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Spatial and temporal memory effects in the Nagel-Schreckenberg model for crowdsourced traffic
property determination
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We investigate the spatial and temporal memory effects of traffic density and velocity in the Nagel-
Schreckenberg cellular automaton model. We show that the two-point correlation function of vehicle occupancy
provides access to spatial memory effects, such as headway, and the velocity autocovariance function to temporal
memory effects such as traffic relaxation time and traffic compressibility. We develop stochasticity–density
plots that permit determination of traffic density and stochasticity from the isotherms of first- and second-
order velocity statistics of a randomly selected vehicle. Specifically, provided ergodicity and stationarity, these
stochasticity–density plots permit a direct determination of traffic properties from crowdsourced measurements
of velocities of vehicles. We illustrate the predictive prowess of the approach for crowdsourced vehicle speed
data collected by anonymous smartphone measurements for the state of Massachusetts, USA, as a powerful
alternative to classical traffic property estimates from spatially distributed user counts.
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I. INTRODUCTION

Traffic density, mean velocity, and driver behavior are
central mobility indicators amid the backdrop of an ever-
increasing demand for reliable navigation systems designed
to mitigate intrinsic trade-offs between mobility, safety, and
sustainability of our road networks. While most navigation
systems approximate traffic density from their user count
and average real-time vehicle velocity measurements (ob-
tained spatially by, for instance, smartphones for traffic flux
estimates, the so-called floating car data [1]), it has long
been recognized that traffic exhibits complex dynamics of
a many-body system from free flow to jamming, which
defies simple averaging rules [2–6]. Among the many traf-
fic flow models ranging from continuum to agent-driven
approaches [7], the Nagel-Schreckenberg (NaSch) cellular
automaton model [3] has emerged as a powerful tool not
only to reproduce critical features of traffic flow [8], such
as backward-moving shock waves [9] and the fundamental
diagram of traffic [10], but foremost to track the internal
model traffic structure by means of simulations [11–15].
This includes quantitative insights into the mechanism of
jamming from investigations of strength and range of inter-
actions between successive vehicles captured by short-range
correlation functions [16,17]; phase transition phenomena
from investigation of the correlation length in the velocity-
velocity covariance function [18]; and jamming rate, jam
lifetime, and jam size from stability criteria of the NaSch-
model close to the critical jamming density [19]. Key in
these studies is the apparent simplicity of the NaSch-model
heuristics as a discrete lattice-gas-like model—acceleration
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v j = min(v j + 1, vmax), deceleration v j = min(d j, v j ) (with
d j the headway), and random deceleration v j = max(v j −
1, 0) with probability p—which permit an update of the jth
vehicle position x j → x j + v j in units of cells (or integer
velocities) in the cellular automaton. In addition to vmax,
driver behavior in the NaSch model is condensed into the
stochasticity parameter p, bounding the maximum speed of
vehicles in free flow. Indicative of the intrinsic unpredictabil-
ity in driver behavior, the stochasticity parameter drives
fluctuations of vehicles’ velocity, flux and occupancy, intrin-
sic to the internal model traffic structure captured by the
NaSch-model.

Herein we hypothesize that this internal structure holds
critical information relevant for the spatial and temporal map-
ping of traffic density, mean velocity, and driver behavior from
individual driver velocity recordings. We explore this hypoth-
esis by considering the NaSch-model as a stochastic process
with intrinsic homogeneity which stems from the analogous
collective behavior of drivers and the periodic boundary con-
dition of the system. We demonstrate that, owing to the unique
internal structure of the NaSch-model, memory in a vehicle’s
velocity time history provides the handshake between velocity
fluctuations and traffic properties.

The paper is structured as follows: In Sec. II, we ascertain
spatial and temporal memory effects in the form of unique
scaling relations through the application of, respectively, the
two-point correlation function (classically used for texture
analysis of porous materials [20,21]) to cell occupancy and
the velocity autocovariance function. These scaling relations
are at the core of isotherms of first- and second-order velocity
statistics for traffic density and driver behavior determination
derived in Sec. III. The predictive prowess of the approach is
illustrated in Sec. IV through application of the isotherms for
traffic property determination from both local detector data
and floating car data.
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FIG. 1. Two-point correlation function of the NaSch-model rep-
resenting probability of occupancy: (a) S2(δr ) with asymptotes
S2(0) = ρ and S2(δr → ∞) = ρ2 for p = 0.5 and vmax = 5; ρ =
0.09 < ρ p

c is the free-flow regime and shows no correlation with the
occupation number of the neighboring cells for δr � vmax. (b) S2(1)
for the congested flow as a function of η = (ρ − ρ p

c )/(1 − ρ p
c ) and

p ∈ {0, 0.1, ..., .9}; S2(1) ∼ scales as S2(1) ∼ ηα with 1 � α ≈ 1 +
tanh[0.5(vmax − 1)0.6] � 2.

