)− λyP′′(y)

(
v2

0 − λ2y2
)

+ λy(2γ − 3λ)(γ − 2λ)P(y) = 0. (93)

Let us first study the special case γ = 2λ, which turns out
to be a bit simpler. In that case, indeed, the above equations
simplify into

y
(
v2

0 − λ2y2
)
P′′(y) = 0 (94)

−λyP′ + λP = −λyq′
1 + 3λq1, (95)

λ2y2P′ = v2
0q′

1. (96)

The solution is easily obtained for y ∈ [− v0
λ
, v0

λ
] as

P(y) = λ2

v2
0

(v0

λ
− |y|

)
, q1(y) = 1

3

λ

v0
− λ4

3v4
0

sgn(y)y3,

q2(y) = λ3

v3
0

y
(v0

λ
− |y|

)
, (97)
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FIG. 7. Plot of the total probability density P(y) vs y for the har-
monic interaction f (y) = −λy with v0 = 1, λ = 2 and γ = 2λ = 4.
The symbols are the results of numerical simulations while the solid
lines correspond to the exact result in Eq. (97).

and zero for |y| > v0
λ

. In Fig. 7 we show a comparison of
our exact prediction in Eq. (97) with numerical simulations
for γ = 2λ = 4 (as well as v0 = 1.0) showing a very good
agreement.

The general solution of Eq. (93) can be obtained in terms
of hypergeometric functions. In fact, as we show below, the
present problem can be mapped onto a recently studied prob-
lem of a single RTP with position y, with three internal states,
in an harmonic potential V (y) = 1

2λy2, which was solved in
terms of hypergeometric functions [19]. This leads to the
general result for the solution of the 2 RTP problem with
harmonic interaction, i.e., of Eq. (93), as

P(y) = A1

{
2F1

[
1 − β

2
,

3

2
− β,

3 − β

2
;

(
λy

v0

)2]

+ 2√
π

�
( 3−β

2

)
�
(
β + 1

2

)
(1 − 2β )�

(
β+1

2

) (λy

v0

)β−1

×2F1

[
1

2
, 1 − β

2
,
β+1

2
;

(
λx

v0

)2]}
, −v0

λ
� y � v0

λ
,

(98)

where β = γ /λ and the amplitude A1 is given in Eq. (33) of
Ref. [19].

The model studied in Ref. [19] is defined by the transition
rates between the three states denoted +1, 0,−1 as shown in
Fig. 8(b). One can identify these states with ours as

1 ≡ (+−) ⇒ P1 = P+−, (99)

−1 ≡ (−+) ⇒ P−1 = P−+, (100)

0 ≡ (++) ∪ (−−) ⇒ P0 = P++ + P−−. (101)

This implies that the probabilities denoted as P, Q, and R in
Ref. [19] are related to P, q1, and q2 studied here via

Q = P1 + P−1 ≡ q1, (102)

R = P1 − P−1 ≡ q2, (103)

P = P0 + P1 + P−1 ≡ P. (104)

Hence, the solution for these functions obtained there also
provide the solution for our model.

D. General mapping to a two-dimensional single-RTP model

In fact, this mapping, between (i) the relative coordinate of
a pair of interacting particles and (ii) the position of a single
particle in a confining potential subjected to a three-state
active noise, actually is more general than just the harmonic
interaction and can be extended to arbitrary attractive interac-
tion in (i). The general mapping can be formulated as follows.
Consider a single particle on a plane with its coordinates
[y(t ), z(t )] evolving via the pair of equations

dy(t )

dt
= f [y(t )] + v0σy(t ), (105)

dz(t )

dt
= g[z(t )] + v0σz(t ), (106)

where the confining force f (y) in the y direction depends only
on y and the confining force g(z) in the z direction depends
only on z. In Eqs. (105) and (106), σy,z(t ) are the y and z com-
ponents of a director field which has four possible orientations
E (East), N (North), W (West), and S (South), as shown in
Fig. 8(a). The transition rates between the different directions
of the director field are indicated in Fig. 8(a). The state of
the system has four labels E , N,W , and S and hence there
are four position distribution functions PE (y, z, t ), PN (y, z, t ),

