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Simple mitigation of global depolarizing errors in quantum simulations

Joseph Vovrosh ,1,* Kiran E. Khosla,1 Sean Greenaway ,1 Christopher Self,1 M. S. Kim,1 and Johannes Knolle 2,3,1

1Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
2Department of Physics TQM, Technische Universität München, James-Franck-Straße 1, D-85748 Garching, Germany

3Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany

(Received 9 January 2021; revised 28 April 2021; accepted 3 September 2021; published 30 September 2021)

To get the best possible results from current quantum devices error mitigation is essential. In this work we
present a simple but effective error mitigation technique based on the assumption that noise in a deep quantum
circuit is well described by global depolarizing error channels. By measuring the errors directly on the device,
we use an error model ansatz to infer error-free results from noisy data. We highlight the effectiveness of our
mitigation via two examples of recent interest in quantum many-body physics: entanglement measurements and
real-time dynamics of confinement in quantum spin chains. Our technique enables us to get quantitative results
from the IBM quantum computers showing signatures of confinement, i.e., we are able to extract the meson
masses of the confined excitations which were previously out of reach. Additionally, we show the applicability
of this mitigation protocol in a wider setting with numerical simulations of more general tasks using a realistic
error model. Our protocol is device-independent, simply implementable, and leads to large improvements in
results if the global errors are well described by depolarization.
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I. INTRODUCTION

Quantum computers are becoming large enough (∼50–100
qubits [1]) to, in principle, allow demonstrations of their
“quantum advantage” [2,3]. However, the actual amount of
entanglement that can be generated in current devices is con-
strained by noise and errors, limiting their ability to solve
complex problems such as quantum simulation. To address
this, various error mitigation strategies have recently been
developed to counteract noise and boost the fidelity of experi-
mental results.

Error mitigation differs from fault tolerance. Fault tolerant
quantum computers will eventually be able to suppress errors
by encoding quantum information in a redundantly large num-
ber of qubits as error correcting codes [4,5]. In this way they
will be able to execute arbitrarily deep circuits by the repeated
application of active error corrections. Unfortunately, these
encodings cannot be used in current devices as they require
smaller hardware errors and larger numbers of qubits than
are currently available. In contrast, error mitigation strategies
are applied to unencoded physical qubits. Rather than actively
correcting errors, they aim to estimate what the effect of the
error was and infer the error-free result. This current stage
in the development of quantum computers has been dubbed
the noisy intermediate-scale quantum (NISQ) era [1] and is
expected to last for the foreseeable future.

In the past few years, error mitigation has been a thriving
research direction as more and more quantum devices become
available. Error mitigation strategies typically address mea-
surement errors [7–15] or the algorithms and gates employed
for digital quantum simulation [16–23]. While some of these
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techniques have proven useful for certain quantum algorithms,
their general success is hampered by the fact that they either
rely on a high level of control of the quantum device itself,
or are specifically designed for a given quantum simulation
problem, i.e., exploiting specific symmetries [24].

One promising direction is to employ machine learning
algorithms [25–28] for error mitigation. Generally speaking,
these methods train classical computers to predict the error
seen in a quantum device and use the results to infer the error-
free quantum simulations. While successful, these methods
require a large increase in the classical computational over-
head and are somewhat uncontrolled. The latter drawback is
also true for popular protocols based on the idea of increasing
errors in the device systematically and then extrapolating back
to the zero error case [21,29–35]. In general, how to tune the
error rates varies from device to device and reliable fitting
requires expert knowledge of the specific hardware.

Here, we propose a new protocol for gate error miti-
gation combining a raft of desirable features: It is easily
implementable on any quantum device with little increase in
workload, it is well rooted in a mathematical description of the
errors, and it is suitable for any quantum algorithm of interest.
Furthermore, as we show via specific examples, it can lead to
large improvements in the performance of quantum devices;
for example, see Fig. 1 for Rényi entropy results.

