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Instability of the body-centered cubic lattice within the sticky hard sphere and Lennard-Jones
model obtained from exact lattice summations
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A smooth path of rearrangement from the body-centered cubic (bcc) to the face-centered cubic (fcc) lattice
is obtained by introducing a single parameter to lattice vectors of a cuboidal unit cell. As a result, we obtain
analytical expressions in terms of lattice sums for the cohesive energy where the interaction is described by a
Lennard-Jones (LJ) interaction potential or a sticky hard-sphere (SHS) model with a ™" long-range attractive
term. These lattice sums are evaluated to computer precision by expansions in terms of a fast converging Bessel
function series. Applying the whole range of lattice parameters for the SHS and LJ potentials we prove that
the bce phase is unstable (or, at best, metastable) toward distortion into the fcc phase in the low temperature
and pressure limit. Even if more accurate potentials are used, such as the extended LJ potential for argon or
chromium, the bce phase remains unstable. This strongly indicates that the appearance of a low temperature bce
phase for several elements in the periodic table is due to higher than two-body forces in atomic interactions.
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I. INTRODUCTION

The stability of different bulk phases and their possible
connections through distortions and rearrangements in phase
transitions remain an open and challenging field in solid-state
physics [1]. Solid-to-solid phase transitions are commonly
modeled by computer intensive molecular dynamic or Monte
Carlo simulations at finite temperatures and pressures [2,3]
or by various algorithms to find phase transition paths on a
Born-Oppenheimer hypersurface [4]. For example, the rel-
ative stability of the face-centered cubic (fcc) versus the
hexagonal close packing (hcp) and possible transition mech-
anisms between these two phases for the rare gas elements
has been a matter of a long-standing controversy [5—12].
Although fcc has a higher excess entropy compared to hcp
by a rather small difference (for the hard-sphere model it is
0.001 15 4 0.000 04kp per sphere [5]), the energetic stability
of the fcc over the hep phase for the rare gas solid argon (at
low temperatures and pressures) is due to quantum effects
(phonon dispersion) [9,11]. Similarly, the transformation be-
tween the body-centered cubic (bcc) <> fcc phases and their
relative stabilities have been the subject of many discussions
[13,14] as the exact martensitic type of transformation path
for a solid, such as in iron-based materials, or in clusters, is
still being debated [15-18].

It is commonly believed that strong repulsive forces favor
close-packed arrangements, such as fcc or hcp, whereas soft
repulsion favors less dense packed structures, such as bcc
[19-22]. Laird showed that the bcc phase is unstable within
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the hard-sphere model [23], whereas Hoover ef al. and later
Agrawi and Kofke showed that soft repulsive potentials of the
form ar™" with small n values are required to stabilize the bcc
phase [19,24]. Very recently Ono and Ito used phonon disper-
sion curves to show that soft Lennard-Jones (LJ) forces are
required to turn the bee phase into a minimum [25]. However,
as minima can be very shallow on an energy hypersurface,
one requires accurate numerical or analytical methods to de-
termine if the bcc phase represents a (metastable) minimum
for a two-body potential or not. Moreover, the bce phase was
absent in recent LJ lattice dynamic simulations of Travesset
[8]. Inverse power law potentials, such as the LJ potential have
the advantage that properties, such as the cohesive energy
can be evaluated analytically through lattice sums [26,27].
If a single path through a lattice parameter can be found [4]
describing smoothly the bcc < fcc transition (not necessarily
a minimum energy path), one gains valuable insight into the
stability of the bcc phase.

Conway and Sloane introduced the isodual mean-centered
cuboidal lattice (mcc) which can be seen as an average be-
tween the bcc and the fcc lattices [28]. They introduced
lattice vectors depending on two parameters connecting the
bce, mee, and fec lattices. Recently we were able to find
fast converging lattice sums for these cuboidal lattices de-
rived from their corresponding Gram matrices and quadratic
forms using a single parameter [29]. These lattice sums, which
can be evaluated to computer precision, will be introduced
in the next section and applied to analyze the energy pro-
file of the bcc lattice distortion into the fcc densest packing
using LJ and sticky hard-sphere (SHS) interaction poten-
tials. For more realistic two-body forces we apply extended
LJ potentials (ELJ) [12,30] for Ar, and Cr, and briefly
discuss Li,.
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II. METHOD

Lattice vectors for the unit cell of a cuboidal lattice depend-
ing on a single parameter A are defined by

A V2AFI
BIA) = (1,0,0), bJA) =2, YAT1 o),
A+1 A+l

1
A+1" A+ DV2A+T

T _
"3(A)‘( (A+1)(2A+1>>'

The corresponding Gram matrix for the quadratic form is
given by the scalar product between these lattice vectors,

A+1 A 1

A A+1 1

Gij(A) = (bi(A), b;(A)) = T
1 1 2

2)

The cuboidal lattices are defined in the range A € [%, 1] [29]
and for the special values of A = %, A= %, A= %, and
A = 1 lattice vectors for the axial centered cuboidal (acc) [28],
bce, mec, and fec lattices are obtained with the number of
nearest neighbors of 10, 8, 8, and 12, respectively. This sets
the minimal distance between two lattice points to 1 for the
range A € [%, 1], which ensures that the lattice deformation is
compatible with the hard-sphere model. The volume spanned
by these three vectors is

V(A) = /det G(A) = 24"*(A + 1)73/2, (3)

with a maximum volume at the bcc structure (A = %). The
lattices with the corresponding lattice vectors (1) are shown
in Fig. 1.