N

EW

S
(σy = 0, σz = −1)

(σy = 0, σz = +1)

(σy = +1, σz = 0)(σy = −1, σz = 0)

γγ

γ γ
− 1 + 10

γγ

2γ2γ

(a) (b)

FIG. 8. Illustration of the four-state model (left panel) and corresponding three-state model studied in Ref. [19] and discussed in the text.
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PW (y, z, t ), and PS (y, z, t ). In Ref. [32], these position distri-
bution functions were computed explicitly in the “free” case
where f (y) = 0 and g(z) = 0. Here we consider instead the
case of nonzero interaction forces f (y) �= 0 and g(z) �= 0.
Taking into account the transition rates in Fig. 8(a), one can
explicitly write down the associated coupled FP equations
[along the lines of Eq. (67)]. We do not repeat them here as
they are a bit long [see Eqs. (6a)–(6d) of Ref. [19] in the
case f (y) = −μy and g(z) = −μz]. Following Ref. [19] we
consider three marginal position distribution in the y direction:

P1(y, t ) =
∫

dz PE (y, z, t ), (107)

P−1(y, t ) =
∫

dz PW (y, z, t ), (108)

P0(y, t ) =
∫

dz [PN (y, z, t ) + PS (y, z, t )]. (109)

From the explicit FP equations for PE ,N,W,S , it is straight-
forward to obtain the FP equations for these three marginal
probability densities proceeding as in Ref. [19]:

∂

∂t
P1(y, t ) = ∂

∂y
[( f (y) − v0)P1] + γ

2
P0 − γ P1, (110)

∂

∂t
P−1(y, t ) = ∂

∂y
[( f (y) + v0)P−1] + γ

2
P0 − γ P−1, (111)

∂

∂t
P0(y, t ) = ∂

∂y
[ f (y)P0] + γ (P1 + P−1) − γ P0. (112)

We first note that the force field g(z) has completely dropped
out in Eqs. (110)–(112) and this is precisely due to the de-
coupled structure of the force field Eqs. (105) and (106). How
is this related to the two-particle model with attractive force
f (y)? If we take our basic FP equations in Eq. (67) and use
the identification in Eqs. (99), (100), and (101), it is easy to
see that the resulting FP equations for P1, P−1, and P0 are
exactly the same as in Eqs. (110)–(112). In fact it is possible
by comparing Eqs. (68)–(71) in the present paper, and Eqs.
(6a)–(6d) of Ref. [19] to establish a direct mapping between
the two interacting RTP model and the single-RTP 2d-model
[19]. One finds

P+−(y, t ) =
∫

dz PE (y, z, 2t ),

P−+(y, t ) =
∫

dz PW (y, z, 2t ), (113)

P++(y, t ) =
∫

dz PN (y, z, 2t ),

P−−(y, t ) =
∫

dz PS (y, z, 2t ), (114)

the rescaling of time being equivalent to a rescaling of
γ . Note that there is some arbitrariness in connecting
(N, S) ≡ (++,−−) rather than (N, S) ≡ (−−,++). Note
that p2(y, t ) = P++(y, t ) − P−−(y, t ) = ∫

dz [PN (y, z, 2t ) −
PS (y, z, 2t )] indeed decouples as found above since it is
determined by the dynamics along z (which is not observed).

This completes the mapping between the y component of a
2d single-particle problem subjected to a force-field as in
Eqs. (105) and (106) and the relative coordinate of a pair of
RTPs with arbitrary interactions between them.

Finally, it is interesting to observe that if one instead looks
at the marginals of the z-coordinate in the 2d model (i.e., if we
integrate over y instead of z) one has again a mapping to two
RTPs interacting with a force g(z), and the identification W ≡
−−, E ≡ ++, N ≡ +−, and S ≡ −+ [which is obtained by
a rotation of the Fig. 8(a)].