The paper is organized as follows: First, we derive an
ansatz for the density matrix resulting from the action of
a noisy quantum simulator with global depolarizing errors.
Following this, we explain how this ansatz can be used for
a general error mitigation protocol. We then demonstrate its
effectiveness by studying real time dynamics of the transverse
field Ising model (TFIM) with a longitudinal field. In that
context, some of the authors recently showed that signatures
of confinement and entanglement spreading can be observed
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FIG. 1. Results from the IBM device ibmq_paris [6] of the
second-order Rényi entanglement entropy. Quench dynamics before
and after error mitigation of the second-order Réyni entropy for the
transverse field Ising model with varying longitudinal field strengths.
Here, J = 1, hx = 0.5, and n = 6. Note, 800 random unitaries were
used to collect this data giving an uncertainty in the purity of δρ ∼
O(10−2). Clearly the mitigation allows results to go from qualitative
agreement to quantitative agreement with the results obtained numer-
ically through exact diagonalization (ED).

on an IBM quantum computer [36]. With our new error mit-
igation protocol we are able to measure the meson masses of
confinement induced bound states directly on the IBM device
and can quantitatively measure entanglement spreading previ-
ously out of reach. Furthermore, we corroborate these results
with classical simulations of error models taken from an IBM
Quantum device in a more general setting to show the wide
applicability of our mitigation scheme. Finally, we close with
a discussion and outline future applications.

II. ERROR MITIGATION PROTOCOL

Our error mitigation protocol is based on the assumption
that the gate errors that plague a deep quantum circuit are well
described by a global depolarizing error model. Here we give
a heuristic argument to justify this approximation.

Error channels can be conveniently modeled through Kraus
operators [37] which define a completely positive map on the
density matrix

ρ →
∑

i

KiρK†
i such that

∑
i

K†
i Ki = 1. (1)

For a single qubit, choosing four Kraus operators to be pro-
portional to the Pauli operators (identity included) defines a
depolarizing channel. The proportionality constants are re-
lated to the individual error probabilities and must satisfy the
identity constraint to preserve the trace of ρ.

Here, we concentrate on such depolarizing errors which are
inevitably present in any digital quantum simulator platform
and can be treated without much specific knowledge about the
device performance (which also fluctuates over time). More-
over, our focus on depolarizing errors has the advantage of
being treatable mathematically in a controlled way as detailed
below. In fact, given a deep enough quantum circuit (with
sufficient qubits) for self-averaging of incoherent errors to
occur, this depolarizing error model is a good approximation
to the physical errors in a device [38]. Last but not least, the
large improvement in the quality of results on the IBM device
motivate our choice of depolarizing errors a posteriori.

An n-single qubit depolarizing error channel can be mod-
eled via

E⊗n(ρ) = (1 − p)nρ +
∑

α∈[x,y,z]

n∑
j=1

(1 − p)n−1 p

3
σ j

αρσ j
α + ...,

(2)
where E is the error channel, p is the probability of an error
occurring for each qubit (assumed to be equal for each qubit,
and for each Pauli error) and “...” indicates higher-order terms
corresponding to errors on multiple qubits [37]. One impor-
tant feature of this mathematical formulation is that the second
term, which describes the depolarizing error, commutes with
any unitary operator. Consequently, the error on the ith qubit
in a quantum circuit with purely depolarizing errors is

E i(ρ) = (1 − pi )ρ + pTri[ρ] ⊗ Ii

2
, (3)

in which ρ is the density matrix, Ii/2 is the maximally mixed
(i.e., completely depolarized) state for the ith qubit, Tri is the
partial trace over the ith qubit, and pi is the error on the ith
qubit.