FIG. 1. The four lattices acc, bcc, mcc, and fcc along the
cuboidal transition path. The corresponding primitive cell basis vec-
tors according to Eq. (1) are shown for the bec lattice. For the fcc
lattice the lighter colored atoms moving towards the central atom
(0,0,0) become nearest neighbors with the overall cuboidal fcc struc-
ture displayed.

The choice of the basis vectors (1) has the advantage
that only b, and b3 move in this three dimensional lattice
transformation. The length of b, and b, is 1 for all A values
considered, and the angle between b; and b3 is the same
as between b, and b3. From the Gram matrix one obtains
the atomic packing fraction or packing density [31] for the
cuboidal lattices [29],

T [(A+1)

A)= — ——. 4

p(A) 2 " 4)

This yields the well known values for fcc (p(1) = ”‘Tﬁ) and
bcce [p(%) = %]. In fact, from this formula we deduce that

bec is the least packed arrangement of all the cuboidal lattices
considered here.

Using an (a,b) LJ potential in its most general form
[32,33]

ab 1/r\" 1/r\°
wean = Lo () -5(5) |

where 7, is the minimum (equilibrium) distance, € > 0 is the
dissociation energy, and a > b > 3 are real numbers, we ob-
tain an analytical expression for the cohesive energy in terms
of lattice sums L(a, A) and the nearest neighbor distance R in
the lattice [27],

Eiy(R,a,b,A)

_ abe |:1L EC a—lLbA T, b:| 6
= Ya—byla" )<E> P )(E) -

Here, b > 3 is required to avoid the singularity in L(b, A) at
b = 3 [30] (although these lattice sums can be analytically
continued [26,29,34]). The lattice sums L(a, A) are defined
through their corresponding quadratic forms i' Gi, i € Z> by
(31]

, 1 a/2
LA =2 (iTGi>

ieZ?

= Z/< At )a/z )
- AG+ P2+ H+k)?+ (G +k)? ’

i),k

where the prime symbol indicates that the term corresponding
toi' = (0, 0, 0) is omitted in the summation. For small values
of a, these triple sums are slowly convergent, and one needs
to find expansions in terms of fast converging series to obtain
computer precision [26]. A number of methods to achieve
this have recently been introduced by our group [27,29]. A
program to evaluate these lattice sums including the cuboidal
lattices considered here is freely available from our web site
[35]. For this paper we use either the Terras decomposition of
the Epstein ¢ function [27,36] or the decomposition in terms
of Jacobi 6 functions and integral transforms to produce series
expansions in terms of Bessel functions [27,29]. More details
are given in Appendix A.

The SHS model can easily be obtained in the limit of
a — oo of the LJ potential [37], and the cohesive energy given
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by the expression,

b
Esus(R, b, A) = lim Es(R.a, b,A) = —<L(b,A)( =) |
a— o0 2 R

(8)
with R > r,. This gives a direct relation between the SHS
energy of the solid and the corresponding lattice sum.

It is convenient to introduce dimensionless units, i.e., R* =
R/r, and E* = E /e. The minimum nearest neighbor distance
for a cuboidal lattice can be found from (6),

L(a, A):| 1/(a—b)

L(b,A) ©)

For the SHS model this reduces to R},
energy at minimum becomes

Riin(a, b, A) = [

= 1. The cohesive

1[L(b, A 1/(a—b)
E*(Rpiy, a,b,A) = —= , 10
(Riins a. b, A) Z[L(a’A),,} (10)
and for the SHS model we attain E*(R},, =1:b,A) =

—L(b,A)/2. Finally, a more realistic two-body potential is
used where lattice sum techniques can still be applied. This
requirement is fulfilled by the ELJ potential, which is an
inverse power series expansion in terms of the distance R,

Nmax

Epuy(R. i A) = 5 3 eul (@ AR, (11)

n=1

with )", ¢, = —€ and a, > 3 [12,30].

