
PHYSICAL REVIEW E 104, 035308 (2021)

Multiple-relaxation-time finite-difference lattice Boltzmann model for the nonlinear
convection-diffusion equation

Xinmeng Chen,1 Zhenhua Chai ,1,2 Jinlong Shang,1 and Baochang Shi1,2,*

1School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
2Hubei Key Laboratory of Engineering Modeling and Scientific Computing,

Huazhong University of Science and Technology, Wuhan 430074, China

(Received 24 May 2021; revised 19 August 2021; accepted 14 September 2021; published 29 September 2021)

In this paper, a multiple-relaxation-time finite-difference lattice Boltzmann method (MRT-FDLBM) is devel-
oped for the nonlinear convection-diffusion equation (NCDE). Through designing the equilibrium distribution
function and the source term properly, the NCDE can be recovered exactly from MRT-FDLBM. We also conduct
the von Neumann stability analysis on the present MRT-FDLBM and its special case, i.e., single-relaxation-
time finite-difference lattice Boltzmann method (SRT-FDLBM). Then, a simplified version of MRT-FDLBM
(SMRT-FDLBM) is also proposed, which can save about 15% computational cost. In addition, a series of
real and complex-value NCDEs, including the isotropic convection-diffusion equation, Burgers-Fisher equation,
sine-Gordon equation, heat-conduction equation, and Schrödinger equation, are used to test the performance of
MRT-FDLBM. The results show that both MRT-FDLBM and SMRT-FDLBM have second-order convergence
rates in space and time. Finally, the stability and accuracy of five different models are compared, including
the MRT-FDLBM, SMRT-FDLBM, SRT-FDLBM, the previous finite-difference lattice Boltzmann method [H.
Wang, B. Shi et al., Appl. Math. Comput. 309, 334 (2017)], and the lattice Boltzmann method (LBM). The
stability tests show that the sequence of stability from high to low is as follows: MRT-FDLBM, SMRT-FDLBM,
SRT-FDLBM, the previous finite-difference lattice Boltzmann method, and LBM. In most of the precision test
results, it is found that the order from high to low of precision is MRT-FDLBM, SMRT-FDLBM, SRT-FDLBM,
and the previous finite-difference lattice Boltzmann method.
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I. INTRODUCTION

The nonlinear convection-diffusion equation (NCDE) is
widely applied to describe the physical phenomena, such as
heat and mass transfer [1]. However, due to the existence
of the nonlinearity, it is difficult to get the analytical so-
lution of NCDE. For this reason, some efficient numerical
methods have been developed to solve NCDEs, including the
finite-volume method [2], finite-element method [3], finite-
difference method [4], and so on.

Since the early 1990s, the lattice Boltzmann method
(LBM) and discrete Boltzmann modeling method (DBM)
have been remarkably successful in the study of complex fluid
problems, such as fluid flows in porous media [5,6], mul-
tiphase flow [7–10], turbulence [11,12], combustion [13,14]
and hydrodynamic instability [15,16]. At the same time,
many different LBMs have also been developed to solve the
convection-diffusion equations. Ponce Dawson et al. [17] first
proposed the LBM with a linear equilibrium distribution func-
tion for reaction-diffusion systems, while for CDE, the LBM
cannot give correct macroscopic equation. To recover the gen-
eral NCDE exactly, Shi et al. [18] introduced an auxiliary
moment in the LBM, but this model has a special require-
ment on the convection term. Chopard [19] also developed
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a new LBM for NCDE, where a temporal derivative was
introduced to recover NCDE exactly. Yoshida and Nagaoka
[20] proposed a multiple-relaxation-time (MRT) LBM, and
the NCDE can be recovered correctly by MRT-LBM under
the diffusive scaling. Chai et al. [21] further developed a gen-
eral MRT LBM for nonlinear anisotropic convection-diffusion
equation (NACDE) without any assumptions on diffusion and
convection terms. Besides, Ginzburg also proposed a two-
relaxation-time LBM (TRT-LBM) and the MRT-LBM for
NACDE and presented some analysis on them [22–25]. Zhao
et al. proposed a block triple-relaxation-time lattice Boltz-
mann model for general NACDEs [26]. Recently, Chai and
Shi [27] developed a unified framework of MRT-LBM for
Navier-Stokes equations and NCDE by introducing a more
general collision term and an auxiliary source distribution
function. These LBMs could solve NCDE well, but they only
have first-order convergence rate in time, and it is also difficult
to implement them on the nonuniform grid.

To overcome above problems, some approaches have been
proposed, including LBM combined with interpolation ap-
proach [28,29] and rectangular LBM [30–32], but these two
kinds of the LBM are still first-order accuracy in time. In
addition, as an efficient alternative, the finite-difference lattice
Boltzmann method (FDLBM) not only can be implemented
directly in nonuniform grids but also can be used improve the
accuracy in time through introducing some special schemes
for time derivative. In the year of 1995, the finite-difference
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lattice Boltzmann equation was first proposed by Reider and
Sterling [33]. Then Mei and Shyy [34] developed a FDLBM
with the body-fitted grid. Junk and Klar [35] derived a relax-
ation system for an equivalent set of velocity moments, and
a simple upwind scheme is used to give rise to the spatial
discretization of the moment system. Based on these previ-
ous works, Guo et al. [36] proposed an improved FDLBM,
and used a mixed difference scheme to discrete the gradient
operator. In addition, many high-order accuracy FDLBMs
are also developed [37–39], and have been used to sim-
ulate complex flow problems, including three-dimensional
incompressible flows [40], two-phase liquid-vapor flows [41],
natural convection in some special geometries [42,43], and
blood flow [44]. Recently, Chen et al. [45] developed a
second-order accurate FDLBM for incompressible flows; this
FDLBM not only keeps the simplicity of LBM but also can
be used to improve the computational efficiency. However,
it should be noted that all above works focused on the fluid
flows; only Wang et al. [46] proposed the FDLBM with a
mixed difference scheme for NCDE, and this FDLBM can
recover the NCDE correctly. However, there are three limi-
tations in the FDLBM of Wang et al. [46]. The first is that
the method has only first-order accuracy in time. Second,
the value of the Courant-Friedrichs-Lewy (CFL) condition
number is usually about 0.1 or 0.2, which makes the compu-
tational cost more expensive. And, third, the collision terms
in all above FDLBMs are approximated by the Bhatnagar-
Gross-Krook (BGK) model, which may bring the numerical
instability problem. Inspired by the previous works [27,45],

we developed a MRT-FDLBM for the NCDE where the
MRT model combined with a second-order accurate FDLBM
are considered. Furthermore, the MRT-FDLBM can recover
NCDE exactly by designing the equilibrium distribution func-
tion and the source term appropriately.

The rest of the paper is organized as follows. A new
MRT-FDLBM is proposed for NCDE in Sec. 2. In Sec. 3, we
show that the NCDE can be recovered from the MRT-FDLBM
through the Champman-Enskog (CE) analysis. Then the sta-
bility of MRT-FDLBM is investigated in Sec. 4. In addition,
the SMRT-FDLBM is presented in Sec. 5. In Sec. 6, we extend
the MRT-FDLBM to the complex-valued NCDE. In Sec. 7, a
series of numerical examples are studied to test the accuracy
and convergence rate of the present MRT-FDLBM. Finally,
we make a brief summary in Sec. 8.

II. MULTIPLE-RELAXTION-TIME FINITE-DIFFERENCE
LATTICE BOLTZMANN MODEL

A. Nonlinear convection-diffusion equation

The d-dimensional NCDE with a source term can be ex-
pressed as

∂tφ + ∇ · B = ∇ · [K · (∇ · D)] + R, (1)

where φ is scalar variable related to time t and position x; B
is the convection term; D is the diffusion term; R is the source
term, and usually they are the function of φ, x, and t ; ∇ is the
gradient operator; and K = K(φ, x, t ) is the diffusion tensor.

B. Multiple-relaxation-time finite-difference lattice Boltzmann method

Following the idea of the previous work [45], we consider a second-order accurate MRT-FDLBM. For generality, the general
evolution equation with DdQq model (q discrete velocities in d-dimensional space) can be written as

f j (x, t + �t ) − f j (x, t ) + B̃0�tc j · ∇ f j (x, t ) + B̃1�tc j · ∇ f j (x, t + A�t )

+ B̃2�tc j · ∇ f j (x, t + �t ) = B̄0�t
( − �̃ jk f ne

k

)
(x, t ) + B̄1�t

( − �̃ jk f ne
k

)
(x, t + A�t )

+ B̄2�t
( − �̃ jk f ne

k

)
(x, t + �t ) + �t

[
Fj (x, t ) + Gj (x, t ) + �t

2
θ∂t Fj (x, t ) + �t

2
θ̄∂t G j (x, t )

]
. (2)

where θ and θ̄ are two tunable parameters to be specified in the next section. �̃ = (�̃ jk ) is a q × q invertible collision matrix.
The other parameters should satisfy

B̃0 + B̃1 + B̃2 = 1, AB̃1 + B̃2 = 1
2 , (3a)

B̄0 + B̄1 + B̄2 = 1, AB̄1 + B̄2 = 1
2 . (3b)

f j (x, t ) is the distribution function at time t and location x. �t is the time step, and f ne
k (x, t ) = fk (x, t ) − f eq

k (x, t ) with
f eq
k (x, t ) being the equilibrium distribution function,

f eq
j (x, t ) = ω j

[
φ + c j · B

c2
s

+
(
βc2

s D + C − c2
s φI

)
:
(
c jc j − c2

s I
)

2c4
s

]
, (4)

where I is the unit matrix, c j is the discrete velocity, ω j is the weight coefficient, and the positive parameter β is related to the
diffusion tensor K.