Instead of dealing with all combinations of single qubit
errors, we approximate the total error channel of Eq. (2), under
the assumption of symmetric depolarization Eq. (3), as an
effective depolarizing channel on the entire quantum state

ρ = (1 − ptot )ρexact + ptot
I⊗n

2n
, (4)

where the effective total error probability is ptot . In principle,
ptot is well approximated by

∏
i(1 − pi ); however, we do not

make that identification here. We will soon show that ptot can
be measured directly on the device. The simplicity of this
ansatz allows it to be easily calculated. It has already been
shown to be useful when mitigating measurement error [39];
however, we later demonstrate that it is powerful tool for
mitigating global depolarizing errors which do not themselves
originate from local depolarizing errors. Furthermore, we later
numerically demonstrate that this ansatz does not rely on the
assumption of single- and two-qubit depolarizing errors.

The many partial traces over single qubits, which would
have conserved some coherence in the remaining qubits, have
been replaced by the maximally mixed state I⊗n/2n over the
global quantum state, destroying all coherence. We stress that
even though this may not be a good approximation for a single
layer of qubit errors, it becomes a reasonable approximation
for the error channel of a many layer, many qubit circuit.
Eq. (4) is our basic ansatz for an effective error model after
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a many-layered unitary circuit and ρexact is the exact density
operator without noise.

For a rigorous derivation of the ansatz used in this paper we
turn to work done by Zhenyu Cai [34]. In this, the author starts
with the assumption that the noise of a quantum device can
be well described by a general Pauli noise model. From this,
they derive the resulting density matrix, which they present
as a series expansion. The global depolarizing ansatz used in
our work is a special case of the leading order term in this
expansion.

With this ansatz one can analytically calculate the effect of
errors on a measured observable, Ô, via

〈Ô〉 = (1 − ptot )Tr[Ôρexact] + ptot

2n
Tr[Ô]. (5)

Our approach estimates ptot to apply error mitigation. We
propose and test two approaches for finding ptot, the first
based on estimating the purity of the final state and the sec-
ond based on studying specific observables. To estimate the
purity, we employ the recent protocol for obtaining the trace
of the reduced density matrix squared Tr[ρ2

A] via random-
ized measurements [40,41], where A is a subspace of the
full density matrix. This randomized measurement scheme
has been successfully implemented in trapped ion quantum
simulators [42] and recently by some of us on an IBM quan-
tum computer [36]. We stress the present mitigation is a far
simpler task compared to inverting the quantum error channel
to tomographically reconstruct the error free quantum state ρ.

As current quantum devices initialize systems in pure states
that are then manipulated with unitary transformations, Tr[ρ2]
over the full Hilbert space should lead to a result that is
identically one. However, since the noisy implementation of
quantum circuits will in general deviate from unitarity, after a
given quantum circuit is run on a quantum processor this will
generally not be the case. Instead, with Eq. (4) we expect that

Tr[ρ2] = (1 − ptot )
2 + ptot (1 − ptot )

2n−1
+ p2

tot

2n
. (6)

Using the fact that ρexact is pure. Now, given that the left-hand
side, Tr[ρ2], can be measured directly on the device [36,42],
this quadratic equation can be solved to obtain the total er-
ror ptot [39,43]. We stress that correlated errors in quantum
circuits do not increase entropy and thus ptot obtained via this
method should really be understood as the global depolarizing
error probability. While this mitigation approach does not
address coherent errors, it could additionally be combined
with other techniques such as twirling [44–47].

Therefore, with ptot extracted and 〈Ô〉 measured the only
unknown quantity in Eq. (5) is the desired error-free observ-
able Tr[Ôρexact]. Note, we assume that Tr[Ô] can be calculated
which for most practical cases should be the case, e.g., see our
application examples below.

Putting all steps together, we finally obtain our general
error mitigation protocol:

(1) Prepare the quantum state of interest by running a
quantum circuit and measure Tr(ρ2), e.g., via randomized
measurements [36,41,42].

(2) Use the results to obtain values for ptot via Eq. (6).
(3) Prepare the quantum state again and measure the de-

sired observable 〈Ô〉 [48].