II. SPATIAL AND TEMPORAL MEMORY EFFECTS
IN THE NASCH MODEL

A. Two-point correlation function and spatial memory effects

Our starting point is an analysis of two-point correlation
[20,21] of cell occupation numbers [Fig. 1(a)],

S2(r1, r2) = E[Iη(r1, t )Iη(r2, t )], (1)

where E[.] and η, respectively, denote the ensemble average
operator and jamming random variable, and Iη(r, t ) = 1 if
cell r is occupied at time t , otherwise Iη(r, t ) = 0. Given
stationarity and ergodicity of the system, the two-point cor-
relation function degenerates to S2(r1, r2) = S2(δr = |r2 −
r1|) = E[Iη(r, t0)Iη(r + δr, t0)], which represents the autocor-
relation of a snapshot of the occupation numbers at a given
time t0. The two-point correlation function S2(δr ) is bound by

[22,23]

S2(δr = 0) = ρ; S2(δr → ∞) = ρ2, (2)

where ρ = E[Iη(r, t )] stands for the traffic density or occu-
pancy. Critical information about the internal traffic structure
is provided by the slope of S2 at the origin in terms of the
chord length �c [22]:

dS2

dδr
|δr=0 = −S2(0)

�c
. (3)

Applied to traffic, the chord length defines the probability of
the immediate neighboring cell (δr = 1) of an occupied cell to
be occupied or not,

P [Iη(r + 1, t0) | Iη(r, t0) = 1] = S2(1)

ρ
= 1 − 1

�c
, (4)

where P [.] stands for the probability operator. In free
flow, �c = 1, and hence P [Iη(r + 1, t0) | Iη(r, t0) = 1] = 0,
whereas in complete jamming S2(1) = ρ, and thus 1/�c → 0.
In between these asymptotes, a jamming transition occurs
at a critical occupancy ρ

p
c . More specifically, when plotted

against the probability of the subset η ∈ N to be part of a
cluster of jammed vehicles, that is, η = P [η ∩ ρ > ρ

p
c ] ≈

(ρ − ρ
p
c )/(1 − ρ

p
c ) ∈ [0, 1], we find from simulations that the

occupation probability of the next cell neighbor scales as
[Fig. 1(b)]

S2(1) = ηα; α ∈ [1, 2] (5)

The exponent α depends on vmax [inset of Fig. 1(b)] for all
vmax and p, when ρ

p
c is estimated from ρ

p
c = vJ (vJ + vF )−1

where vF = vmax − p and vJ = 1 − p stand for, respectively,
the average free-flow velocity and the analytic upper bound
of the jammed dissolution velocity of the NaSch model [24].
Moreover, in the congested regime, we find that S2(δr ) con-
verges rapidly for δr > 1 to the asymptotic value S2(δr →
∞) = ρ2 [Fig. 1(a)]. This is indicative of the statistical in-
dependence of occupancy of nonadjacent cells, much akin to
a Markov process, that is,

E[Iη(r, t0)Iη(r + δr, t0)] ≈ E[Iη(r, t0)]E[Iη(r + δr, t0)] = ρ2

(6)
for δr > 1 and η > 0. This shows that the underlying spatial
ergodicity and stationarity of the NaSch-model give rise to
traceable spatial memory effects, which will turn out to be
critical for linking internal structure to traffic flow properties.
For instance, taking into account the Markovian property of
occupancy Iη, the average headway of a vehicle can be esti-
mated from the two-point correlation function (for derivation,
see the Appendix):

E[d] = d = 1

S2(0)
− 1, (7)

with S2(0) = ρ.