The discrete source terms Fj and Gj are defined as

Fj (x, t ) = ω j

(
R + c j · M1,F

c2
s

)
, (5a)

Gj (x, t ) = ω j
c j · M1,G

c2
s

, (5b)
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To derive the NCDE correctly, the following relations should be satisfied:∑
j

f j =
∑

j

f eq
j = φ,

∑
j

c j f eq
j = B,

∑
j

c jc j f eq
j = βc2

s D + C, (6a)

∑
j

Fj = R,
∑

j

c jFj = M1,F ,
∑

j

G j = 0,
∑

j

c jG j = M1,G, (6b)

where M1,F and M1,G will be determined in Sec. 3. In addition, the second evolution equation used to evaluate distribution
function f j (x, t + 1

2�t ) can be written as

f j (x, t + h) − f j (x − c jh, t ) = h

2

[ − �̃ jk f ne
k (x, t + h) − �̃ jk f ne

k (x − c jh, t )
]

+ h

[
Fj (x − c jh, t ) + Ḡ j (x − c jh, t ) + h

2
D̄ jFj (x − c jh, t ) + h

2
¯̄DjḠ j (x − c jh, t )

]
, (7)

where h = �t/2, D̄ j = θ1∂t + γ1c j · ∇, ¯̄Dj = θ2∂t + γ2c j · ∇. The parameters θ1, θ2, γ1,and γ2 will be determined in Sec. 3.
The discrete source terms Ḡ j is given by

Ḡ j (x, t ) = ω j
c j · M1,Ḡ

c2
s

, (8)

where M1,Ḡ will also be given in Sec. 3.

C. Computational procedure of the second-order multiple-relaxation-time finite-difference lattice Boltzmann method

In the computational process, the parameters are taken the same values (A = 1
2 , B̃0 = 0, B̃1 = 1, B̃2 = 0, B̄0 = 1

2 , B̄1 = 0,
B̄2 = 1

2 ) as those in Ref. [45], then the first evolution Eq. (2) can be rewritten as

f j (x, t + �t ) − f j (x, t ) + �tc j · ∇ f j

(
x, t + 1

2
�t

)
= �t

2

[−�̃ jk f ne
k (x, t + �t ) − �̃ jk f ne

k (x, t )
]

+�t

[
Fj (x, t ) + Gj (x, t ) + �t

2
θ∂t Fj (x, t ) + �t

2
θ̄∂t G j (x, t )

]
. (9)

After some manipulations, Eq. (9) can be implemented explicitly with the following form:

f̂ j (x, t + �t ) + �tc j · ∇ f j

(
x, t + 1

2
�t

)
= f̂ +

j (x, t ) + �t

[
Fj (x, t ) + �t

2
θ∂t Fj (x, t )

]
+ �t

[
Gj (x, t ) + �t

2
θ̄∂t G j (x, t )

]
, (10)

where

f̂ j = f j − 1
2�t

[ − �̃ jk
(

fk − f eq
k

)]
, (11a)

f̂ +
j = f j + 1

2�t
[ − �̃ jk

(
fk − f eq

k

)]
. (11b)

Equations (11a) and (11b) can also be expressed in the matrix form,

f̂ = f − 1

2
�t[−�̃( f − f eq )] =

(
I + �t

2
�̃

)
f − �t

2
�̃ f eq, (12a)

f̂
+ =

(
I − �t

2
�̃

)
f + �t

2
�̃ f eq, (12b)

or, equivalently,

f =
(

I + �t

2
�̃

)−1(
f̂ + �t

2
�̃ f eq

)
, (13a)

f̂
+ =

(
I − �t

2
�̃

)(
I + �t

2
�̃

)−1(
f̂ + �t

2
�̃ f eq

)
+ �t

2
�̃ f eq. (13b)
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Let

I − � =
(

I − �t

2
�̃

)(
I + �t

2
�̃

)−1

. (14)

Equation (13b) can be rearranged as

f̂
+ = (I − �) f̂ + � f eq. (15)

Similarly, the second evolution equation (7) can also be simplified into an explicit form,

f̄ j (x, t + h) = f̄ +
j (x − c jh, t ) + h

[
Fj + Gj + h

2
D̄ jFj + h

2
¯̄DjGj

]
(x − c jh, t ), (16)

where

f̄ j = f j − h

2

[ − �̃ jk
(

fk − f eq
k

)]
, (17a)

f̄ +
j = f j + h

2

[ − �̃ jk
(

fk − f eq
k

)]
. (17b)

Similarly to above discussion, we can also write Eqs. (17a) and (17b) in the matrix form,

f̄ = f − h

2

[
− �̃( f − f eq )

]
=

(
I + h

2
�̃

)
f − h

2
�̃ f eq, (18a)

f̄
+ =

(
I − h

2
�̃

)
f + h

2
�̃ f eq, (18b)

or, equivalently,

f =
(

I + h

2
�̃

)−1(
f̄ + h

2
�̃ f eq

)
, (19)

f̄
+ =

(
I − 3�̃

4

)
f̂ + 3�̃

4
f eq. (20)

Applying Taylor expansion to Eq. (16) and ignoring the term O(h2), we have

f̄ j (x, t + h) = f̄ +
j (x, t ) − hc j · ∇ f̄ +

j (x, t ) + h

[
Fj (x, t ) + Ḡ j (x, t ) + h

2
D̄ jFj (x, t ) + h

2
¯̄DjḠ j (x, t )

]
. (21)

The gradient terms ∇ f j in Eq. (10) and ∇ f̄ +
j in Eq. (21) can be discretized by a mixed difference scheme [36],

∇
∗
j = ∂
∗

j

∂χα

∣∣∣∣∣
m

= η
∂
∗

j

∂χα

∣∣∣∣∣
c

+ (1 − η)
∂
∗

j

∂χα

∣∣∣∣∣
u

, (22)

where 
∗
j represents f j or f̄ +

j , and the parameter η ∈ [0, 1]. The terms
∂
∗

j

∂χα
|u and

∂
∗
j

∂χα
|c represent second up-wind difference and

central-difference schemes and are given by

∂
∗
j

∂χα

∣∣∣∣∣
c

= 
∗
j (χα + �χα, t ) − 
∗

j (χα − �χα, t )

2�χα

, (23a)

∂
∗
j

∂χα

∣∣∣∣∣
u

=
{ 3
∗

j (χα,t )−4
∗
j (χα−�χα,t )+
∗

j (χα−2�χα,t )
2�χα

, if ciα � 0,

− 3
∗
j (χα,t )−4
∗

j (χα+�χα,t )+
∗
j (χα+�χα,t )

2�χα
, if ciα < 0.

(23b)

The evolution process of the MRT-FDLBM is shown in Fig. 1 and can be listed as follows:
Step (1): Calculate f̂

+
(x, t ) by Eq. (15).

Step (2): Evaluate spatial gradient term c · ∇ f (x, t + h),

f̂ (x, t )
(20)−→ f̄

+
(x, t )

(21)−→ f̄ (x, t + h)
(19)−→ f (x, t + h)

(22)−→ ∇ f (x, t + h),

Step (3): Compute f̂ (x, t + �t ) by Eq. (10).
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FIG. 1. The implementation process of the MRT-FDLBM.

III. THE CHAPMAN-ENSKOG ANALYSIS OF THE
PRESENT MRT-FDLBM

In this part, we will perform a detailed CE analysis to
recover the NCDE from the present MRT-FDLBM. In the
standard LBM, there is only an evolution equation for macro-
scopic equation, while in the present MRT-FDLBM, there are
two evolution Eqs. (2) and (7). Although the principle of CE

analysis of two evolution equations are similar, the moment
conditions of the source terms are different from each other.

We first conducted the Chapman-Enskog analysis to the
main evolution Eq. (2) to recover the NCDE. The distribution
function f j , the source terms, the time and space derivatives
can be expanded as

f j = f (0)
j + ε f (1)

j + ε2 f (2)
j , ∂t = ε∂t1 + ε2∂t2 , ∇ = ε∇1,

G̃ j = εG̃(1)
j + ε2G̃(2)

j , Fj = εF (1)
j + ε2F (2)

j . (24)

Applying the Taylor expansion to Eq. (2) gives rise to the
following equation:

�t∂t f j + �t2

2
∂2

t f j + B̃0�tc j · ∇ f j + B̃1�tc j · ∇ f j + B̃1�tc j · ∇A�t∂t f j + B̃2�tc j · ∇ f j

+ B̃2�tc j · ∇�t∂t f j = �t
( − �̃ jk f neq

k

) + �t2

2
∂t

( − �̃ jk f neq
k

) + �tFj + �t2

2
∂t Fj, (25)

which can be simplified by

∂t f j + �t

2
∂2

t f j + c j · ∇ f j + c j · ∇�t

2
∂t f j = [−�̃ jk

(
fk − f eq

k

)] + �t

2
∂t

[−�̃ jk
(

fk − f eq
k

)] + Fj + Gj + �t

2
(θ∂t Fj + θ̄∂t G j ).