(4) Use Eq. (5) with the measured value of ptot to obtain
the desired Tr[Ôρexact].

An alternative approach to estimating ptot is to consider
specific observables whose expectation values are known.
For example, consider the time dynamics of a system in
which our quantum circuit approximates the time evolution
operator U (t ) = exp −iHt where we wish to measure 〈O(t )〉
for a range of times. We can tune the circuit such that
t ∗ (Emax) = ε << 1 where Emax is the largest eigenvalue of
the Hamiltonian (shifted so Emin = 0), so that our quantum
circuit now approximates the identity operation. Assuming
that 〈O(t = 0)〉 is known, we can use the measurements from
the quantum device and Eq. (5) to obtain ptot. Note, for infinite
dimensional Hamiltonians with unbounded eigenvalues, the
approximation is slightly more subtle, but does not apply to
qubits. We show that, while this method is more efficient, it
does not discriminate between coherent and incoherent errors
in the purity.

Our protocol can be applied to essentially any quantum
circuit and quantum simulation device. In the following,
we choose a representative example from condensed matter
physics as a first application. We showcase the effectiveness
of our technique by presenting previously unobtainable results
for confinement and entanglement dynamics in spin chains.

III. APPLICATION TO SPIN CHAIN CONFINEMENT

An ideal testing ground for NISQ devices is that of quench
dynamics in spin- 1

2 systems. A global quantum quench is
a sudden change to the systems Hamiltonian, which in-
duces nonequilibrium dynamics. Already one dimensional
spin chains can show a wide variety of physical phenomena
of interest, for example confinement of domain wall excita-
tions [36,49,50], quantum many-body scars [51–55], or novel
fracton excitations [56–58]. All of these show up in the time
evolution which is challenging to simulate on classical com-
puters as the Hilbert space grows exponentially 2n with the
number of spins n. As spin- 1

2 systems directly map onto phys-
ical qubits, quantum computers are ideally suited for studying
the rich physics of spin chains. Recently, first digital quantum
simulation results have been reported [24,36,59–62] but to
obtain results which are out of reach by classical simulations
and to probe nontrivial quantum many body physics better
error mitigation techniques are needed.

We concentrate on the one-dimensional TFIM with an ad-
ditional longitudinal field given by the following Hamiltonian:

H = −J

[∑
i

σ z
i σ z

i+1 + hx

∑
i

σ x
i + hz

∑
i

σ z

]
, (7)

where J is the Ising exchange of nearest neighbor spins σi and
hx/z are the relative strengths of the transverse and longitu-
dinal fields respectively. For hz = 0 the TFIM can be solved
exactly via Jordan-Wigner transformation and its fermionic
excitations are related to free domain wall motion. When
turning on the longitudinal field, hz 	= 0, a confining potential
between these fermions is introduced. The attraction between
fermions grows linearly with their separation, reminiscent of
quark confinement in QCD. The result is the formation of
“mesonic” bound states of domain wall excitations.

035309-3



JOSEPH VOVROSH et al. PHYSICAL REVIEW E 104, 035309 (2021)

The confining potential between fermions induces noner-
godic behavior [63], which manifests itself through persistent
oscillations in the local magnetization, 〈σα

i 〉 (α ∈ {x, y, z}) and
a slowing down of the entanglement spreading.

A. Example 1: Measuring meson masses

The frequencies of the oscillating magnetization can be
mapped directly to the energy of the domain wall bound
states [50], which have a large overlap with chosen initial
states. These so called meson masses are defined as the energy
difference between the lowest excited states and the ground
state.

Recent work using a trapped ion quantum simulator to sim-
ulate the long-range TFIM model showed how, by choosing
a variety of initial states, the meson masses can be measured
through the persistent oscillations of local magnetization [64].
Previous attempts to perform a similar measurement on a
digital quantum computer have failed for the short ranged
TFIM, Eq. (7), because the results are too noisy to resolve
the smaller amplitude of oscillations [36]. As our main result,
we show that our new error mitigation enables us to obtain the
meson masses from an IBM Quantum device.