V. CONCLUSION

In this paper we have studied two run-and-tumble particles
(RTPs) interacting via an attractive potential V (y), depending
on their relative coordinate y. In the large time limit, the total
probability distribution of y reaches a stationary form P(y)
which we have characterized in terms of the solution of a
second-order differential equation. For two specific examples
of potential V (y) we have obtained the four components of the
stationary distribution, Pσ1,σ2 (y), where σ1 = ±1, σ2 = ±1 are
the states of each RTP with velocity ±v0.

As a first example, we have studied in detail the case of a
linear potential V (y) ∼ |y|, first without thermal noise (i.e., for
D = 0) and then for general D > 0. In the first case, D = 0,
a striking result is that P(y) is the sum of a δ function part
δ(y) and a decaying exponential. This is the signature of a
strong clustering effect, when the two RTPs are in the same
state. This is reminiscent of the observation in [21–24], except
that here the clustering effect is enhanced by the attractive
interaction. Because of the finite decay length of the exponen-
tial part, the weight of the δ part is finite even for an infinite
system. In the presence of thermal noise, D > 0, the δ function
broadens and P(y) is now a sum of exponentials. We have
tested our analytic formula with numerical simulations of two
interacting RTPs.

The second example is the harmonic attraction, V (y) =
λ
2 y2. In that case, the support of P(y) is found to be a finite
interval [− v0

λ
, v0

λ
]. We found that the general solutions for

P(y) on this interval are expressed in terms of hypergeometric
functions. In addition, Pσ1,σ2 (y) generically exhibit power-law
singular behaviors at the three points y = 0,± v0

λ
. Remarkably,

this exact solution can be mapped onto a problem studied
previously of a three-state single RTP in one dimension in a
harmonic external potential. In fact, as we have shown, this
mapping extends to any interaction potential V (y). In addition,
a related mapping to a two-dimensional single-RTP model
is obtained. Finally, we have also discussed the effect of an
additional short-range repulsion. When it is strong enough so
that the particles cannot cross it results in the existence of sev-
eral distinct steady states which are related by the symmetry
y → −y.

As we have seen here, it is already nontrivial to obtain
the stationary probability for two RTPs with a general in-
teraction potential. An interesting question is whether there
are solvable models for a number N > 2 RTPs. Preliminary
study shows that it is already quite challenging for the linear
attraction potential. Multiparticle models with N > 2 were
studied for a chain of harmonically attracting RTPs, for which
the mean-square displacement of a single RTP as well as the
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two-time correlation have been obtained [33,34]. However the
stationary distribution has not been studied, and as we see
here, already for N = 2, it involves hypergeometric functions.
These questions are left for future investigations.

Recently, the simple RTP model of a single particle
dx/dt = v0σ (t ) in Eq. (1) has been generalized to the case
dnx/dtn = v0σ (t ) with any n > 0 [35]. For example, the case
n = 2 would correspond to an undamped particle driven by
a random telegraphic force. It would be interesting to see if
our method can be extended to study a pair of such interacting
undamped RTPs.
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APPENDIX: DETAILS FOR TWO RTPS WITH DIFFUSION

As stated in the text the stationary solution ∂t Pσ1,σ2 (y) = 0
of the FP Eq. (36) which obeys (i) continuity at y = 0 and (ii)
the matching condition Eq. (37) for derivatives has the form

Pσ1,σ2 (y) = {[
b1V

1
σ1,σ2

+ b2V
2
σ1,σ2

(μ2)
]
θ (y) + [

b′
1V

1
σ1,σ2

+ b′
2V

2
σ1,σ2

(−μ2)
]
θ (−y)