(26)

Substituting Eq. (24) into Eq. (26) yields

O(ε0) : −�̃ jk
[

f (0)
k − f eq

k

] = 0 ⇔ f (0)
j = f eq

j , (27a)

O(ε1) : ∂t1 f (0)
j + c j · ∇1 f (0)

j = −�̃ jk f (1)
k + G(1)

j + F (1)
j , (27b)

O(ε2) : ∂t2 f (0)
j + ∂t1 f (1)

j + �t

2
∂2

t1 f (0)
j + c j · ∇1 f (1)

j + c j · ∇1
�t

2
∂t1 f (0)

j

= −�̃ jk f (2)
k + �t

2
∂t1

[ − �̃ jk f (1)
k

] + G(2)
j + F (2)

j + �t

2

[
θ∂t1 F (1)

j + θ̄∂t1 G(1)
j

]
. (27c)

For the collision matrix �̃, the following requirements should be satisfied [27]:∑
j

e j�̃ jk = s0ek,
∑

j

c j�̃ jk = S̃ck, ∀k = 1, 2, . . . , q, (28)

where e = (1, 1, . . . , 1) ∈ Rq, S̃ is an invertible d × d relaxation matrix corresponding to the diffusion tensor K. Based on the
Eqs. (6a), (6b), and (28), we can get the following equations through summing Eqs. (27b) and (27c) over j:

∂t1φ + ∇1 · B = R(1), (29a)

∂t2φ + �t

2
∂2

t1φ + ∇1 ·
∑

c j f (1)
j + �t

2
∇1 · ∂t1 B = R(2) + �t

2
θ∂t1 R(1). (29b)

According to Eq. (29a), one can obtain

∂2
t1φ = ∂t1 R(1) − ∂t1∇1 · B. (30)

If the derivatives of time and the space are interchangeable and θ = 1, Eq. (29b) can be rewritten as

∂t2φ = R(2) − ∇1 ·
∑

c j f (1)
j . (31)

With the aid of Eq. (28), we have the following equation through multiplying the Eq. (27b) by c j and summing it over j:

∂t1 B + ∇1 · (
βc2

s D + C
) = −S̃

∑
c j f (1)

j + M (1)
1,G + M (1)

1,F , (32)

where M (1)
1,F = ∑

c jF
(1)
j , M (1)

1,G = ∑
c jG

(1)
j , and the diagonal matrix S̃ is given in Appendix. From Eq. (32), one can obtain∑

c j f (1)
j = −S̃

−1[
∂t1 B + ∇1 · (

βc2
s D + C

) − M (1)
1,G − M (1)

1,F

]
, (33)
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and

∂t2φ = R(2) + ∇1 · βc2
s S̃

−1∇1 · D + ∇1 · S̃
−1[

∂t1 B + ∇1 · C − M (1)
1,F − M (1)

1,G

]
. (34)

Let

RH = S̃
−1

(∂t B + ∇ · C − M1,F − M1,G), (35)

if RH = 0 and K = βc2
s S̃

−1
, Eq. (34) would reduce to

∂t2φ = R(2) + ∇1 · K · ∇1 · D. (36)

Through combining the results at ε and ε2 scales, i.e., Eqs. (29a) and (36), we can recover the NCDE (2) correctly.
We now present some discussion on two special cases under the condition of RH = 0.
Scheme A: B = B(φ), M1,F = 0. Under these conditions, we have

RH = S̃
−1

(∂t B + ∇ · C − M1,G) = 0, (37)

which leads to following result:

M1,G = ∂t B + ∇ · C, (38)

where C is set as

Cαβ =
∫

B′
αB′

βdφ, or
dCαβ

dφ
= dBα

dφ

dBβ

dφ
. (39)

According to Eq. (29a), we have

∂t1 B + ∇1 · C = B′(∂t1φ + ∇1 · B
) = B′R(1), (40)

and then M1,G can be determined by

M1,G = B′R. (41)

Scheme B: C = 0, M1,F = 0. Under these conditions, we can obtain

RH = S̃
−1

(∂t B − M1,G) = 0, (42)

and then

M1,G = ∂t B. (43)

Next, we will recover the NCDE from the second evolution Eq. (7) with the CE analysis. With the Taylor expansion, Eq. (7)
can be expressed as

Dj f j + h

2
D2

j f j = −�̃ jk f ne
k + h

2

( − �̃ jkDk f ne
k

) + Ḡ j + Fj + h

2
(D̄ jFj + ¯̄DjḠ j ). (44)

Then we can expand Eq. (44) at different orders of ε,

O(ε0) : −�̃ jk
(

f (0)
k − f eq

k

) = 0,⇔ f (0)
j = f eq

j , (45a)

O(ε1) : D1 j f (0)
j = −�̃ jk f (1)

k + Ḡ(1)
j + F (1)

j , (45b)

O(ε2) : ∂t2 f (0)
j + D1 j f (1)

j + h

2
D2

1 j f (0)
j = −�̃ jk f (2)

k + h

2

[ − �̃ jkD1k f (1)
k

] + Ḡ(2)
j + F (2)

j

+h

2

[
D̄1 jF

(1)
j + ¯̄D1 j Ḡ

(1)
j

]
. (45c)

With the help of Eq. (45b), Eq. (45c) can be rewritten as

∂t2 f (0)
j + D1 j f (1)

j = −�̃ jk f (2)
k + Ḡ(2)

j + F (2)
j + h

2

[
(θ1 − 1)∂t1 F (1) + ∇1 · c j (γ1 − 1)F (1)

j

+(θ2 − 1)∂t1 Ḡ(1) + ∇1 · c j (γ2 − 1)Ḡ(1)
j

]
.

(46)

Summing Eqs. (46) and (45b) over j, one can obtain

∂t1φ + ∇1 · B = R(1), (47a)

∂t2φ + ∇1 ·
∑

c j f (1)
j = R(2) + h

2

{
(θ1 − 1)∂t1 R(1) + ∇1 · [

(γ1 − 1)M (1)
1,F + (γ2 − 1)M (1)

1,Ḡ

]}
. (47b)
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Multiplying the Eq. (45b) by c j and summing it over j, we can derive

∂t1 B + ∇1 · (
βc2

s D + C
) = −S̃

∑
c j f (1)

j + M (1)
1,Ḡ

+ M (1)
1,F . (48)

or ∑
c j f (1)

j = −S̃
−1[

∂t1 B + ∇1 · (
βc2

s D + C
) − M (1)

1,Ḡ
− M (1)

1,F

]
, (49)

where Eq. (28) has been used. Substituting above Eq. into
Eq. (47b) and taking θ1 = 1, we have

∂t2φ = R(2) + ∇1 · βc2
s S̃

−1∇1 · D + ∇1 · RH (1), (50)

where

RH (1) = S̃
−1[

∂t1 B + ∇1 · C − M (1)
1,Ḡ

− M (1)
1,F

]
+ h

2

[
(γ2 − 1)M (1)

1,Ḡ
+ (γ1 − 1)M (1)

1,F

]
. (51)

If we take RH = 0 and K = βc2
s S̃

−1
, then Eq. (50) can be

rewritten as Eq. (36). According to the results at ε and ε2

scales, i.e., Eqs. (47a) and (36), Eq. (2) can be recovered
exactly.

There are also two special cases when RH = 0.
Scheme A: B = B(φ), M1,F = 0, γ1 = γ2 = 0. With these

conditions, we have

RH = S̃
−1

(∂t B + ∇ · C − M1,Ḡ) − h

2
M1,Ḡ. (52)

When RH = 0, one can obtain

M1,Ḡ =
(

I + h

2
S̃
)−1

(∂t B + ∇ · C). (53)

If we set

Cαβ =
∫

B′
αB′

βdφ, or
dCαβ

dφ
= dBα

dφ

dBβ

dφ
, (54)

then one can derive the following equation:

∂t1 B + ∇1 · C = B′(∂t1φ + ∇1 · B) = B′R(1). (55)

Substituting Eq. (55) into Eq. (53) yields

M1,Ḡ =
(

I + h

2
S̃
)−1

B′R. (56)

Scheme B: C = 0, M1,F = 0, γ1 = γ2 = 0. Under these
conditions, we can obtain

RH = S̃
−1

(∂t B − M1,Ḡ) − h

2
M1,Ḡ. (57)

When RH = 0, one can determine M1,Ḡ as

M1,Ḡ =
(

I + h

2
S̃
)−1

∂t B. (58)

In our simulations, the term ∂t B in Eqs. (58) and (43) can be
estimated by [B(x, t ) − B(x, t − �t )]/�t .

Finally we give some remarks on the present MRT-
FDLBM.