B. Velocity autocovariance function and temporal
memory effects

A second quantity of interest to ascertain temporal memory
effects in the internal structure is the velocity autocovari-
ance function, which for stationary processes reduces to
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considering the time lag,

Cvv (δτ = |t2 − t1|) = E[v(t1, ζ )v(t2, ζ )] − v2, (8)

where v(t, ζ ) represents velocity (in NaSch-units) as a
stochastic process, while ζ denotes a random event with
P [ζ ] probability of occurrence and v = E[v(t, ζ )] its mean
value. In free flow, the velocity variation of a single vehi-
cle resembles a Bernoulli process of velocity trials vmax and
vmax − 1 with probabilities 1 − p and p, respectively. Thus,
the free-flow velocity variance reads σ 2

vv,F = Cvv,F (δτ = 0) =
p(1 − p) and Cvv,F (δτ �= 0) = 0 (due to the independence
of trials in a Bernoulli process). In contrast, upon jamming
[Fig. 2(a)], a distinct time memory effect builds up similar
to Ornstein-Uhlenbeck stochastic processes [25–27], which
fades exponentially from Cvv (δτ = 0) = σ 2

vv to Cvv (δτ →
∞) = 0. Analogous to the chord length in the two-point cor-
relation function [see Eq. (3)], we capture the time memory
effect in the form of a characteristic decay time, τc, from the
slope of the autocovariance function,

dCvv

dδτ

|δτ →0 = −Cvv (0)

τc
, (9)

where Cvv (0) = σ 2
vv . The velocity is expected to have the

strongest memory upon transitioning from free flow to
jammed flow, and to reduce to zero (the so-called memoryless
process) for fully jammed traffic. In between these asymp-
totes, we find from simulations that the decay time, τc, scales
with the jamming probability, η = P(η ∩ ρ > ρ

p
c ) [Fig. 2(b)]

as τc ∼ η−γv and can be approximated by

τc ≈ τ̂c(η−γv − 1) (10)

where τ̂c = 1.88 and γv = 0.56 are fitting parameters.
The τc isotherm, which captures all (p, ρ) pairs with
same τc, reads p = (1 − ρ(1 + vmax) + vmaxθv )/(1 − 2ρ +
θv ) with 0 � θv = (τc/τ̂c + 1)−1/γv � 1 and θv � ρ � (1 +
vmaxθv )/(1 + vmax).

In addition, akin to the kinetic theory of gases, we can
define a kinetic compressibility of vehicle speed from the ex-
pected value ratio of jammed to free-flow velocity fluctuations
[Fig. 2(c)]:

κv = E[v2]

E
[
v2

F

] ; E
[
v2

F

] = p(1 − p) + v2
F . (11)

The kinetic compressibility decays from κv = 1 in free flow
(ρ � ρ

p
c ) to a state of incompressibility, κv = 0 at ρ = 1, as

a function of the jamming probability, κv ≈ (1 − η)β , where
the power exponent depends on stochasticity, β = β(p) [inset
of Fig. 2(c)].

C. Local density autocovariance function and temporal
memory effects

We proceed by exploiting memory effects in local density
ρ̃ defined as the traffic density on a randomly selected subset
of adjacent cells of the system lζ

ρ̃ with a prescribed size of
size |lρ̃ |; that is, ρ̃(t, ζ ) = ∑

j∈lζρ̃
Iη( j, t )/|lρ̃ |, where |lρ̃ | is

significantly smaller than the system size to be representa-
tive of local properties. While the (global) density ρ is a
conserved quantity over time, local density is a stochastic
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FIG. 2. (a) Velocity autocovariance in NaSch-model decays
exponentially, Cvv (δτ ) ≈ σ 2

vv exp(−δτ /τc ), resembling an Ornstein-
Uhlenbeck process (vmax = 5, p = 0). (b) Decay timescale τc as
a function of η in the interaction-dominated regime for p ∈
{0.1, 0.2, ..., 0.9}; Velocity approaches memorylessness as traf-
fic density increases with τc ≈ 1.88(η−0.56 − 1). (c) Jammed to
free-flow velocity fluctuations κv for vmax ∈ {4, 6, 8, 10} decays
monotonically from 1 (kinetically compressible vehicle speed) at
η = 0 to 0 (kinetically incompressible vehicle speed) upon jamming
in a power form κv ≈ (1 − η)β