}
e−μ2|y|

+[b3V
3
σ1,σ2

(μ3)θ (y) + b′
3V

3
σ1,σ2

(−μ3)θ (−y)
]
e−μ3|y| + [

b4V
4
σ1,σ2

(μ4)θ (y) + b′
4V

4
σ1,σ2

(−μ4)θ (−y)
]
e−μ4|y|, (A1)

where the eigenvectors Ô = [V 1,V 2(μ),V 3(μ),V 4(μ)] are given (in column form) in Eq. (21) and depend on μ via c and s.
The parameter μ2 is given in Eq. (46) and the parameters μ3, μ4 are solutions of Eq. (47) and given explicitly in Eqs. (55)–(57).
We will now determine the unknown coefficients b1, b2, b3, b4 and b′

1, b′
2, b′

3, b′
4 from the above conditions (i) and (ii) that we

rewrite explicitly. The first one (i) is the continuity condition

b1V
1
σ1,σ2

+ b2V
2
σ1,σ2

(μ2) + b3V
3
σ1,σ2

(μ3) + b4V
4
σ1,σ2

(μ4) = b′
1V

1
σ1,σ2

+ b′
2V

2
σ1,σ2

(−μ2) + b′
3V

3
σ1,σ2

(−μ3) + b′
4V

4
σ1,σ2

(−μ4), (A2)

and the second one (ii) is the matching of the derivatives, which reads

μ2
[
b1V

1
σ1,σ2

+ b2V
2
σ1,σ2

(μ2) + b′
1V

1
σ1,σ2

+ b′
2V

2
σ1,σ2

(−μ2)
]+ μ3

[
b3V

3
σ1,σ2

(μ3) + b′
3V

3
σ1,σ2

(−μ3)
]

+μ4
[
b4V

4
σ1,σ2

(μ4) + b′
4V

4
σ1,σ2

(−μ4)
] = 2

c̄

D
× [

b1V
1
σ1,σ2

+ b2V
2
σ1,σ2

(μ2) + b3V
3
σ1,σ2

(μ3) + b4V
4
σ1,σ2

(μ4)
]
. (A3)

Finally, we will also use that the total probability is normalized to unity. We note that V 1
σ1,σ2

is orthogonal to all the other vectors
for any value of μ. We can thus take the scalar product of all equations with V 1 and obtain

b1 = b′
1, μ2(b1 + b′

1) = 2
c̄

D
b1 ⇐⇒ b1 = b′

1 = 0, (A4)

as soon as γ > 0, which is similar to our result for p2 = P++ − P−− = 0 in the case D = 0, see Eq. (92).
Based on some numerical observation, we now assume that

b′
2 = −b2, b′

3 = b3, b′
4 = b4, (A5)

and we will verify below that it indeed provides a solution to the problem. These identities imply from Eq. (A2) that

b2
[
V 2

σ1,σ2
(μ2) + V 2

σ1,σ2
(−μ2)

]+ b3
[
V 3

σ1,σ2
(μ3) − V 3

σ1,σ2
(−μ3)

]+ b4
[
V 4

σ1,σ2
(μ4) − V 4

σ1,σ2
(−μ4)

] = 0, (A6)

and from Eq. (A3) that

μ2b2
[
V 2

σ1,σ2
(μ2)

]− [
V 2

σ1,σ2
(−μ2)

]+ μ3b3
[
V 3

σ1,σ2
(μ3) + V 3

σ1,σ2
(−μ3)

]+ μ4b4
[
V 4

σ1,σ2
(μ4) + V 4

σ1,σ2
(−μ4)

]
= 2

c̄

D
× [

b2V
2
σ1,σ2

(μ2) + b3V
3
σ1,σ2

(μ3) + b4V
4
σ1,σ2

(μ4)
]
. (A7)

Replacing the r.h.s. by half the sum of both sides of Eq. (A2) and using the above relations Eqs. (A4) and (A5) one can rewrite
Eq. (A7) as (

μ2 − c̄

D

)
b2
[
V 2

σ1,σ2
(μ2)

]− [
V 2

σ1,σ2
(−μ2)

]+
(

μ3 − c̄

D

)
b3
[
V 3

σ1,σ2
(μ3) + V 3

σ1,σ2
(−μ3)

]