We are mainly interested in the time dependence of the
local magnetization, which further simplifies with Tr[σα] = 0
in Eq. (5) to 〈

σα
i

〉 = (1 − ptot )
〈
σα

i

〉
exact. (8)

The time dependence can be calculated by applying a quantum
circuit from a Trotterization of the time evolution operator
(for details of the implementation and quantum circuits see
Refs. [24,36]). Increasing the number of trotter steps, Nt ,
leads to a deeper circuit and the ensuing increase in errors
results in a peculiar dampening of the magnetization dynamics
which can be removed via our error mitigation. In Fig. 2 we
display the results of the local magnetization dynamics. Our
mitigation technique not only allows us to measure the main
oscillation frequency on the IBM device but in fact to do so
with quantitative agreement with the analytical results (the
latter is explained in Ref. [36]).

We note that an additional simplification can be used for
the local magnetization for added efficiency—no additional
measurement of Tr[ρ2] was required because the result of
〈σ z〉 is known at tJ = 0 and thus ptot can be inferred from the
corresponding measurement on the IBM device after running
the time evolution circuit for tJ ≈ 0. This big simplifica-
tion avoids the costly randomized measurement scheme and
should be generally applicable for observables whose value is
known at tJ = 0. However, as this does not distinguish corre-
lated noise from the uncorrelated noise assumed in our ansatz,
it is possible for over-estimations in the mitigation to occur,
resulting in nonphysical results. An example of this is seen
in Fig. 2 at time tJ = 0.1 in which the local magnetization is
measured to be greater than unity.

We have obtained a range of results with different number
of trotter steps. Under the assumption that (1 − ptot ) scales as
(1 − pT )NT , where pT is the error in one trotter step, we can
extrapolate the results back to the error-free case, see green
data points in Fig. 2. We are then in a position to suppress the
noise to a level which enables us to extract different meson

FIG. 2. Results from the IBM device ibmq_toronto [65] before
and after mitigation. Quench dynamics of local magnetization from
Trotterized time evolution of the TFIM with longitudinal field before
and after error mitigation. Here, J = 1, hx = 0.5, hx = 0.75, and n =
7. Data is shown for Nt , the number of trotter steps Nt = 5, 6. Results
go from qualitative agreement to quantitative agreement. After fitting
a cosine function (dashed green) to the mitigated data (green dots)
the dominant frequency is clearly captured by the IBM device. Note,
more details of the circuit composition of the evolution operator can
be found in Ref. [36].

masses on the IBM device by a basic fit of the main oscilla-
tion frequency. In Fig. 3 we show the data for the first three
masses obtainable by starting from different initial states, see
insets. Here, 7 spins are mapped onto 5 qubits resulting in a
circuit with 5NT + 5 single qubit gates and 8NT CNOT gates
with NT = 5, 6. Remarkably, we find quantitative agreement
between the mitigated results and the theoretical predictions
for the scaling of the meson masses with the transverse and
longitudinal fields [36].

B. Example 2: Entanglement Spreading

As a second example we study the suppression of half
chain entanglement entropy spreading after the spin chain
quench. For hz = 0 the entanglement entropy is expected to
increase linearly from the ballistic spreading of free fermionic
excitations [66]. However, with a nonzero longitudinal field
this growth is suppressed in a characteristic fashion due to
confinement [49]. To observe this we have implemented the
randomized measurement protocol of Ref. [42] on the IBM
device for measuring the second-order Réyni entanglement
entropy. In Ref. [36] two of us obtained qualitative agreement
for entanglement dynamics of six spins compared to an exact
diagonalization (ED) calculation, but for a quantitative agree-
ment a large shift of the results was needed.