process with an expected value of ρ. Given the stationarity
of the process, the autocovariance function of local density,
Cρ̃ρ̃ (|t1 − t2| = δτ ) = E[ρ̃(t1, ζ )ρ̃(t2, ζ )] − ρ2, adopts a char-
acteristic linear behavior illustrated in Fig. 3(a). The two-point
correlation function implies that for high vmax and in the
congested regime, S2(r, r + δr ) ≈ ρ2 [Sec. II A] indicative of
statistical independence between Iη(r, t ) and Iη(r + δr, t ) for
δr > 0. Therefore, using the Bernoulli assumption of Iη(r, t ),
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FIG. 3. (a) Normalized autocovariance function of local den-
sity exhibiting a distinct linear decay considering vmax = 5, p = 0.3
and |lρ̃ | = 100 for free flow ρ/ρ p

c � 1, transitioning to congested
flow ρ/ρ p

c ≈ 1 and congested flow ρ/ρ p
c > 1; the inset shows the

variance of local density σ 2
ρ̃ρ̃ and the black curve is the variance

for Bernoulli process σ 2
ρ̃ρ̃ ≈ ρ(1 − ρ )/|lρ̃ |. (b) Universal pattern

of ν/vmax as a function of jamming probability approximated by
ν/vmax ≈ 0.5(η̄−γν − 1) where γν = 5 × 10−4|lρ̃ | + 0.31, as shown
in the inset.

the variance of local density can be approximated as σ 2
ρ̃ρ̃ ≈

ρ(1 − ρ)/|lρ̃ | [inset of Fig. 3(a)]. The autocovariance function
thus permits the following simplification:

Cρ̃ρ̃ (δτ ) ≈ σ 2
ρ̃ρ̃

(
1 − 1

ν

δτ

δc
τ

)
� 0, (12)

where δc
τ = |lρ̃ |/v̄ denotes the average residence time of a

vehicle traveling on lρ̃ and νδc
τ stipulates the temporal memory

of the local density process. In free flow, local density at two
time steps are correlated only if their time lag is less than
δc
τ ; and thus ν = 1. Akin to temporal memory of velocity in

the congested flow, memory can be parametrized as a power
function of η̄ [Fig. 3(b)],

ν ≈ vmaxν̂(η−γν − 1), (13)

where ν̂ = 0.5 and γν = 5 × 10−4|lρ̃ | + 0.31 [inset of
Fig. 3(b)] are fitting parameters. Local density shows strong
memory upon transitioning to congested flow and approaches
memorylessness as η̄ → 1.

III. LINK BETWEEN INTERNAL STRUCTURE
AND TRAFFIC DENSITY AND STOCHASTICITY

We proceed by matching the found internal traffic structure
of spatial and temporal memory effects with traffic density ρ

and stochasticity parameter p.

A. Fundamental diagram

To this end, we first construct the fundamental diagram
using the results of the two-point correlation function, em-
ploying the traffic flux definition E[Iη]E[v] = ρv. In the
free-flow regime, the independence of cell occupation and
vehicle speed provides a linear relation between flux and the
average free flow velocity v = vF = vmax − p:

J = ρv = vF ρ, ρ < ρ p
c . (14)

An equally linear relationship between flux and density ap-
proximates flux in jammed flow when considering (i) a
first-order estimate of the average velocity—-in NaSch-units
of number of cells or integer velocity—from the average
headway, d , in the form v = (1 − p)d; and (ii) an estimate of
the average headway from the two-point correlation function
d = 1/S2(0) − 1 [see Eq. (7) and the Appendix], while (iii)
assuming the statistical independence of Iη and v. That is, let-
ting S2(0) = ρ, the traffic flux–density relation for congested
flow is obtained:

J = ρv ≈ ρ(1 − p)d = (1 − p)(1 − ρ), ρ > ρ p
c . (15)

Finally, a combination of Eqs. (14) and (15) leads to the well-
known bilinear approximation of the fundamental diagram
[28] (cited by Ref. [7]),

J = ρv = vF (ρ − η), (16)

where η = |ρ − ρ
p
c |/(1 − ρ

p
c ). It should be noted that mea-

sured flux-density relations typically exhibit large scatter that
can be attributed to nonequilibrium traffic conditions. The
regularity of the bilinear form we here derive with the help of
the two-point correlation function of the NaSch-model relates
to its underlying stationarity and ergodicity. In return, given
stationarity and ergodicity, the fundamental diagram provides
a further relation between a measurable mean velocity v,
density ρ, and stochasticity p.