Remark 1: It should be noted that the moment conditions of
the source term G are different in two evolution processes. In

the main evolution Eq. (2), the coefficient matrix of G equals
to I, while it is (I + h

2 S̃)−1 in the second evolution Eq. (7).
Remark 2: It can be found the values of θ̄ and θ2 do not

affect the CE analysis process, and thus we can take θ̄ = θ2 =
γ1 = γ2 = 0 and θ = θ1 = 1 for simplicity. Besides, as we
can see in Eq. (10) and Eq. (16), there is a �t in the coefficient
of ∂F . Thus, a first-order approximation in time is applied
to compute ∂F for both scheme A and scheme B. Here, we
can use [Fj (x, t ) − Fj (x, t − �t )]/�t to estimate ∂t Fj (x, t ) in
Eq. (2), and use [Fj (x − c jh, t ) − Fj (x − c jh, t − �t )]/�t to
estimate ∂t Fj (x − c jh, t ) in Eq. (7).

Remark 3: We point out that the collision matrices of the
two evolution equations can be different from each other.
That is, in addition to the relaxation parameters related to the
diffusion coefficient K, the remaining relaxation parameters
in the two relaxation matrices can take different values.

IV. STABILITY ANALYSIS OF THE MRT-FDLBM

The linear stability analysis is a common tool to evaluate
and improve the numerical stability of LBMs, whatever the
collision model considered [47–49]. In this section, the von
Neumann method [50] is used to analyze the numerical stabil-
ity of the MRT-FDLBM, and for simplicity, the source term is
neglected. We first write the main evolution Eq. (9) as

f j (x, t + �t ) + 0.5ω jk
[

fk (x, t + �t ) − f eq
k (x, t + �t )

]
= f j (x, t ) − �tc j · ∇ f j

(
x, t + �t

2

)

− 0.5ω jk
[

fk (x, t ) − f eq
k (x, t )

]
, (59)

then to conduct a linear stability analysis, f j (x, t ) is expanded
as

f j (x, t ) = f eq
j (x, t ) + f ′

j (x, t ), (60)

where f eq
j (x, t ) represents the global equilibrium distribution,

and only depends on the mean value of φ that does not
vary with time and space. f ′

j (x, t ) is the fluctuating quan-
tity of f j (x, t ). With the help of Eq. (60), one can rewrite
Eq. (59) as[(

1 + ω jk

2

)
δ jk + ω jk

2
� jk

]
f ′

j (x, t + �t )

=
[(

1 − ω jk

2

)
δ jk + ω jk

2
� jk

]
f ′
k (x, t )

− δ jk�tck · ∇ f ′
j

(
x, t + �t

2

)
, (61)
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FIG. 2. Stability regions of the MRT-FDLBM with u = (2.5, 2.5)T , c = 5.0.

where � jk = ∂ f eq
j (x, t )/∂ fk (x, t ). With the Fourier transform, one can also get(

I + 0.5ω − 0.5ω� 0
0 I

)[(
F ′

k (κ, t + �t )
F ′

k (κ, t + 1
2�t )

)]
=

(−rT I − 0.5ω + 0.5ω�

I 0

)[(
F ′

k (κ, t + 1
2�t )

F ′
k (κ, t )

)]
, (62)

where F ′
k (κ, t ) = ∫

f ′
k (x, t ) exp(−iκ · x)dx with κ = (κx, κy) being the wave number. From Eq. (62), we can determine the

growth matrix Ĝ as

Ĝ =
(

I + 0.5ω − 0.5ω� 0
0 I

)−1(−rT I − 0.5ω + 0.5ω�

I 0

)
(63)

where r = �t/�x and T = diag(T0, T1, . . . , Tq ). For the mixed difference scheme,

Tj = i(1 − η)(sin ϑ jx + sin ϑ jy) + η

2
[6 − 4 exp(−ϑ jx ) − 4 exp(−ϑ jy) + exp(−2iϑ jx ) + exp(−2iϑ jy)], (64)

where ϑ jx = κxc jx�χ and ϑ jy = κyc jy�χ .

According to the von Neumann stability condition, we
need to obtain the spectral radius of the matrix Ĝ. However,

for the general NCDE, there are too many free parameters in
the matrix Ĝ, and it is inconvenient to discuss the spectral
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FIG. 3. Stability regions of the MRT-FDLBM with s5 = 0.5s3 and u = (2.5, 2.5)T , c = 5.0.

radius of Ĝ. Therefore, in the following, we only consider a
linear convection-diffusion problem to analyze the numerical
stability of the MRT-FDLBM. Here we take D2Q9 lattice
model as an example and set u = (2.5, 2.5)T , c = 5.0. The
spectral radius of the matrix Ĝ is the function of ω and r with
0 � κx�x, κy�y � π . To simplify the analysis on the stable
domain of the MRT-FDLBM, we set the relaxation param-
eters as s0 = s1 = s2 = s4 = s6 = s7 = s8 = s′ and s3 = s5.
Figure 2 shows some stability regions of the MRT-FDLBM
with the relaxation parameter s′ = 0.5s3, s3, 1.5s3, and 4.0s3.
From this figure, one can find that the stability region of MRT-
FDLBM increases with the relaxation parameter s′. Besides,
we also conduct the stability analysis of MRT-FDLBM for the
anisotropic convection-diffusion equation. Figure 3 shows the
stability region with s5 = 0.5s3. The stability region increases
slightly as s′ increases. And Fig. 4 presents the stability re-
gion with s′ = 1.5s3. It can be found that the stability region
increases significantly as s5 increases. At last, we test the sta-

bility of MRT-FDLBM with u = (0.5, 0.5)T and c = 1.0. The
results are shown in Fig. 5, it can be found that the stability
region increases slightly as s′ increases. This phenomenon is
similar to Fig. 2. It is interesting to see that a similar behavior
is obtained with the LBM [51], and this common trick can
improve the stability of LBMs in under-resolved conditions
whatever the targeted physics [52].

To numerically validate above analysis on the stability
region of the MRT-FDLBM, we consider a linear convection-
diffusion problem

∂tφ + ∇ · (φu) = ∇ · κ∇φ, (65)

with the analytical solution

φ(x, t ) = μ0δ
2
0

δ2
0 + 2κt

exp

[
− (x − uxt )2 + (y − uyt )2

2
(
δ2

0 + 2κt
) ]

, (66)
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FIG. 4. Stability regions of the MRT-FDLBM with s′ = 1.5s3 and u = (2.5, 2.5)T , c = 5.0.

where κ is the diffusion coefficient, μ0 = 100, and δ0 = 20.0.
The computational domain is [0, 1] × [0, 1] with �x = 0.01
and c = 5. As we can see from Fig. 2, the point (ω, r) =
(0.15, 1.0) is out of the stability region when s′ = 0.5s3 and
s′ = s3, and it is inside the stable region when s′ = 1.5s3 or

s′ = 4.0s3. Here we take ω = 0.15 and r = 1.0 in our sim-
ulations and plot the results in Fig. 6. From this figure, we
can observe that MRT-FDLBMs with s′ = 0.5s3 and s′ = s3

are unstable, while the MRT-FDLBMs with s′ = 1.5s3 and
s′ = 4.0s3 work well, which is consistent with our above
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FIG. 5. Stability regions of the MRT-FDLBM with u = (0.5, 0.25)T and c = 1.0.
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FIG. 6. Distributions of the scalar variable φ with different MRT-FDLBMs (t = 1.5, u = (2.5, 2.5)T , c = 5.0).

analysis. In addition, it should be noted that when s′ = s3,
the MRT-FDLBM would reduce to the SRT-FDLBM, and the
above results also indicate that the MRT-FDLBM with an
appropriate relaxation matrix is more stable than the SRT-
FDLBM.

V. MODEL SIMPLIFICATION

In general, the MRT model is more stable than the BGK
model, while the BGK model is more efficient than the MRT

model. The present MRT-FDLBM is obviously more stable
than SRT-FDLBM, as shown in the previous section, but
the matrix calculation in the MRT-FDLBM will consume
more CPU time. To improve the computational efficiency of
MRT-FDLBM, a simplified MRT-FDLBM (SMRT-FDLBM)
is developed in this section. To this end, we can adopt a BGK
model to deal with the collision term in Eq. (7), while the
collision term in the Eq. (2) is still approximated by the MRT
model. Following this way, Eq. (7) can be expressed as

f j (x, t + h) − f j (x − c jh, t ) = h

2

[
− 1

τ
f ne

j (x, t + h) − 1

τ
f ne
k (x − c jh, t )

]
+ h

(
Fj + Ḡ j + h

2
D̄ jFj + h

2
¯̄DjḠ j

)
(x − c jh, t ), (67)

which can also be written into an explicit form,

f̄ j (x, t + h) = f̄ +
j (x − c jh, t ) + h

[
Fj + Ḡ j + h

2
D̄ jFj + h

2
¯̄DjḠ j

]
(x − hc j, t )

= f̄ +
j (x, t ) − c jh · ∇ f̄ +

j (x, t ) + h

[
Fj + Ḡ j + h

2
D̄ jFj + h

2
¯̄DjḠ j

]
(x, t ) + O(h2). (68)
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Besides, if we neglect the terms D̄ jFj and ¯̄DjḠ j due to the fact
that the coefficients of this two terms are of order O(h2), then
Eq. (68) can be simplified as

f̄ j (x, t + h) = f̄ +
j (x, t ) − c jh · ∇ f̄ +

j (x, t )

+ h[Fj + Ḡ j](x, t ) + O(h2), (69)

where

f̄ = 2τ + h

2τ
f − h

2τ
f eq, (70a)

f̄ + = 2τ − h

2τ
f + h

2τ
f eq. (70b)

With the help of Eq. (13a), we can derive

f̄
+ = 2τ − h

2τ
(I + h�̃)−1 f̂ + (I + h�̃)−1

(
h�̃ + hI

2τ

)
f eq.