III. RESULTS AND DISCUSSION

Starting with the discussion of the SHS model, the differ-
ence in cohesive energies between the A-dependent cuboidal
lattices and the fcc lattice (A = 1) as a function of the two
parameters b and A,

AE*(b,A) = %[L(b,A =1)—L(b,A)], (12)
at R*

*in = 1.0 is shown in Fig. 2. It is evident that the SHS
model predicts a maximum in energy at the bcc structure.
In fact, it was proved recently that dL(b,A)/0A =0 and
82L(b,A)/8A2 >0atA = % (bee) for all b € (3, 00)’s [29].
The path chosen along the A parameter may not repre-
sent the true minimum energy path for the bcc — fcc phase
transition, but what matters here is that it is clearly downhill
energetically towards the fcc structure. As a result, the bec lat-
tice is unstable with respect to distortion to fcc within the SHS
model. There is also the opposite path towards the acc crystal
A= %), which has to our knowledge not been observed in
nature. Figure 2 shows that for low b values, AE*(b, A) starts
to increase again (at lower exponents AE*(b, A) — oo for
b — 3). The most stable bcc lattice is observed at AE*(b =
5.49363406..., %) = 1.090510595 - - - with a b value close
to the exponent b = 6 used for dispersive type of forces [38].
As the SHS model clearly has its limitations, we turn to
the more accurate (a, b) L] potential, i.e., we introduce softer
repulsive walls into the SHS model. This will also remove
the discontinuity in the AE*(a, b, A) curve at the fcc point
(A =1). Due to the attractive long-range lattice forces, the
minimum distance between two neighboring lattice points in
Eq. (9) is R¥. (a,b,A) < 1, provided that a > b > 3 for a

min

b=5.49

<
S
[
g 05
0.4
05
0.6
0.7
A
10 14
FIG. 2. Difference in cohesive energies AE*(b,A)=

%[L(b, A=1)—L(b,A)] between the cuboidal lattices and fcc
for various exponents b and lattice parameter A of the SHS model.
The contour interval chosen is 0.1. The vertical black line at
b = 5.493 634 shows the point of least instability for the bcc lattice.

finite (a, b) combination. Figure 3 shows that R}. (a, b, A)
does not vary much with changing A for a fixed (a, b) com-
bination. The minimum distance for the (12,6) LJ potential is
Ry (12,6, %) = 0.951864 819 for the bce lattice compared
toR%. (12,6, 1.0) = 0.971233 6910 for fcc. For large a val-
ues the minimum bcc nearest neighbor distance Ry, turns into
a very shallow maximum and finally approaches the SHS limit

of R, = 1.0. From Eq. (9) and 0L(b,A)/0A =0 at A = %
[29], it follows that dR%, (a, b, A)/dA =0 at A = 1, and the

bce point remains a critical point for all (a, b) values in the
allowed range.

Shorter distances are usually associated with greater sta-
bility of the lattice. This is, however, not the case for
the bcc compared to the fcc lattice as Fig. 4 shows.
In fact, the bcc lattice is not a stable lattice compared

100 1 1 ; | L30)
L : ELJ
0.95 w LJ(12-6)
B — |ue)
! ! ! | L12-4
R I N B By e
< ! ! ! i
<= | | | |
S 085 | ! ! |
5 : : : :
0.80 4 | | | |
acc bcc mcc fecc
0.75 - \_/__/ LJ(6-4)
\——/—/ LJ(12-3.1)
0.70 41— x : x
L L L A4
3 2 2

FIG. 3. Minimum distance R}, (a,b,A) for various (a,b) LJ
potentials and for the ELJ potential for argon (taken from Ref. [9])

dependent on the lattice parameter A.

035306-3



BURROWS, COOPER, AND SCHWERDTFEGER

PHYSICAL REVIEW E 104, 035306 (2021)

10

#*# @0 v D>e el

(12,4)
(12,5)
(12,6)
(30,6)
(6,4)
(54)
Ar

Cr

FIG. 4. Cohesive energy differences e 4, by A) =
E*(R};,,a,b,A) — E*(R},.,a,b;A = 1) for the (a, b) LJ potential
dependent on the lattice parameter A and for the two ELJ potentials

of argon and chromium (see Appendix C).

AE*(R*

to fec, i.e., AEY, roo(a@, D)=E*(Riy, pecr @ b, 3)—E*(Riy e
a,b,1) > 0 for all a > b > 3. The bcc lattice will continu-
ously distort by lowering the energy toward the most densely
packed fcc lattice except for a very small (a, b) range where
the bee phase becomes metastable. In this case, the minimum
atA < % shifts toward the bce structure, see Fig. 5.