B. Stochasticity-density plot

We are now ready to match spatial or temporary mem-
ory effects for the determination of traffic density, ρ, and
stochasticity parameter, p. From the two-point correlation
function, we retain the bilinear flux–density relation (the
fundamental diagram), to construct mean velocity isotherms
along p = 1 + ρv/(ρ − 1) with 0 � ρ � 1/(1 + v). In the
velocity stochasticity-density (p, ρ) plot [Fig. 4(a)], we over-
lay these mean velocity isotherms with isotherms of the
decay time τc as a function of (p, ρ). Akin to a phase di-
agram, the curve 0 � p = (1 − ρ(1 + vmax))/(1 − 2ρ) � 1
separates free flow from congested flow. In the congested
flow, the v and τc isotherms intersect at a unique point in the
(p, ρ)-plane provided that �(v, θv ) = v/vmax + (1 + v)θv �
1 [where θv = (τc/τ̂c + 1)−1/γv , with fitting parameters τ̂c =
1.88 and γv = 0.56, see Fig. 2(b)]. That is, �(v, θv ) � 1
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FIG. 4. (a) Velocity and (b) local density stochasticity-density
plot showing the interplay between the first-, second-order mo-
ments, occupancy ρ, and stochasticity parameter p for vmax = 5.
Stochasticity-occupancy (p − ρ) interaction provides the means to
estimate macroscopic traffic properties, p and ρ, from two statistical
observables, which are v and τc [Eq. (10)] for velocity, and ρ̃ and ν

[Eq. (13)]for local density.

is the velocity sample space of the NaSch model indicat-
ing the region of all possible v and θv outcomes. In a
similar fashion, we construct the stochasticity-density plot
[Fig. 4(b)] for the local density which allows for relating
the initial slope of the normalized autocovariance function,
(σ 2

ρ̃ρ̃ )−1dCρ̃ρ̃/dδτ , and the expected value of local density,
E[ρ̃] = ¯̃ρ, to the stochasticity parameter and traffic density.
The ν isotherm reads p = (1 + θνvmax − ρ(1 + vmax))/(1 +
θν − 2ρ) with θν = (ν/(ν̂vmax) + 1)−1/γν which intersects the
vertical ¯̃ρ isotherms at a unique point if (ρ(vmax + 1) −
1)/vmax � θν � ρ.

In summary, given stationarity and ergodicity, first- and
second-order ensemble statistics of velocity or local density,
namely, the mean and initial slope of the normalized autoco-

variance function, provide a means to determine stochasticity
parameter and traffic density.

IV. APPLICATION

We now investigate the predictive prowess of our approach
for estimating traffic properties from local density measure-
ments and crowdsourced velocity data of individual vehicles.
Since our approach relies on ergodicity, we first investigate
the conditions under which a realization of the process can
statistically represent the ensemble moments. We then employ
this condition with empirical local density measurements and
crowdsourced velocity data of vehicles.

A. Ergodicity and entropy

Invoking the ergodic theorem of statistical mechanics [29],
a vehicle eventually explores the entire phase space in a
uniform sense over long (enough) timescales, resulting in
an overall ergodic behavior of vehicles in the NaSch model.
That is, one realization of the process, say ζ0, is statistically
rich enough to approximate the ensemble averages from its
temporal moments. We apply the ergodic principle to velocity
v(t, ζ0) of a randomly selected vehicle ζ0. That is, recalling
the equality of time and phase averages in ergodic mechanical
systems, the mean and autocovariance are estimated from

v ≈ 1

Tr (ζ0)

Tr (ζ0 )∑
t=1

v(t, ζ0) (17)

and

Cvv (δτ ) ≈ 1

Tr (ζ0)

Tr (ζ0 )∑
t=1

v(t, ζ0)v(t + δτ , ζ0) − v2, (18)

where Tr (ζ0) denotes the representative timescale of realiza-
tion ζ0. This timescale is the shortest time interval over which
random event ζ is statistically representative of the ensemble.
Focusing on the probability distribution of velocity, such a
timescale is controlled by the entropy (also known as the
expected information content) of velocity [30]:

H (p, ρ) = −
vmax∑
vi=0

P [vi] ln(P [vi]). (19)

The behavior of representative timescale Tr (ζ0) with respect to
entropy (Fig. 5) is similar to the relaxation time τc: it diverges
at the transition density [14,15] and increases exponentially as

E[Tr] = T 0
r exp(�H̃ (p, ρ)), (20)

where H̃ (p, ρ) = H (p, ρ)/ ln(vmax + 1) is the normalized en-
tropy with ln(vmax + 1) corresponding to the entropy of a
uniform distribution of velocity. While fitting parameter T 0

r
increases linearly as a function of vmax [with T 0

r ≈ 10(vmax +
1) for 2 � vmax � 10], the prefactor � ≈ 2.65 is independent
of vmax. An ensemble with entropy H (p, ρ) is, therefore, ex-
pected to be statistically identical to one of its realizations of
minimum length T 0

r exp{�H̃ (p, ρ)}. Equation (20) provides
an expected lower bound for achieving ergodicity of velocity
in the NaSch model. Similar to velocity, ergodicity in the
NaSch model allows us to approximate the ensemble statistics
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FIG. 5. Variation pattern of entropy H (p, ρ ) and its impact on
expected representative timescale E[Tr] for vmax = 5. Representa-
tive timescale is controlled by entropy and increases as the system
becomes more uncertain, corresponding to higher levels of entropy
with more possible configurations. Entropy degenerates to H (p, ρ <

ρ p
c ) = − ln pp(1 − p)1−p for the free-flow regime and reaches its

upper bound at ρ ∼ ρ p
c , where velocity has an almost uniform dis-

tribution with H (p, ρ ∼ ρ p
c ) ≈ ln(vmax + 1).

of local density from a subset of space when observed over
long time intervals.

B. Application to local density data

The first application considers classical traffic density mea-
surements achieved by a fixed sensor (e.g., cameras) along
a road. Such measurements provide a means to estimate lo-
cal density ρ̃. The data reported in Ref. [31] were obtained
from measurements carried out on the German freeway A1
near an intersection with German freeway A59 in June 1996
[Fig. 6(a)]. Translated in NaSch units, we consider the road
capacity Nc (in number of vehicles per hour), which we at-
tribute to the deterministic limit density of the NaSch model,
ρ

p=0
c = (vmax + 1)−1. Denoting by Lc the cell length, a first-

order conversion between NaSch units and real (time-length)
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FIG. 6. (a) Summary of measurements adopted from Ref. [31];
E[V ]/Vmax = 0.47 with Vmax = 120 km/h and E[ρ̃] = 0.22. (b) The
normalized autocovariance function of the local density displays a
characteristic linear decay. The statistical properties of the NaSch
model allows us to estimate the expected value of velocity E[V ] from
the first- and second-order moments of the local density.

units is provided by

Vmax/Lc

(1 + vmax)Nc
= const. (21)

For a single-lane road capacity Nc = 1900 and for vmax = 5,
each second corresponds to approximately 1 NaSch time unit
considering Lc ≈ 7.5 meters (as suggested in [3]). The local
density shows an expected value of ρ = ρ̃ = 0.22 and its
normalized autocovariance function exhibits a characteristic
linear behavior [Fig. 6(b)] with a fitted slope of −(νδc

τ )−1 =
−0.0155. From the variance of local density σ 2

ρ̃ρ̃ = 2.5 ×
10−4, we readily recognize from Eq. (12) that |lρ̃ | ≈ 60, which
implies that the local density values are averaged over an
approximately 450-meter spatial window. From Eqs. (13) and
(15), we obtain the stochasticity parameter p = 0.3. Next,
from the fundamental diagram [Eq. (15)], we estimate the
average velocity, v̄/vmax = 0.49. This value which we obtain
from the statistical moments of local density is in remark-
able agreement with the average velocity obtained from the
recorded measurements, i.e., E[V ]/Vmax = 0.47 ≈ v/vmax =
0.49. This shows that the internal structure provides an in-
dependent means to estimate not only average traffic speed,
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but an estimate of the stochasticity parameter reminiscent of
driver behavior as well.