(71)

The implementation process of the SMRT-FDLBM is similar
to that in Fig. 1. The the relationship between τ and the diffu-
sion coefficient K is c2

s τ I = K, and the relationship between
τ and S̃ is 1

τ
I = S̃.

Remark: Referring to the TRT-LBM models [27,53], two-
relaxation-times FDLBM (TRT-FDLBM), as a special case of
MRT-FDLBM, can also improve the computational efficiency.
The difference between the two model is mainly reflected
in the collision term. The calculation process of the TRT-
FDLBM is presented in Appendix B.

VI. THE MRT-FDLBM FOR COMPLEX-VALUED NCDE

In the previous CE analysis, we can find that both the
real- and complex-valued NCDEs can be recovered from the
MRT-FDLBM. In other words, the method can also be applied
to solve the complex-valued NCDE, and the implementation
details would be discussed in this section. With the following
complex variables:

f = f r + i f c, f eq = f eq
r + i f eq

c , F = Fr + iFc,

G = Gr + iGc, � = �r + i�c, (72)

where i2 = −1. We can write Eq. (10) as

N1(x, t + �t ) = N+
1 (x, t ) − �tc · f r (x, t + h) + �t

(
Fr + Gr + �t

2
θ∂t Fr + �t

2
θ̄∂t Gr

)
(x, t ), (73)

N2(x, t + �t ) = N+
2 (x, t ) − �tc · f c(x, t + h) + �t

(
Fc + Gc + �t

2
θ∂t Fc + �t

2
θ̄∂t Gc

)
(x, t ), (74)

where θ = 1, θ̄ = 0,

N1 = f r + 1
2

[
�t�̃r

(
f r − f eq

r

) − �t�̃c
(

f c − f eq
c

)]
, (75a)

N2 = f c + 1
2

[
�t�̃r

(
f c − f eq

c

) + �t�̃c
(

f r − f eq
r

)]
, (75b)

and

N+
1 = f r − 1

2

[
�t�̃r

(
f r − f eq

r

) − �t�̃c
(

f c − f eq
c

)]
, (76a)

N+
2 = f c − 1

2

[
�t�̃r

(
f c − f eq

c

) + �t�̃c
(

f r − f eq
r

)]
. (76b)

Similarly, the evolution equation Eq. (7) is also decomposed of two parts,

N̄1(x, t + h) = N̄+
1 (x, t ) − hc · ∇N+

1 (x, t ) + h

(
Fr + Ḡr + h

2
D̄Fr + h

2
¯̄DḠr

)
(x, t ) + O(h2), (77a)

N̄2(x, t + h) = N̄+
2 (x, t ) − hc · ∇N+

2 (x, t ) + h

(
Fc + Ḡc + h

2
D̄Fc + h

2
¯̄DḠc

)
(x, t ) + O(h2). (77b)

Let ω̄r = h�̃r , we have

N̄1 = f r + 1
2

[
ω̄r

(
f r − f eq

r

) − ω̄c
(

f c − f eq
c

)]
, (78a)

N̄2 = f c + 1
2

[
ω̄r

(
f c − f eq

c

) + ω̄c
(

f r − f eq
r

)]
, (78b)

and

N̄+
1 = f r − 1

2

[
ω̄r

(
f r − f eq

r

) − ω̄c
(

f c − f eq
c

)]
, (79a)

N̄+
2 = f c − 1

2

[
ω̄r

(
f c − f eq

c

) + ω̄c
(

f r − f eq
r

)]
. (79b)

In Fig. 7, we present the implementation process of the
MRT-FDLBM for complex-valued NCDE.

VII. NUMERICAL SIMULATION

In this section, five different numerical examples are used
to test the present MRT-FDLBM, including the isotropic
convection-diffusion equation, the Burgers-Fisher equation,
the nonlinear heat conduction equation, the sine-Gordon equa-
tion and the nonlinear Schrödinger equation. Unless otherwise
specified, the distribution function is initialized by the equi-
librium distribution function, i.e., f̂ j (x, t ) = f eq

j (x, t ). The
boundary conditions are treated by nonequilibrium extrapo-
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FIG. 7. The implementation process of the MRT-FDLBM for complex-valued NCDE.

lation scheme [54], and the D2Q9 lattice model is used. To
test the accuracy of the MRT-FDLBM, the following global
relative errors (GRE) is adopted:

GRE =
∑

i |φ(xi, t ) − φ∗(xi, t )|∑
i |φ∗(xi, t )| , (80)

where φ(x, t ) and φ∗(x, t ) denote numerical and analyti-
cal solutions, respectively. In addition, to give a comparison
of different models, the previous FDLBM [55] is marked
as FDLBM, the MRT-FDLBM with si = s3, (0 � i � 8) is
recorded as SRT-FDLBM, and MRT-FDLBM with s0 = s1 =
s2 = s4 = s6 = s7 = s8 = 1.5s3 is denoted as MRT-FDLBM.
From Sec. IV, it can be found the value s′ = 4.0s3 is a more
stable case. However, usually an increased stability implies
a lower accuracy. Hence, considered stability and accuracy
synthetically, we take s′ = 1.5s3 for all MRT-FDLBM in this
section.

A. Example 1: Isotropic convection-diffusion equation

The following two-dimensional isotropic CDE is first con-
sidered to test the accuracy of the MRT-FDLBM,

∂tφ + ux∂xφ + uy∂yφ = κ (∂xxφ + ∂yyφ) + R, (81)

where ux = uy = 0.1, κ is the diffusion coefficient, and the
source term R is given by

R = exp[(1 − 2π2κ )t]sin[π (x + y)]

+ π (ux + uy)cos[π (x + y)]. (82)

The analytical solution of this problem can be expressed as

φ(x, y, t ) = exp[(1 − 2π2κ )t]sin[π (x + y)]. (83)

For this problem, two schemes of the MRT-FDLBM are con-
sidered. In scheme A, the functions B, C, and D should be
set as B = φu, C = φuu, and D = φI, while in scheme B,
B = φu, C = 0, and D = φI.

In the following simulations, the lattice size is 201 × 201,
the periodic boundary condition is adopted for all boundaries,
and the initial condition is given by the analytical solution at
t = 0. Figure 8 shows the results of two schemes at Pe = 1000
(Pe = Lux/κ , the characteristic length L = 2.0). From this
figure, it can be seen that the numerical results of two schemes
at different time agree well with the analytical solution. In
addition, this problem is also used to test the convergence
rates of the MRT-FDLBMs, including the MRT-FDLBM with
scheme A, the MRT-FDLBM with scheme B, and the SMRT-
FDLBM with scheme B. For this purpose, the time step
is varied from 0.001 to 0.005 to test the convergence rate
in time, and the lattice spacing changes from 2.0/200 to
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FIG. 8. Example 1: Profiles of scalar variable φ at Pe = 1000. (a) Scheme A. (b) Scheme B.

035308-13



CHEN, CHAI, SHANG, AND SHI PHYSICAL REVIEW E 104, 035308 (2021)

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7
8

8.2

8.4

8.6

8.8

9

9.2

9.4

5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

(a) (b)

FIG. 9. Example 1: GREs of the MRT-FDLBM with scheme A and scheme B and SMRT-FDLBM with scheme A and scheme B. (a) GREs
at different grid sizes and (b) GREs at different time.

2.0/120 to test the convergence rate in space. And the CFL
condition number is fixed to 0.1 As shown in Fig. 9, both
the MRT-FDLBM and SMRT-FDLBM have the second-order
convergence rates in time and space, which is consistent with
the theoretical analysis. Finally, we also conducted a compar-
ison among different LBMs and present the results in Table I.
From this table, one can find that the results of MRT-FDLBM
and SRT-FDLBM are more accurate than those of standard
LBM and FDLBM.