The (a, b) phase transition line from the unstable to the
metastable bcc lattice is approximately described by the
polynomial  apr = —6.3829845x107*b}; + 3.818 6745
10*21712yr —1.346 6248bpp+1.1373783x 10! with apr > bpy €

(3,5.256 73] (see Appendix B), and we see an almost linear

30 r - ,

25 \\

2.00

1.00

FIG. 5. Energy difference AE

bee, fee (a’ b) = E*(R*min.bcc’ a, b’ % )_
E* (R} > @ b, 1) between the bee and the fee lattice for the (a, D)
LJ potential. The contour interval chosen is 0.0625. The almost linear
(yellow) curve in the lower left corner of the plot describes the phase

transition line to a metastable bcc state.

behavior as shown as a yellow line in the left lower corner of
Fig. 5. This also explains why Ono and Ito obtained imaginary
phonon frequencies for some low (a, b) combinations [25]
(their results have to be taken with some care as the r—>
potential used leads to a singularity in the cohesive energy).
In fact, the bcc structure becomes metastable if and only if
L(a,A)d*L(a, A)/dA? < L(b, A)3’L(b, A)/dA*> for A= %
and a > b > 3 (see Appendix B). However, these minima
appear at energies AEy ¢ (a,b) > 0.2 (a <7.660383)
for rather unphysical potentials with low AE* values only
if a = b. As an example, for a (4,3.1) LJ potential the bcc

structure is a minimum at AE;‘CC’&C = 170.2 with an activation

barrier of AE** = 12.2 situated at A = 0.6 on the path toward
the distortion to the fcc structure. As dL(b,A)/0A =0 at
A =1 [29] we obtain IE*(R};,, a,b,A)/0A =0 at A=}
(see Appendix B), and the bcc structure remains a critical
point for all (a, b) combinations. Moreover, if the exponent
a responsible for the repulsive wall increases, we approach
the limit of the SHS potential with much higher energies
compared to the LJ potential.

By applying an inverse power law potential for the repul-
sive wall (opposed to the long-range part in the SHS model)
in Monte Carlo simulations, Agrawal and Kofke also showed
that the bcce phase is unstable [19]. An interesting point of this
bce — fcc phase transition is that the Einstein frequency wg,
obtained analytically in terms of lattice sums from a single
atom moving in the field of all other atoms [12], remains
positive, wg(a,b,A) > 0, for all A €[4,1] and a > b > 3
(see Appendix C). As a consequence, a single atom is locked
and more than one atom has to move simultaneously along the
bce — fee path similar to a Zener or Bain martensitic trans-
formation [17,39]. As Fig. 4 shows, the distortion along the A
parameter away from bcc can also occur towards a metastable
lattice with A < % and higher packing density. Using a (12,6)
LJ potential the metastable minimum sits at a lattice with
A =0.3962483 - - - and packing density p = 0.686 1655 - - -,
a cuboidal lattice in-between bcc and acc. Finally, the mcc
lattice is just a lattice along the energetic downward path
towards fcc as it is for the SHS model.

The question remains as to why low temperature bcc
lattices are observed in nature given their instability, large
volume and small bulk modulus within the cuboidal struc-
tures. It is clear that two-body forces favor dense packings
with the largest kissing number for an atom, that is fcc or
hcp. The answer, therefore, lies in the failure of the two-body
potential to correctly describe the interactions in the crystal,
i.e., neglecting important higher than two-body interactions
(and perhaps quantum effects for quantum solids, such as
helium). It is well known that the many-body expansion is
only slowly convergent for metallic systems [40,41].

To see if the form of the LJ potential limits our conclusion,
a more accurate ELJ two-body potential is taken, derived from
relativistic coupled cluster theory for argon [9,42], see Fig. 6.
As in the case for the (12,6) LJ potential, the ELJ poten-
tial has a minimum R}, (A) value at the bcc structure (see
Appendix D). More importantly, the Ef ;(A) curve does not
change substantially in shape and is only slightly shifted
compared to the (12,6) LJ potential as shown in Fig. 4.
This is perhaps expected from the comparison between the
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FIG. 6. Potential energy curves V*(r*) (in dimensionless units)
for a (12-6) LJ potential, and for Ar,, Li,, and Cr, (see Appendix C).

two potentials, and from the fact that for the fcc struc-

ture E* (R}, 1.0) = —7.8532 [12] for the ELJ potential and
close to E*(R%;,,12,6,1.0) = —L/(2L;») = —8.6102 for

the (12,6) LJ potential (expt. E* = —6.4951 using the data
from Ref. [43]).

To underscore our argument even further the unusual po-
tential energy curve for Cr, is considered. Here we use
experimental potential values of Casey and Leopold [44] but
attenuated for the long-range dispersion using the Cg coef-
ficient of Pavlovi¢ and co-workers [45], and finally fitted to
an extended Lennard-Jones potential (see Appendix D). This
potential curve, shown in Fig. 6, is extremely broad and has
a large dip in the medium distance range r € [1.3, 1.7]r, and,
therefore, deviates substantially from a typical potential en-
ergy curve, such as LJ or Morse [46]. As it turns out, this
potential leads to far too short solid-state distances and far
too high cohesive energies for the solid state. However, the
chromium AE*(R}. ,a, b, A) curve in Fig. 4 shows that bcc
remains a transition state along the distortion parameter A in
line with all the other two-body potentials.