C. Application to crowdsourced vehicle velocity data

The second application we consider illustrates the use
of our approach for crowdsourced velocity data. In con-
trast to the fixed sensor application, sensors are installed
in moving vehicles. The vehicle speed data were collected
by anonymous users on main roads in the Commonwealth
of Massachusetts, USA, through the Carbin educational app
[32,33], which records the velocity from the GPS position
at a 1 Hz frequency. To avoid interference with road reg-
ulations such as traffic lights, school zones, speed bumps,
etc., we focus on data recorded on roads of speed limits
Vmax � 45 mph (� 72.4 km/h). As drivers are observed to
drive 10% to 20% faster than the posted speed limit in free
flow, this speed limit can be considered a real-life lower speed
limit of free-flow traffic speed. The conversion of velocity
measurements into NaSch-units is thus performed via v =
	vmax(V/Vmax) + 0.5
 � vmax, where 	.
 denotes the floor op-
erator. We consider this conversion in our analysis of more
than 31 000 miles of speed measurements acquired over a
time span of one year by anonymous users covering almost
the entire main road network of Massachusetts. The length of
the time window, Tm, was checked a priori to satisfy the ergod-
icity condition [Eq. (20)] which is an underlying assumption
for our analysis, that is, Tm − T 0

r exp(�H̃ ) � 0 with H̃ de-
noting the normalized entropy of velocity distribution over
time window of Tm. Furthermore, the results of the analysis
were checked a posteriori to satisfy the NaSch event space
condition, i.e., �(v, θv ) � 1 and, moreover, κv ≈ (1 − η)β .
By way of example, Fig. 7 displays the analysis of (a) a
sample velocity measurement V (t )/Vmax of a 20-minute trip
on interstate highway I-95 together with (b) its conversion into
NaSch (velocity) units v, (c) evolution of traffic density ρ and
transition density ρ

p
c predicted from the velocity profile, and

(d) examples of autocovariance functions at densities higher
and close to the transition density, showing the intimate inter-
play of decay time with traffic density.

The so-obtained results were partitioned into four time
intervals: (i) 6:00 to 10:00, (ii) 10:00 to 15:00, (iii) 15:00
to 19:00, and (iv) 19:00 to 00:00, where in each time in-
terval there are at least 103 analysis results. By taking into
account the probability of observing memoryless velocity pro-
files given vmax − v � 1, i.e., P [τc ≈ 0 | vmax − v � 1], we
find that the free-flow probability for time intervals (i) and
(iii) is around 10%, whereas for time intervals (ii) and (iv)
it increases to almost 15%. This is in agreement with the
average weekday daily traffic data reported by the Boston
Metropolitan Planning Organization [34]. Figure 8 depicts
the geospatial distribution of traffic density and stochastic-
ity parameter for time interval (iii). It is found that the
expected traffic density and stochasticity parameter around
the urban area of Boston (inset in Fig. 8) is, respectively,
1.3 and 1.15 times the one of rural area (the region outside
the red box), implying higher average velocity in rural ar-
eas. The network-level expected traffic densities are E[ρ] =
[0.12, 0.11, 0.13, 0.10], and expected stochasticity param-
eters are E[p] = [0.7, 0.63, 0.67, 0.62] for time intervals

FIG. 7. Sample analysis: (a) Velocity time history of a vehicle
driving on I-95, a north-south interstate highway in Massachusetts,
USA, (b) NaSch representation of velocity profile, (c) evolution of
inferred traffic density ρ and transition density ρ p

c , and (d) autoco-
variance functions at two times (squares and circles represent the
autocovariance of velocity measurement and its NaSch representa-
tion, respectively). The initial slope of the autocovariance function is
inversely proportional to τc [Eq. (9)]; memory of velocity signal is
shorter at the higher density.
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FIG. 8. Geospatial distribution of (a) traffic density ρ and
(b) stochasticity parameter p for the time interval 15:00 to 19:00, on
main roads in Massachusetts, USA, determined from crowdsourced
1 Hz vehicle velocity recordings (data collected over a 12-month
period with Carbin educational app [32,33]).

(i)–(iv). The traffic density and stochasticity parameter in time
intervals (i) and (iii) are higher than in time intervals (ii)
and (iv). This suggests that drivers show a more erroneous
driving behavior during rush hours. Furthermore, the inferred
traffic parameters imply that, in an average sense, traffic is
predominantly in the congested flow regime.