B. Example 2: Two-dimensional Burgers-Fisher equation

We continued to consider the two-dimensional Burgers-
Fisher equation with a source term,

∂tφ + aφδ∂xφ − b(∂xxφ + ∂yyφ) = κφ(1 − φδ ). (84)

Under the proper initial and boundary conditions, one can
obtain its analytical solution,

φ(x, y, t ) = 1
2 + 1

2 tanh[A(x + y − ωt )]
1
2 , (85)

where the parameters A and ω are given by

A = − aδ

4κ (δ + 1)
, ω = a2 + 2bκ (δ + 1)

a(δ + 1)
. (86)

In our simulations, κ = 1.0, δ = 2.0, �x = 0.01, b = 0.05,
and CFL = 0.1. Scheme B with B(φ) = φδ+1( a

δ+1 , 0)T , C =

0, and D = φI is adopted for this problem. In Fig. 10, we
present some results with the uniform mesh 300 × 300 and
the nonuniform mesh 150 × 300. As seen from this figure,
the results of MRT-FDLBMs with the uniform mesh and
nonuniform mesh are in good agreement with the analytical
solution. However, we point out that when MRT-FDLBM with
uniform grid is adopted, the GRE is 2.7775 × 10−4 and the
CPU time is 698.03 s; if the MRT-FDLBM with the nonuni-
form grid is used, then the GRE is 3.2540 × 10−4 and the
CPU time decreases to 300.81 s. These results show that it
is feasible to use the nonuniform grids to improve computa-
tional efficiency of the MRT-FDLBM. In addition, we also
measured the GREs at different grid sizes in Fig. 11. From
this figure, one can observe that the MRT-FDLBMs with the
uniform mesh and nonuniform mesh have the second-order
convergence rate in space. We also carried out a comparison
of four different LBMs, including LBM with the uniform grid,
FDLBM with the nonuniform grid (FDLBMr), SRT-FDLBM
with the nonuniform grid (SRT-FDLBMr), and MRT-FDLBM
with the rectangular grid (MRT-FDLBMr). As shown in Ta-
ble II, generally, the MRT-FDLBMr is more accurate than the
LBM, FDLBMr , and SRT-FDLBMr .

In order to visually show the computational efficiency
of present MRT-FDLBM, we compared the three mod-
els, namely FDLBM, SRT-FDLBM, and MRT-FDLBM.
In Table III, we set all three models to evolve 10 000 steps,

TABLE I. Example 1: A Comparison of GRE among LBM, FDLBM, and MRT-FDLBM.

Pe Model c = 1 c = 10 c = 50 c = 100

LBM 7.0178 × 10−3 1.2899 × 10−4 2.2869 × 10−4 2.3604 × 10−4

Pe = 100 FDLBM 2.0227 × 10−3 2.0837 × 10−4 9.3423 × 10−5 8.6576 × 10−5

SRT-FDLBM 6.1175 × 10−4 8.4876 × 10−5 5.1503 × 10−5 5.0048 × 10−5

MRT-FDLBM 6.8405 × 10−4 8.6859 × 10−5 5.1637 × 10−5 5.0029 × 10−5

Pe = 10 000 LBM 3.0159 × 10−4 1.9679 × 10−4 2.0024 × 10−4 2.0371 × 10−4

FDLBM 1.4896 × 10−3 1.7425 × 10−4 8.9458 × 10−4 8.6282 × 10−5

SRT-FDLBM 1.1580 × 10−4 5.0729 × 10−5 5.0737 × 10−5 5.2135 × 10−5

MRT-FDLBM 9.9619 × 10−5 5.0717 × 10−5 5.0737 × 10−5 5.2134 × 10−5
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FIG. 10. Example 2: Profiles of scalar variable φ at different time [(a) uniform grid (300 × 300) and (b) nonuniform grid (150 × 300)].

and the results indicate that the single-step calculation time
of MRT-FDLBM is 2.92 times as much as that of FDLBM.
Besides, we also test the computational time when the GRE
less than 10−5. It can be seen from Table IV that the total
calculation time of MRT-FDLBM is less than that of FDLBM.
The results indicate that although the single-step evolution
of MRT-FDLBM is more complex, the computational effi-
ciency of MRT-FDLBM is not necessarily lower than that of
FDLBM. The reason can be attributed to that the maximal
CFL condition number of MRT-FDLBM is greater than that
of FDLBM.

At last, the stability of the FDLBM, SRT-FDLBM, MRT-
FDLBM, and SMRT-FDLBM are also tested with this
example, and the results are presented in Table V. As we
can see, SMRT-FDLBM and MRT-FDLBM work well, while
FDLBM and SRT-FDLBM are unstable under the large CFL
condition number and the large parameter b. More specially,

FIG. 11. Example 2: The GREs of the MRT-FDLBM with differ-
ent grid sizes.

SMRT-FDLBM and MRT-FDLBM are more stable than SRT-
FDLBM and FDLBM.

C. Example 3: Two-dimensional sine-Gordon equation

We now consider the two-dimensional sine-Gordon
equation,

∂ttφ = (∂xxφ + ∂yyφ) − sin(φ). (87)

The initial condition and boundary condition of this problem
can be given by

φ(x, y, 0) = p(x, y), ∂tφ(x, y, 0) = q(x, y), (88)

∂xφ = 0, x = ±a; ∂yφ = 0, y = ±b. (89)

For the case of one circular ring soliton, the functions p(x, y)
and q(x, y) can be expressed as

p(x, y) = α arctan exp{3 −
√

x2 + y2}, q(x, y) = 0,

− 14 � x, y � 14, (90)

while the two circular ring soliton, they should be given by

p(x, y) = α

2∑
j=1

arctan exp{γ [4 −
√

(x + x j )2+ (y + y j )2]},

q(x, y) = β

2∑
j=1

sech{γ [4 −
√

(x + x j )2+ (y + y j )2]}. (91)

The computational domain of this case is fixed to be −30 �
x � 10, −21 � y � 7, and {(x j, y j )} = {(3, 7), (17, 7)} [18].

For the case of four circular ring soliton, the following
standard conditions are adopted [18],

p(x, y) = α

4∑
j=1

arctan exp{γ [4 −
√

(x + x j )2+ (y + y j )2]},
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TABLE II. Example 2: The GREs of LBM, FDLBMr , SRT-FDLBMr , and MRT-FDLBMr at t = 1.0.

c = 10 c = 20

b Method a = 4 a = 6 a = 4 a = 6

LBM 9.4112 × 10−4 9.7833 × 10−4 2.3240 × 10−4 2.3628 × 10−4

b = 0.05 FDLBMr 1.0411 × 10−3 1.0358 × 10−3 3.8251 × 10−4 3.3586 × 10−4

SRT-FDLBMr 7.9071 × 10−4 7.0436 × 10−4 4.2979 × 10−4 3.8130 × 10−4

MRT-FDLBMr 3.9426 × 10−4 3.2185 × 10−4 3.0783 × 10−4 2.2657 × 10−4

LBM 1.3549 × 10−3 1.5879 × 10−3 3.4558 × 10−4 3.9627 × 10−4

b = 0.1 FDLBMr 1.4368 × 10−3 1.6554 × 10−3 4.4683 × 10−4 4.7877 × 10−4

SRTFDLBMr 8.9130 × 10−4 9.7677 × 10−4 3.0855 × 10−4 2.8205 × 10−4

MRT-FDLBMr 4.3223 × 10−4 3.8305 × 10−4 2.2312 × 10−4 1.9187 × 10−4

q(x, y) = β

4∑
j=1

sech{γ [4 −
√

(x + x j )2 + (y + y j )2]}, (92)

where {(x j, y j )} = {(3, 3), (3, 17), (17, 3), (17, 17)} and
−30 � x � 10, −30 � y � 10.

We note that it is difficult to obtain the analytical so-
lution of sine-Gordon equation, and thus we conducted a
comparison of the present numerical results and some avail-
able works [18,46]. The physical parameters are specified by
α = 4.0, β = 4.14, and γ = 1.0/0.436, which are the same
as those in the previous works [18,46], and additionally, the
transformation w = ∂tφ is used to translate Eq. (87) into a
nonlinear diffusion equation. Here, for simplicity, scheme B
with B = 0, C = 0, D = φI is considered, and the equilibrium
equation is given by

f eq
i = ωi

[
w +

(
c2

s φI − c2
s wI

)(
cici − c2

s I
)

2c4
s

]
. (93)

Once the macroscopic variable w is determined by w = ∑
i fi,

one can obtain the function φ with the following explicit
difference scheme:

φ(x, y, t + �t ) = �tw(x, y, t + �t ) + φ(x, y, t )

= �t
∑

j

f j (x, y, t + �t ) + φ(x, y, t ). (94)

We carried out some simulations with �x = 0.05, c = 50,
and CFL = 0.1 and present the results of one circular ring
soliton, two circular ring solitons, and four circular ring soli-
tons in Figs. 12–14. From these figures, one can find that the
present results are in good agreement with the previous works
[18,46].

TABLE III. Example 2: A Comparison of the Computational
Time among FDLBM, SRT-FDLBM, and MRT-FDLBM at 1000
steps.

MRT-FDLBM SRT-FDLBM FDLBM

Total time 634.66 s 278.97 s 217.12 s
Ratio 2.92 1.28 1.00

D. Example 4: Two-dimensional heat-conduction equation

As a benchmark problem, the two-dimensional nonlinear
heat-conduct equation is also adopted to test the stability of
MRT-FDLBM. The mathematical equation of this problem
can be expressed as

∂tφ − α(∂xxφ
δ + ∂yyφ

δ ) − φ + φδ = 0, δ > 1. (95)

Here we consider two different initial conditions. The first
one is

φ(x, y, t ) =
{

1

2
+ 1

2
tanh

[
δ − 1

2δ
√

2α
(x + y)

]}−1/(δ−1)

, (96)

which leads to the following analytical solution:

φ(x, y, t ) =
{

1

2
+ 1

2
tanh

[
δ − 1

2δ
√

2α
(x + y +

√
2αt )

]}−1/(δ−1)

.