We also looked at lithium, which adopts a bec structure at
normal conditions. Lithium has an extremely broad potential
energy curve (see Fig. 6) even in the repulsive region [47],
which leads surprisingly to a collapse of the crystal to a
very small nearest neighbor distance (see Appendix D). It is
clear that N-body forces describing correctly the confinement
of the atoms in the solid state become very important here,
i.e., the N-body expansion is not converging smoothly with
increasing N for metals, such as lithium or chromium [41].
One may argue that a broad potential energy curve, such as
for Li, gives lower exponents for LJ potential energy curves
typical for metallic systems. It should be pointed out, however,
that the long range has to be correctly described and poten-
tial curves containing terms of =", n < 3 in the interaction
between atoms in the solid lead to divergent series (if not
analytically continued). Moreover, the correct description for
the cuboidal transformation for lithium [18], for example, by
ab initio or density functional theory, requires the inclusion of

vibrational and thermal effects, which is currently a subject of
our investigating.

IV. CONCLUSIONS

From exact lattice summations we were able to derive
cohesive energies within the SHS and LJ models analytically
and compute them as Bessel function expansions to computer
precision. Both potentials result in an unstable bce phase dis-
torting toward the fcc phase or toward a phase in-between acc
and bce. The metastable bee phase for an (a, b) LI potential
occurs for unphysical potentials with very low (a, b) values.
The situation does not change if accurate two-body potentials
are used, such as for argon or chromium, the latter known to
crystallize in the bec phase. As a result, the bee phase (at low
temperatures and pressures) is stabilized only by higher than
two-body forces, which have to be large enough to compete
with the fcc (or hep) structure. High pressures will most likely
destabilize the bce phase in this simple model, which we are
currently exploring. The mcc lattice unknown in nature and
introduced by Conway and Sloane [28] is merely a point on
an energetic bcc — fcc downhill path. How well effective
two-body potentials [48,49], which incorporate many-body
terms, will work for the bce problem remains to be seen.
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APPENDIX A: LATTICE SUMS AND THEIR DERIVATIVES

The Gram matrix G in Eq. (2) leads to the following lattice
sum:

L(a,A) = L(2s,A) = L(s,A)= Y _'("Gi)™
iezZ3
A+1 g
=Z’( L o — >,(A1>
A+ )+ G+ K2 + (i + k)?

i,j,keZ

with the prime indicating that the term with iT=1(0,0,0)is
not included and A € [%, 1] for the cuboidal lattices consid-
ered here. These sums are important for inverse power law
potentials, such as the LJ potential [29]. Here the exponent
s is set to s = 5 for simplicity compared to the main paper.
The lattice sums for the acc, bee, mec, and fec lattices are ob-
tained for the values of A= 1, A=1, A= \/%, and A = 1,
respectively. We split the lattice sum into two sums according
to Ref. [29],

A+1) .
L(s,A) = ———[S1(s,A) + $2(s,A)] with
Sis. A) = Y AP+ P+
i,j,keZ
and  S»(s,A) = Z’(—1)i+j+k(Ai2+j2+k2)’5. (A2)
i,j,keZ

For the special case of A = 1, the sum S (1, s) represents the
lattice sum for the simple cubic lattice, and the alternating sum
S>(1, s) is known as the Madelung constant when s = % [50].

In the following, we only consider s > %, keeping in mind
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that the lattice sums are valid for all s € R through analytical
continuation and that S;(s, A) [and, therefore, £(s, A)] has a
singularity at s = %

The two lattice sums can be expanded in terms of modified
Bessel functions of the second kind K,(x) [29],

S1(s, A) = ay(s) + ax()A'™ + az(s)A" ™/

X Y en()K, i [din(s)VA],

(A3)
i=1 N=1
Sa(s, A) = by(s) + as(s)A"
x Y pin(K,—ilgin (VAL (Ad)
i=1 N=0
with the following coefficients:
2
a(s) = 4L $B),  ax(s) = ——(2s - 2),
(s—1)
as(s) = % bi(s) = —4(1 — 2'7)¢ ()B(s),
cin(s) = N (I72N) T2, diy(s) = 2xiVN,
4N & 1\ D/2
pin(s) = (=1)'ra(4N + 1)( + ) :
q,'N(S) = 7Ti\/ SN —+ 2 (AS)

£ (s) is the Riemann ¢ function, B(s) is the Dirichlet 8 func-
tion, and r,(N) is the number of representations of number N
as a sum of two squares.