By using the ansatz in Eq. (4) we can see that the effect of
global depolarizing errors on measurements of Tr[ρ2

A], where
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FIG. 3. Results from the IBM device ibmq_toronto [65] of meson masses. (a), (b) The quench dynamics of the z-axis local magnetization
is shown for different initial states. Here, J = 1, hx = 0.75, hx = 0.75 and n = 7. (a) Results calculated via exact diagonalizion. (b) Mitigated
results from the IBM device. Here, clear dominant oscillations are extracted that quantitatively agree with the analytically derived values.
(c) An illustration of how the masses are extracted from the analytically derived energy levels [36]. (d) A comparison of the masses obtained
from the IBM device and the analytically derived values for varying hz showing this quantitative agreement. Note, more details of the circuit
composition of the evolution operator can be found in Ref. [36]

A is a subsystem in consideration, is

Tr
[
ρ2

A

] = (1 − ptot )
2Tr

[
ρ2

A,exact

] + ptot (1 − ptot )

2nA−1
+ ptot2

2nA
.

(9)
If ptot is known, then Tr[ρ2

A,exact] can be extracted and the
second-order Rényi entropy measurement is calculated via

S(2)(ρexact ) = − log2

(
Tr[ρ2

A,exact

]
). (10)

Figure 1 shows how this mitigation protocol eliminates the
error in the second-order Rényi entropy results. With our error
mitigation protocol and Eq. (9) we now obtain quantitative
agreement with ED results for six spins and can account for
the large shift of the results.

IV. APPLICATIONS TO MORE GENERAL EXAMPLES

To demonstrate that our method works more generally, we
simulate example tasks of measuring the expectation value of
different operators. We choose a layered, brickwork circuit
consisting of a layer of single qubit rotations followed by a
layer of entangling CNOTS—the same circuit structure as for
Trotterized evolution [38]. However, instead of time param-
eterized Trotter evolution, we simply choose random single
qubit angles, corresponding to different states, and therefore
different expectation values.

To obtain a larger amount of data to support our mitigation
technique, we numerically simulate the layered circuits with
noisy gates. Qiskit’s circuit simulator allows one to simulate
arbitrary gate-based noise models by specifying indepen-
dent Kraus operators for each single- and two-qubit gates.

Using this noisy simulator, we can directly test how gate-
level nondepolarizing errors can result in an effective global
circuit-level depolarizing error, and how well our mitigation
technique works in the presence of local nondepolarizing er-
rors. To simulate a realistic noise model, we take the Kraus
operators directly from the ibmq_santiago backend [67]. This
error model goes beyond the single gate depolarizing assump-
tion, by including (asymmetric) thermal relaxation.

To test local, nonlocal, single, and many Pauli-string op-
erators, we have chosen the following operators: single Z
operator (local, single term), TFIM Hamiltonian (local, many
terms), Random Pauli string (nonlocal, single term), and the
molecular Hamiltonian of a H4 (nonlocal, many terms). Here
“many terms” refers to the number of noncommuting Pauli
strings that must be measured to construct the expectation
value, and locality refers to only containing single and two-
qubit Pauli strings. Note the four hydrogen Hamiltonian [38]
is chosen as a simple molecular test case with a large Hilbert
space, and where we can ignore complications from freezing
out orbitals.

Figure 4 shows unmitigated and mitigated expectation val-
ues for each operator, and clearly demonstrates the added
value of purity measurements [38]. For expectation value mit-
igation (i.e., using a single expectation value to calibrate ptot),
a single extra circuit is needed. For trace mitigation [using
Eq. (9) to calibrate ptot] uses 500 extra circuits to find ptot;
these are split into five groups to reduce the bias. Once ptot is
calibrated for a given circuit depth, this single value is used for
error mitigation of the same circuit structure, but for different
single qubit parameter angles.
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FIG. 4. Error mitigation simulations with nondepolarizing er-
rors. Unmitigated (black diamonds), trace mitigated (green circles),
and single operator mitigated (red circles) expectation values for
different operators, with the solid blue line showing perfect mitiga-
tion. The numerical simulation uses the general error model taken
from ibmq_santiago. Expectation values are evaluated with respect
to parameterized brick-like circuits with (CNOT) depth 18, and thirty
random parameter points per plot. Operators are (a) Hamiltonian
of four linear-equidistant hydrogen atoms (6 qubits), (b) single Z
Pauli term (8 qubits), (c) TFIM Hamiltonian (6 qubits), and (d) sin-
gle XY ZIXX string (6 qubits). These operators are chosen to span
local/global Pauli strings, and contain single/many noncommuting
decompositions.