+
(

μ4 − c̄

D

)
b4
[
V 4

σ1,σ2
(μ4) + V 4

σ1,σ2
(−μ4)

] = 0. (A8)

Let us now express these equations using the explicit forms

V 2(μ2) =

⎛
⎜⎜⎜⎝

c2√
2

s2√
2

− s2√
2

c2√
2

⎞
⎟⎟⎟⎠, V 3(μ3) =

⎛
⎜⎜⎜⎝

s3
2

− 1
2 (1 + c3)

− 1
2 (1 − c3)

s3
2

⎞
⎟⎟⎟⎠, V 4(μ4) =

⎛
⎜⎜⎜⎝

s4
2

1
2 (1 − c4)
1
2 (1 + c4)

s4
2

⎞
⎟⎟⎟⎠, (A9)
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where, for j = 2, 3, 4, one has

c j = −μ jv0√
γ 2 + μ2

jv
2
0

, s j = γ√
γ 2 + μ2

jv
2
0

, (A10)

and V j (−μ j ) obeys the same Eq. (A9) with c j → −c j and s j → s j . Inserting these expressions for V j (±μ j ) into Eq. (A6) we
obtain only one independent equation,

b3c3 + b4c4 =
√

2b2s2. (A11)

Similarly, inserting them into Eq. (A8) we obtain only two independent equations

b4

( c̄

D
− μ4

)
= b3

( c̄

D
− μ3

)
, (A12)

√
2b2c2

( c̄

D
− μ2

)
+ b3s3

( c̄

D
− μ3

)
+ b4s4

( c̄

D
− μ4

)
= 0. (A13)

Equations (A11) and (A12) give

b3 =
√

2b2b̃3, b4 =
√

2b2b̃4, (A14)

b̃3 = s2(c̄ − Dμ4)

(c3 + c4)c̄ − D(c4μ3 + c3μ4)
, b̃4 = s2(c̄ − Dμ3)

(c3 + c4)c̄ − D(c4μ3 + c3μ4)
, (A15)

in which case we have checked that the third Eq. (A13) is automatically satisfied.
Putting everything together we find that the stationary measure is

Pσ1,σ2 (y) = b2
{[

V 2
σ1,σ2

(μ2)θ (y) − V 2
σ1,σ2

(−μ2)θ (−y)
]
e−μ2|y| + b̃3

√
2
[
V 3

σ1,σ2
(μ3)θ (y) + V 3

σ1,σ2
(−μ3)θ (−y)

]
e−μ3|y|

+ b̃4

√
2
[
V 4

σ1,σ2
(μ4)θ (y) + V 4

σ1,σ2
(−μ4)θ (−y)

]
e−μ4|y|}, (A16)

where b̃3, b̃4 are given in Eq. (A14) and there remains a single unknown parameter b2 which is obtained by normalization. Let
us thus study the total probability P(y) = ∑

σ1,σ2
Pσ1,σ2 (y). One has, from Eq. (A9),∑

σ1,σ2

V 2
σ1,σ2

(±μ2) = ±
√

2c2,
∑
σ1,σ2

V 3
σ1,σ2

(±μ3) = s3 − 1,
∑
σ1,σ2

V 4
σ1,σ2

(±μ4) = s4 + 1. (A17)

From Eq. (A16) we thus obtain

P(y) = b2

√
2[c2e−μ2|y| + b̃3(s3 − 1)e−μ3|y| + b̃4(s4 + 1)e−μ4|y|], (A18)

and the normalization condition
∫ +∞
−∞ P(y)dy = 1 leads to the following result for b2:

b2 = 1√
2
[
c2

2
μ2

+ b̃3(s3 − 1) 2
μ3

+ b̃4(s4 + 1) 2
μ4

] . (A19)

Solving for b2 and inserting into Eq. (A18) we obtain the result for P(y) given in the text in Eq. (60). Substituting into Eq. (A16)
gives the complete result for all components of the stationary probability Pσ1,σ2 (y).
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