V. CONCLUSIONS

In summary, we have shown that spatial and temporary
memory effects expressed by second-order moments of oc-
cupancy and velocity hold critical information relevant for
the spatial and temporal mapping of traffic density and driver
behavior that can be assessed from individual driver velocity
recordings provided ergodicity and stationary. In particular,
the two-point correlation function of occupancy provides ac-
cess to spatial memory effects, such as headway, whereas
the velocity autocovariance function provides access to tem-
poral memory effects in the form of the decay time and

traffic compressibility. Taken together, the isotherms pro-
vide a means to access traffic density and stochasticity from
density-stochasticity plots. The fact that these higher statisti-
cal moments are directly accessible by crowdsourced velocity
measurements provides a powerful alternative to classical traf-
fic property estimates from spatially distributed user counts.
Finally, it should be noted that the theory and model cali-
bration herein presented are restricted to single-lane traffic.
Beyond this paper, the approach merits extensions to multiple
lane models of the NaSch type with lane-change probabilities
[35–37], ramp exits [38,39], and corrections for traffic obsta-
cles for inner city applications.
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APPENDIX: AVERAGE HEADWAY ESTIMATION FROM
TWO-POINT CORRELATION FUNCTION

We aim at deriving the average headway from probability
considerations. Our starting point is the probability qi j of a
cell r + 1 being in a state i (occupied or empty) conditioned
by state j of cell r:

qi j = P [Iη(r + 1) = i | Iη(r) = j]

= P [Iη(r + 1) = i ∩ Iη(r) = j]

P [Iη(r) = j]
, (A1)

where P [A ∩ B] stands for the joint probability. Hence, the
conditional probability of a cell r + 1 to be occupied (i = 1)
given that cell r is occupied ( j = 1) is readily obtained when
recognizing from Eq. (1) that P [Iη(r + 1) = i ∩ Iη(r) = j] =
E[Iη(r + 1)Iη(r)] = S2(1) and P [Iη(r) = 1] = S2(0), hence

q11 = P [Iη(r + 1) = 1 | Iη(r) = 1] = S2(1)

S2(0)
. (A2)

Given the binary nature of occupation, Eq. (A2) allows us to
determine the probability of cell r + 1 being empty when cell
r is occupied:

q01 = 1 − q11 = S2(0) − S2(1)

S2(0)
. (A3)

Since P [A|B] = P [A ∩ B]/P [B] and P [B|A] = P [B ∩
A]/P [A], we readily derive from the expression of q10

the probability that cell r + 1 is occupied when cell r is
empty; that is,

q10 = q01
P [Iη(r) = 1]

P [Iη(r) = 0]
= q01

S2(0)

1 − S2(0)
. (A4)

Finally, the conditional probability of two cells, r + 1 and r,
being empty is obtained from

q00 = 1 − q10 = 1 − 2S2(0) + S2(1)

1 − S2(0)
. (A5)
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With the probabilities in hand, we can determine the average
headway while making use of the found Markov property:

P [Iη(r + δr ) | Iη(r)] = P [Iη(r + δr )], δr > 1. (A6)

For illustration, consider a realization Iη of the form

1 − 0 − 0 − 1 (A7)

(i.e., cells 1 and 4 are occupied while cells 2 and 3 are empty).
From the Markov property (A6), we know that occupancy of
cell 3 (respectively, 4) is independent of cell 1 occupancy
(respectively, 1 and 2). Otherwise said, headway probability
reduces to the pairs 1 − 0 (cells 1 and 2), 0 − 0 (cells 2
and 3), and 0 − 1 (cells 3 and 4) defined by probabilities
q01, q00, and q10. The probability of observing the realization

1 − 0 − 0 − 1, which is the headway d = 2, is thus

q01 × q00 × q10

= (S2(0) − S2(1))2(1 − 2S2(0) + S2(1))

S2(0)(1 − S2(0))2 . (A8)

To generalize, consider that the probability of observing a
headway d is q10 × q01 × qd−1

00 ; whence the average headway:

d = q10 × q01 ×
∞∑

d=1

d × qd−1
00 = 1

S2(0)
− 1, (A9)

where we used the geometric series development,

∞∑
d=1

d × qd−1
00 =

( ∞∑
d=1

qd
00

)′
0�q00�1= 1

(1 − q00)2
, (A10)

with ()′ denoting derivation with respect to q00.
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