We are interested in the first and second derivatives,
04 L(s,A) :=3L(s,A)/0A and G/EL(S,A) = 32L(s,A)/dA?
of the lattice sums. It was already proven directly from (A2)
that 9,L(s, A)laz1p =0 and 37L(s, A)lazipp > 0 if 5 > 3
[29]. We, therefore, derive from Eq. (A2) the following ex-
pressions:

WL A) = LA + k)
x [04S1(s, A) + 0452(s, A)], (A6)
and
2 _osts+ 1)
0, L(s,A) = (A+ 1)2£(s ,A)+ 2 18A£(S,A)
+ M[zajs1 (5,A) + 838235, ). (A7)

The derivatives 0451(s, A), 0452(s,A), 8§S1(s, A), and
8§Sg(s, A) are evaluated from the Bessel function expansions
(A3) and (A4). For this, the following relations are required:

2 1
K@) = Kopa0) — 2 Dk ) (A3)
8K, (x) = K(x) Kyir = —2K5<x)—1<7
_ —%[ Koot () + Ko (0], (A9)

50 H
1
L(a, 5)
2
40 . 0, L(a, A)\" 1
473
30 H
N
N
20 N
N
10 +
0 T T T T T
0 5 10 15 20 25 a 30

FIG. 7. Lattice sums L(a, %) and Z)jL(a, A)la=1/2 (bece lattice) as
a function of the exponent a. Note that d4L(a, A)|4=1,» = 0 for all a
values.

After some algebraic manipulations the following expressions
are obtained:

81 (5, A) = —(s — Da(s)A~> — “37(”/4—“/2)
X Y en(9)din($)K[din(s)VAL,  (A10)
i=1 N=1
9,5 o az(s) —(s/2)
452(s,A) = ———A

X Y pin(9)giv (K lgiv (VAL (A1)
Lo L

3251(s,A) = s(s — Daa(s)A™ ! + —aiS)A’[(”l)/z'

cin(8)d2 (9K, y1[din (5)VA],  (A12)

e
Mg

1

=
Ir

I3

9252(s.4) = D g1+

Y piv()iy (K1 lgiv(s)VAL (A13)

1 N=0

X
e ”

i

The Bessel function sums are fast converging, therefore, mak-
ing the evaluation of lattice sums and their derivatives to
computer precision attainable within less than a second on a
modern laptop computer [35].

APPENDIX B: CRITICAL POINTS
FOR THE BCC STRUCTURE

For the following, we set a to 2s, making the lattice sum
L(a,A) = L(2s,A), which is more convenient for the LJ po-
tential. Figure 7 shows the lattice sums and their second
derivative for A = % (bcce lattice) as a function of the exponent
a. It is clear that 8§L(A, a)|a=1,2 has a peculiar form with a
minimum at a = 5.52534 and a maximum at a = 12.576 76,
this becomes important in the discussion of the bcc stability
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for Lennard-Jones systems detailed below. However, it is
illustrative to evaluate the minimum distance derivatives
diR%..(a, b, A) for A= and n = 1,2 (using dimensionless
quantities as discussed in the main paper). The first derivative

of R}, (a, b, A) defined in Eq. (3) for a > b > 3 is given by
(a b,A) (9sL(a,A) 09sL(b,A)
0aR ,b,A Riin —
WRoin@:0.0) = =5 =\ Tway — Lo a)
(BI)

which for the bcc lattice (A = %) is zero because
9 L(a, A)la=1/2 = 0 identically for all values of a > 3 [29].
The second derivative evaluated at A = % is given by

_ O3L(D, A)>]
Lb.A) )1y

(B2)

IR:(a, b, A)lazi

min

_ [Riina.b,A) (93L(a, A)
n [ a—b ( L(a,A)

Evaluating the expression in parentheses in (B2) shows that
R} i.(a, b, A) has a minimum at A = 3 1f a < 14.17598. For
values a > 14.17598 we have a certam range of b values
where R}, (a, b, A) becomes a shallow maximum as is the
case for the (30,6) LJ potential shown in Fig. 3.
In a similar way we evaluate the cohesive energy for an

(a, b) LJ potential at R* . (a, b, A),

min

1 L(b,A)\“™”
E” (lem a,b,A) = m[bL(a,A)(—>

L(a,A)
L(b, A)\"/ @
—aL(b,A) *,4)
L(a,A)
1[L(b, A)l/e 7/
LG A" , (B3)
2| L(a, A)l/a
The first and second derivatives are evaluated as
ab
aAE (lel'l’ a, b’ A) E (lel’l’ a, b9A) (a _ b)
104L(b,A) 104L(a,A)
b L(b,A) a L(a,A)
(B4)
and
2E*(R*. ,a,b,A)
{8AE*(Rmm, a, b, A))?
E*(R:. ,a,b,A)
b 1 82L b, A 1 3%2L(a, A
+ 2 CE* (R, b A) &.4) 13L@4)
a—>b b L(b,A) a L(a,A)
1{04L(b, A)Y*  1{0sL(a,A)}*
- (BS)
b L(b,A)? a L(a,A)?