(97)
The second one is

φ(x, y, t ) =
{

1

2
− 1

2
tanh

[
δ − 1

2δ
√

2α
(x + y)

]}−1/(δ−1)

, (98)

and the corresponding analytical solution can be given by

φ(x, y, t ) =
{

1

2
− 1

2
tanh

[
δ − 1

2δ
√

2α
(x + y −

√
2αt )

]}−1/(δ−1)

,

(99)

where δ is set to be 1.5 and α is the diffusion coefficient. In
our simulations, the computational domain is [0, 1] × [0, 1],
�x = 0.01, and CFL = 0.2. For this problem, scheme B with
B = 0, C = 0 and D = φδI is also applied.

This problem is used to test the stability of five different
LBMs, including LBM, FDLBM, SRT-FDLBM, SMRT-
FDLBM, and MRT-FDLBM. We considered two different

TABLE IV. Example 2: The Computational Time among
FDLBM, SRT-FDLBM, and MRT-FDLBM within the similarity
GRE.

FDLBM SRT-FDLBM MRT-FDLBM

GRE 9.9945 × 10−5 9.9962 × 10−5 9.9960 × 10−5

CFL 0.1 0.4 0.5
Total time 327.87 s 127.16 s 198.56 s
Ratio 1.00 0.39 0.61
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FIG. 12. Example 3: The numerical results of one ring soliton at
the time t = 0, 2, 8, 11.5, 15 from top to bottom.

initial conditions, i.e., Eqs. (96) and (98) and present the
numerical results of different LBMs in Tables VI and VII. As
we can from Table VI, for the small diffusion coefficient α

and large lattice speed c, LBM is unstable, but FDLBM, SRT-
FDLBM, and MRT-FDLBM work well. At the same time, it
should be noted that the GREs of SRT-FDLBM and MRT-
FDLBM are slightly larger than those of FDLBM at CFL =
0.2. In addition, from Table VII, one can find that the FDLBM
is unstable for high CFL condition number. However, when
α = 0.08, SRT-FDLBM with CFL = 0.5, SMRT-FDLBM
with CFL = 0.5, and MRT-FDLBM with CFL = 0.7 can
work well. When α = 0.2, the SRT-FDLBM, SMRT-FDLBM,
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FIG. 13. Example 3: The numerical results of two ring solitons
at the time t = 0, 2, 4, 6, 8 from top to bottom.

and MRT-FDLBM are still stable for CFL = 0.3, 0.3, and 0.5.
In particular, the stability of the four models is influenced by
the diffusion coefficient α and the weight coefficient of the
mixed difference scheme η. When α is smaller, the maximum
CFL condition numbers of four models are smaller. When α

is larger, the central difference scheme will affect the stability
of the four models, so the values of CFL condition numbers
are still small. Furthermore, it is worth noting that the LBM
is unstable when Eq. (98) is adopted as initial condition. The
results indicate that for the problem, MRT-FDLBM is the most
stable, followed by SMRT-FDLBM, SRT-FDLBM, FDLBM,
and standard LBM.
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FIG. 14. Example 3: The numerical results of four ring solitons
at the time t = 0, 2.5, 5, 7.5, 10 from top to bottom.

At last, the computation efficiency of the SMRT-FDLBM,
TRT-FDLBM (τ1 = 1.5τ2) and MRT-FDLBM are also tested
with the initial condition of Eq. (98). We present the results of
three models in Table VIII. From this table, one can observe
that TRT-FDLBM and SMRT-FDLBM are more efficient than
MRT-FDLBM. The SMRT-FDLBM can save about 15% com-
putational time, and TRT-FDLBM can save about 25%.

E. Example 5: Two-dimensional Schrödinger equation

There are lots of works for solving complex-valued NCDE
[18,56,57]. In this part we consider the Schrödinger equation
to test the accuracy of MRT-FDLBM. The two-dimensional
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FIG. 15. Example 5: The numerical results of real part (u) and
the imaginary part (v) at t = 1.0.

nonlinear Schrödinger equation can be written as

i∂tφ + ∂xxφ + ∂yyφ + β|φ|2φ = 0. (100)

Under the proper initial and boundary conditions, we can
obtain its analytical solution,

φ(x, y, t ) = A exp[i(c1x + c2y − nt )], (101)

where n = c2
1 + c2

2 − β|A|2. The physical domain of this prob-
lem is [0, 2π ] × [0, 2π ]. To solve this problem, we first
rewrite Eq. (101) into another form,

∂tφ = i(∂xxφ + ∂yyφ) + iβ|φ|2φ. (102)

In our simulations, scheme B with B = 0, C = 0, and D = φI
is adopted; the grid size is 100 × 100; the other parameters
are set as A = c1 = c2 = 1, β = 2, and CFL = 0.1; and the
periodic boundary conditions is used for all boundaries. To
test the convergence rates of MRT-FDLBM in space and time,
the grid size varies from 2π/100 to 2π/140, and the time step
ranges from 0.0002 to 0.0008. From the numerical results in
Figs. 15 and 16, one can see that the MRT-FDLBM is not only
accurate for solving this complex-valued NCDE but also of
second-order convergence rates in space and time. In addition,
the Schrödinger equation is also used to test the accuracy of
present MRT-FDLBM with LBM. The numerical results are
shown in Table IX. As seen from this table, the GREs of
MRT-FDLBM are indeed smaller than those of LBM. Thus
the present MRT-FDLBM is more accurate than LBM.

VIII. CONCLUSION

In this paper, a second-order MRT-FDLBM is proposed for
the general NCDE, and through the CE analysis, the NCDE
can be recovered correctly from MRT-FDLBM. The stability
of MRT-FDLBM is also analyzed, and it is found the stability
region of MRT-FDLBM is larger than that of SRT-FDLBM.
However, for MRT-FDLBM, the improvement of stability and
accuracy comes at the expense of increased computational
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TABLE V. Example 2: The GREs of FDLBM, SRT-FDLBM, SMRT-FDLBM, and MRT-FDLBM with different values of the parameter b
and CFL condition number.

CFL 0.1 0.2 0.3 0.4 0.5

FDLBM 8.7133 × 10−4 — — — —
b = 0.1

SRT-FDLBM 8.8606 × 10−4 8.8463 × 10−4 8.8300 × 10−4 8.8072 × 10−4 —
SMRT-FDLBM 4.1782 × 10−4 4.2258 × 10−4 4.2692 × 10−4 4.3070 × 10−4 —
MRT-FDLBM 4.1195 × 10−4 4.1083 × 10−4 4.0926 × 10−4 4.0708 × 10−4 4.0446 × 10−4

CFL 0.1 0.2 0.3 0.4 0.5

FDLBM — — — — —
b = 0.15

SRT-FDLBM — — — — —
SMRT-FDLBM 5.6369 × 10−4 5.6831 × 10−4 5.7276 × 10−4 1.9556 × 10−2 —
MRT-FDLBM 5.5830 × 10−4 5.5753 × 10−4 5.5658 × 10−4 5.5520 × 10−4 —

time. Thus, the SMRT-FDLBM is developed to improve the
computational efficiency.

Some classic real- and complex-valued NCDEs, including
the isotropic convection-diffusion equation, the Burgers-
Fisher equation, the sine-Gordon equation, the heat-conduct
equation, and the Schrödinger equation, are used to test the
performance of MRT-FDLBM, SMRT-FDLBM, and SRT-
FDLBM. The numerical results show that MRT-FDLBM is
accurate and stable for the real- and complex-valued NCDE,
and moreover, both MRT-FDLBM and SMRT-FDLBM have
the second-order convergence rates in time and space. Com-
pared to FDLBM and SRT-FDLBM, MRT-FDLBM can be
more accurate and stable through adjusting the relaxation
parameters properly. In addition, it is also found that the
SMRT-FDLBM can improve the computational efficiency
with saving about 15% CPU time, and the TRT-FDLBM can
save about 25% CPU time. Thus, MRT-FDLBM is more stable
while SMRT-FDLBM and TRT-FDLBM are more efficient.
If the problem is anisotropic and require stronger stability,
then MRT-FDLBM can be a better choice. And if the problem
is isotropic and require highly efficient, then both SMRT-
FDLBM and TRT-FDLBM are better options. Finally, we
point out that the MRT-FDLBM can also be extended to solve
the Navier-Stokes equations, which would be considered in a
future work.
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APPENDIX A: THE DISCRETE VELOCITY MODEL AND
THE COLLISION MATRIX

In the MRT-FDLBM, there are some different discrete
velocity models, here only some popular ones are listed.

D1Q3:

c j = (0, 1,−1)c, (A1a)

ω0 = 2/3, ω1 = ω2 = 1/6, (A1b)

D2Q9:

c j =
(

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

)
c,

(A2a)

ω0 = 4/9, ω j=1−4 = 1/9, ω j=5−9 = 1/36, (A2b)

D3Q19:

TABLE VI. Example 4: A Comparison of GREs among LBM, FDLBM, and MRT-FDLBM under the Initial Condition (96).