As the main results we find that our global depolarizing
assumption is an effective error channel for the whole circuit,
and, crucially, it does not require each single- and two-qubit
errors to be themselves purely depolarizing.

V. DISCUSSION

In this work we have proposed an error mitigation tech-
nique which is simple to implement but which retains the
mathematical rigour of more complicated techniques. Our
protocol is directly applicable to any quantum simulation
whose measurements are basic expectation values, as ex-
emplified by our results for the time evolution of the local
magnetization in spin chain dynamics. Though our error
mitigation method may not replace full state tomography,
we expect it to be useful in measuring more complicated
quantities beyond simple observables, as corroborated by our
results for the entanglement entropy. An interesting avenue
of future research will be an application to variational quan-
tum eigensolver (VQE) problems [68] and other quantum
circuits.

The computational overhead of implementing our protocol
is dominated by the cost of evaluating Tr(ρ2) on the quantum
device. The number of corresponding measurements is NuNm

where Nu is the number of randomized unitaries and Nm is
the number of random measurements. Within the randomized
scheme of Ref. [41] it grows exponentially with the system
size [42], which poses a potential problem for large quantum

computers but is easily feasible for currently available NISQ
devices. Also, in some cases the costly randomized measure-
ment scheme can be avoided entirely, i.e., in our benchmark
example of spin chain dynamics a single measurement of a
local observable whose exact value is known was sufficient.
This should be true generally for quantum circuits which can
be tuned to be close to the identity. However, this scalable
simplification for obtaining ptot potentially faces the problem
that it includes correlated errors which makes the randomized
measurements preferable as long as it is feasible.

The fact that our basic assumption of global depolarizing
errors leads to such large improvements in results is in itself
remarkable. The basic conclusion is that the total error on the
IBM device is close to a global depolarizing error at least for
our choice of problems. We note our error ansatz, Eq. (4) is
an approximation even for single qubit depolarizing errors, let
alone the more complex channels that are no-doubt present in
physical devices. Nevertheless, the ansatz works remarkably
well for correcting physical errors of large/deep circuits and
is a no-lose addition to quantum simulation protocols. We
suggest this is because the depolarizing channel is a good
approximation per gate in a many gate quantum circuit, even
if this approximation breaks down for single layers of gates.
Of course, our mitigation falls short of accounting for large
coherent or correlated errors and it will be a worthwhile
endeavour to think about a controlled extension of our basic
ansatz Eq. (4) for the density matrix of a NISQ device. In par-
ticular, whether we can extend it to incorporate other aspects
of error channels [34].

As an application of our error mitigation we have presented
previously unobtainable quantitative results for confinement
and entanglement dynamics of a quantum spin chain. We have
been able to extract the first meson masses of confinement
induced bound states and observed the corresponding halting
of entanglement spreading. In that context, an ambitious next
step would be to use the error mitigation to extend times
that can be simulated on a quantum computer to probe the
confinement induced slow-thermalization [50] or to see meson
scattering events that have recently been predicted [69–71].

In general, we expect that our simple error mitigation
enables us to exploit available NISQ devices for their appli-
cations with significantly reduced errors.

Note added: We recently became aware of a complemen-
tary manuscript that not only builds on the mitigation protocol
presented in our work but also favorably compares it to other
established error mitigation techniques [72].
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