The first derivative is zero for the bcc lattice (A = %) because
9 L(a, A)|s1 2 = 0 as mentioned above. This makes the bcc
point strictly an extremum along the A coordinate for any
(a, b) combination of the LJ potential. The second derivative

0.460

0.456+

0.452+

0.448

0.444 ; ‘
a = 525673 a = 766039
|
| |
0.440 " T " E— T " T —
3 4 5 6 7 8
a
. . 93L(@A)| = .
FIG. 8. Lattice sum ratio % against the exponent a at
*2

i -1
lattice parameter A = 3.

evaluated at A = % gives

ab
RE* (R, a, b, A)lamrp = a—E (Rimra,b, %)
103L(b, A)lazip 1 03L(a,A)la=12
. A1z A2 1 (B6)
L(b.5) a  L(a ;)

Hence, the bcce instability can be a maximum or a (metastable)
minimum depending on the sign of the expression in the
square brackets. The transition to a metastable phase occurs
at

AIL(b, A)lazi )
bL(b, 3)

_ d3L(a, A)laz12 (B7)
aL(a,3)

with b < a. For the singularity at a = 3 we get from compu-
tation,
02L(a, A)|a= 4
fim 4@ Dl=1p _ 2 (B8)
a— 3 aL(a, 5) 9
which is shown in Fig. 8. This can be proven using a Laurent
expansion around the simple pole at a = 3 [29],

(A
L(A:s) = (3) +CO(A)+;2 "\ (A)a — 3Y', (BY)
with
_ @+ 2 _ 3
1) =7 = and e () = e
(B10)
This gives
B2L(a,A)  92c_1(A)
Lad) ~ @ To@=3

which results in (B8) fora =3 and A = %
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From this limit it is clear that a metastable minimum can
only exist if a < ays = 7.660 39 but with a limited range of
small b values evident from (B7) and Fig. 8. The maximum of
the curve shown in Fig. 8 is at an.x = 5.25673 for which all
b < a < anax values result in a metastable state. We note that
the curve in Fig. 8 is almost (but not quite) symmetric around
the maximum. This makes the phase transition line from the
unstable to the metastable bce phase almost linear on the (a, b)
plane.

APPENDIX C: EINSTEIN FREQUENCY

We consider the Einstein frequency of a single atom of
mass M moving in the field of other atoms (in atomic units)
for an (a, b) LJ potential [12],

wp (R, a,b,A)
1 3¢ [ab [r,\“P*!
- 3_re MV a—b <E>

a—b
X [(a—l)L(a~|—2, A)—(b—1)L(b+2, A)<5) ]

e

172

(ChH

It is clear that wg(R) describes the instability of lattice by
moving a single atom as opposed to a collective movement
of several atoms in the lattice. However, at Ry, we always
arrive at wg (Rmin) > 0 for a finite mass M. To prove this we
have to show that the term in the square brackets stays positive
at R, for a fixed A value, that is

L@+2,4) (b—1)L(a,A)

Lb+2,A) " (a—1)L(b,A) €2
As a > b it suffices to show that
L(a+2,A) _ L(a,A)
Lb+2,A) " L(b,A)’
or, more generally,
L(b,A) L(a,A) (3)

L(b+h,A) ~ La+h,A)

forany h > 0 and a > b > 3. The proof goes as follows.

A function g(x) is said to be logarithmically convex on an
interval if g(x) > 0 and In g(x) is convex on the interval. It can
be shown that the sum of logarithmically convex functions is
logarithmically convex, e.g., see Ref. [51, p. 19]. It follows
that the lattice sum L(x, A) is a logarithmically convex func-
tion of x because it is a sum of terms of the form n™*, each of
which is logarithmically convex.

Now suppose that f(x) is a convex function and x;, x, >
0. By applying the definition of convexity to the interval
[0, x; 4+ x»] we have

[ <

X2 X1

f0)+

X1 +x2 X1+ X

SO+ x2),
whereas interchanging x; and x, gives

f) < ——F(0) + x2x2f<x1+x2).

X1+ x2 X1+

Adding the inequalities gives

S+ f(x2) < f(O0)+ f(x1 +x2). (C4)

Incidentally, it can be shown from this using mathematical
induction that

fO)+ fO)+ -+ fx)
<Sm=DfO)+ flx; +x2 4 -+ x,),

a result known as Petrovi¢’s inequality, e.g., see p. 22 of
Ref. [52] and Ref. [53]. We will only require the case n = 2
as given by (C4).

Suppose a > b, h > 0, and g(x) is a convex function for
x> b. Let f(x) = g(x+ b) and take x; = h and x, = a — b.
Then Petrovi¢’s inequality (C4) gives

fh)+ fla—=b) < f(O)+ fla—b+h).
This implies
8b+h)+ga) < gla+ h) + g(b),
which is equivalent to
g+ h) —g(b) < gla+h) — gla).
It follows that if G(x) is logarithmically convex, then

In Gb+h)—In GOb) <In Gla+h)—In G@a). (C5)
This can be rearranged to give

G(b+h) _Gla+h)
G(b) G(a)

which is exactly the inequality we seek for the lattice sums.