α Model c = 10 c = 20 c = 100

LBM — — —
α = 0.005 FDLBM 1.9896 × 10−4 2.3295 × 10−4 4.9850 × 10−4

SRT-FDLBM 1.1869 × 10−3 1.8009 × 10−4 7.5597 × 10−4

MRT-FDLBM 2.0664 × 10−3 3.0980 × 10−3 3.7663 × 10−3

LBM 1.8458 × 10−5 — —
α = 0.01 FDLBM 1.7215 × 10−4 1.8401 × 10−4 3.1222 × 10−4

SRT-FDLBM 8.4498 × 10−5 1.0199 × 10−4 3.2486 × 10−4

MRT-FDLBM 8.4498 × 10−5 1.0199 × 10−4 3.2486 × 10−4

LBM 9.2449 × 10−5 2.1623 × 10−5 —
α = 0.5 FDLBM 1.0810 × 10−4 5.7269 × 10−5 6.9485 × 10−5

SRT-FDLBM 1.8492 × 10−4 4.7922 × 10−5 1.5844 × 10−5

MRT-FDLBM 1.6859 × 10−4 3.6927 × 10−5 6.8443 × 10−5
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TABLE VII. Example 4: The GREs of LBM, FDLBM, SRT-FDLBM, and MRT-FDLBM under the Initial Condition (98) (t = 1.0).

α Model CFL = 0.1 CFL = 0.3 CFL = 0.5 CFL = 0.7 CFL = 0.9

FDLBM 1.5466 × 10−2 — — — —
α = 0.003 SRT-FDLBM 1.5303 × 10−2 1.5388 × 10−2 — — —

SMRT-FDLBM 1.5324 × 10−2 1.5393 × 10−2 — — —
MRT-FDLBM 5.1796 × 10−2 8.6652 × 10−2 — — —

FDLBM 4.7437 × 10−4 — — — —
α = 0.08 SRT-FDLBM 4.7196 × 10−4 4.7148 × 10−4 4.6952 × 10−4 — —

SMRT-FDLBM 4.5654 × 10−4 4.5474 × 10−4 4.5111 × 10−4 — —
MRT-FDLBM 9.1571 × 10−4 1.9478 × 10−3 2.9333 × 10−3 7.8531 × 10−3 —

FDLBM — — — — —
α = 0.2 SRT-FDLBM 4.2587 × 10−4 4.2707 × 10−4 — — —

SMRT-FDLBM 3.0619 × 10−4 3.0903 × 10−4 — — —
MRT-FDLBM 2.5429 × 10−4 2.2507 × 10−4 3.8161 × 10−4 — —

c j =
⎛
⎝0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 −1 1 0 0 0 0

0 0 0 1 −1 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 −1 1

⎞
⎠c, (A3a)

ω0 = 1/3, ω j=1−6 = 1/18, ω j=7−18 = 1/36. (A3b)

The collision matrix �̃ is given by

�̃ = M−1SM, (A4a)

S = (sk j ), sk j = 0 (k 
= j), skk = sk. (A4b)

In this work, we only take the D2Q9 lattice model as an example, and the transportation matrix M can be expressed as

M = Cd M0, (A5)

where Cd = diag(c0, c2, c4, c1, c3, c1, c3, c2, c2) and S = diag(s0, s1, s2, s3, s4, s5, s6, s7, s8) are diagonal matrixs, M0 is given
as [21]

M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A6)

In addition, the diagonal matrix S̃ related to the diffusion matrix K can be written as

S̃ =
(

s3 0
0 s5

)
. (A7)

It should be noted that for the complex-valued NCDE, κ = κr + iκc τ = τr + iτc, and the following requirements should be
satisfied:

τr = κr

c2
s

, τc = κc

c2
s

, (A8)

�̃r = M−1SrM, �̃c = M−1ScM, (A9)

Sr = diag(sr0, sr1, sr2, sr3, sr4, sr5, sr6, sr7, sr8),

Sc = diag(sc0, sc1, sc2, sc3, sc4, sc5, sc6, sc7, sc8),

where the relaxation parameters are given by

sr3 = sr5 = τr

τ 2
r + τ 2

c

, sc3 = sc5 = −τc

τ 2
r + τ 2

c

, (A10)
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TABLE VIII. Example 4: A Comparison of the GREs and CPU Time between MRT-FDLBM and SMRT-FDLBM.

α = 0.1 α = 0.5

c = 10 c = 20 c = 10 c = 20

MRT-FDLBM GRE 4.3708 × 10−4 1.1080 × 10−3 5.3055 × 10−4 7.9273 × 10−5

CPU time 40.42 80.11 39.09 77.65
SMRT-FDLBM GRE 4.4798 × 10−4 4.2090 × 10−4 5.4335 × 10−4 8.9687 × 10−5

CPU time 33.76 67.49 32.81 64.49

Decrease percentage 16.48% 15.75% 16.07% 16.95%
TRT-FDLBM GRE 4.3580 × 10−3 1.4924 × 10−2 6.8148 × 10−4 4.0286 × 10−4

CPU time 29.32 58.55 29.22 58.37

Decrease percentage 27.46% 26.91% 25.25% 24.83%

APPENDIX B: THE CALCULATION PROCESS OF THE TRT-FDLBM

The evolution equation of TRT-FDLBM is the same as Eqs. (10) and (16), but some of the distribution functions are defined
differently from MRT-FDLBM, including f̂ j, f̂ +

j , f̄ j, f̄ +
j . They can be defined as follows:

f̂ j = f j − 1
2�t

[ − w1
(

f j − f eq
j

) − w2
(

f j̄ − f eq
j̄

)]
, (B1a)

f̂ +
j = f j + 1

2�t
[ − w1

(
f j − f eq

j

) − w2
(

f j̄ − f eq
j̄

)]
, (B1b)

f̄ j = f j − 1
2 h

[ − w1
(

f j − f eq
j

) − w2
(

f j̄ − f eq
j̄

)]
, (B2a)

f̄ +
j = f j + 1

2 h
[ − w1

(
f j − f eq

j

) − w2
(

f j̄ − f eq
j̄

)]
, (B2b)

where w1 = ( 1
τ1

+ 1
τ2

)/2 and w2 = ( 1
τ1

− 1
τ2

)/2, j̄ represents the opposite direction from j. For NCDE, τ1 is an adjustable
relaxation parameter, τ2 is related to the diffusion coefficient and satisfy τ2c2

s = K . In addition, the key calculations need to
be adjusted as follows:

f̂ +
j = P11 f̂ j + P12 f̂ j̄ + P13 f eq

j + P14 f eq
j̄

, (B3)

where

P11 = 4 + �t2
( − w2

1 + w2
2

)
4 + 4�tw1 + �t2

(
w2

1 − w2
2

) , P12 = −4�t

4 + 4�tw1 + �t2
(
w2

1 − w2
2

) , (B4)

P13 = 2�t
(
2w1 + �tw2

1 − �tw2
2

)
4 + 4�tw1 + �t2

(
w2

1 − w2
2

) , P14 = −P12. (B5)

f̄ +
j = P21 f̂ j + P22 f̂ j̄ + P23 f eq

j + P24 f eq
j̄

, (B6)

where

P21 = 8 + 2�tw1 + �t2
( − w2

1 + w2
2

)
8 + 8�tw1 + 2�t2

(
w2

1 − w2
2

) , P22 = −6�t

8 + 8�tw1 + 2�t2
(
w2

1 − w2
2

) , (B7)

TABLE IX. Example 5: A Comparison of the GREs between MRT-FDLBM and LBM.

A = 0.5 A = 1.0 A = 1.5 A = 2.0

LBM 4.8457 × 10−2 8.4781 × 10−2 5.8348 × 10−1 —
β = 2.0 MRT-FDLBM 1.0915 × 10−3 2.1201 × 10−3 7.3488 × 10−3 1.3168 × 10−2

LBM 4.7721 × 10−2 6.2417 × 10−2 1.8778 × 10−1 —
β = 1.5 MRT-FDLBM 1.1981 × 10−3 1.3396 × 10−3 4.9498 × 10−3 9.9948 × 10−3

LBM 4.7266 × 10−2 5.3879 × 10−2 1.0455 × 10−1 3.8765 × 10−1

β = 1.0 MRT-FDLBM 1.3185 × 10−3 9.2493 × 10−4 2.5817 × 10−3 6.3101 × 10−3

LBM 4.6952 × 10−2 4.8457 × 10−2 5.5614 × 10−2 8.4781 × 10−2

β = 0.5 MRT-FDLBM 1.4490 × 10−3 1.0915 × 10−3 9.7717 × 10−4 2.1201 × 10−3
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FIG. 16. Example 5: GREs of MRT-FDLBM. (a) GREs at different grid sizes and (b) GREs with different time steps.

P23 = 3�t
(
2w1 + �tw2

1 − �tw2
2

)
8 + 8�tw1 + 2�t2

(
w2

1 − w2
2

) , P24 = −P22. (B8)

f j = P31 f̄ j + P32 f̄ j̄ + P33 f eq
j + P34 f eq

j̄
, (B9)

where

P31 = 16 + 4�tw1

16 + 8�tw1 + �t2
(
w2

1 − w2
2

) , P32 = −4�tw2

4 + 4�tw1 + �t2
(
w2

1 − w2
2

) , (B10)

P33 = �t
(
4w1 + �tw2

1 − �tw2
2

)
16 + 8�tw1 + �t2

(
w2

1 − w2
2

) , P34 = −P32. (B11)
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