’

APPENDIX D: EXTENDED LENNARD-JONES
POTENTIALS FOR Li,, Ar;, AND Cr,

The extended Lennard-Jones potential is defined by

Nmax Mmax

Veui(r, ¢cp) = Z c,r~ ™ with chre_““ =-D,. (DI1)
n=1

n=1

It then follows that the cohesive energy for an extended
Lennard-Jones potential becomes

Nmax

Epuy(R, cn, A) = 5 ;cnuan,mwn, (D2)

with R being the nearest neighbor distance in the solid. The
corresponding parameters for the potential energy curves in
reduced units, V*(r*), for Ar,, Li,, and Cr, are listed in
Table I. For Ar, the extended LJ potential from Ref. [9] has
been converted to dimensionless units for this paper (r* =
r/re, V¥(r) =V*(r)/D, from which follows that r}. =1
and Vi, = —1).

For Cr, we took the potential curve from experimen-
tal data of Casey and Leopold, who obtained the potential
energy curve V (r) from vibrational data through the Rydberg-
Klein-Rees (RKR) method [44]. This potential curve only
describes the medium range of the potential energy curve.
We, therefore, attenuated the long range by matching the
last point Ryx = 3.35 Atoa —C(,/r‘6 dispersion curve. Fi-
nally, the points are used to fit an inverse power potential
(extended Lennard-Jones) to the potential energy curve fix-
ing the Van der Waals coefficient to C¢ = 800 a.u. according
to Pavlovi¢ and co-workers [45]. Because of the peculiar
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TABLE 1. Potential parameters for the Ar, Li, and Cr dimers
obtained from a least-squares fit to the (a) analytical form of Cybulski
and Toczylowski for Ar, [9,42], (b) expt. determined potential of
Barakat et al. [47], and (c) expt. determined potential of Casey and
Leopold [44] as described in detail in the text. Dimensionless units
are used. For Li, and Cr, the potential parameters are only valid for
the region V*(r*) < 0.

n a, Cp n an Cn

Ar

1 6 —2.112319339 2 8 7.126409258
3 10 —21.30053312 3 12 24.42390886
5 14 —10.89025935 6 16 1.752793693
Li

1 6 —2.185099402 2 8 1588.743093
3 9 —13096.66094 4 10 44937.24250
5 11 —85547.67477 6 12 100055.5130
7 13 —74450.14624 8 14 35150.12854
9 15 —10264.39581 10 16 1744.182010
11 17 25.87885791 12 18 —237.6273332
13 19 114.6392978 14 20 —18.63705649
Cr

1 6 —15.20122639 2 8 13471.86476
3 9 —124591.4050 4 10 464698.3696
5 11 —888076.6787 6 12 854878.9650
7 13 —190568.3900 8 14 —441981.1016
9 15 487340.5171 10 16 —209652.8384
11 17 34494.89857 12 18 0.000016589

shape of the Cr, potential energy curve the fit was rather
difficult to achieve but is accurate enough (R*> = 0.9984) for
the discussion of the bcc instability. The potential energy
curve for Crp, was then converted to dimensionless units.
For the ELJ form we obtain E* = —24.0 and E* = —23.3
for the fcc and bcec structures, respectively. These values are

unusually large but perhaps not surprising given the broad
potential energy curve of Cr,. In fact, using the original po-
tential energy curve we obtain a nearest neighbor distance
for bcc chromium of R;, = 1.479 A, just above the hard-
sphere radius of the diatomic potential energy curve with
o = 1.467 A and a cohesive energy E.on = 33.6 eV. This is
in stark disagreement with the experimental values of Ry, =
2.52 A and E.on = 4.1 eV [54]. It clearly demonstrates that
the direct use of potential curves from the free unconfined
diatomic is not useful to describe the solid state of met-
als as the many-body expansion is not converging fast and
smoothly.

We briefly discuss lithium. For Li, we used the RKR po-
tential curve of Barakat ef al. [47] and fixed the Van der Waals
coefficient Cs = 1408 a.u. [55]. For the fit to an extended LJ
potential we obtained with an R? value of 0.999 97, but only
by including terms up to 1/r*°. However, the situation here
is even worse compared to chromium as the Li, potential
energy curve is so broad in both the repulsive and the attractive
regions that crystal optimizations entered the repulsive wall
well below the hard-sphere radius of o = 1.822 A where our
extended LJ potential is not accurate anymore. In general,
a fit to an extended LJ form works reasonably well for the
whole distance region if it deviates not too much from an
ideal (a, b)-LJ potential, which is certainly not the case for
Li,. In fact, if we optimize the exponents a, b for the LIJ
potential we get a & b < 3 left of the singularity at b =3
and, therefore, an unphysical result. Using the far more ac-
curate extended Morse potential by Le Roy and co-workers
[56], which correctly describes the repulsive region, we obtain
from crystal optimizations [57] a nearest neighbor distance of
Rumin = 0.21 A and a cohesive energy of E.on = 9.2x103 eV
for bec lithium. This can be best described as a collapse of the
crystal to small internuclear distances with large overbinding
and clearly demonstrates that many-body forces in a confined
bulk system cannot be neglected.
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