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Modified phase-field-based lattice Boltzmann model for incompressible multiphase flows
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Based on the phase-field theory, a multiple-relaxation-time (MRT) lattice Boltzmann model is proposed for
the immiscible multiphase fluids. In this model, the local Allen-Chan equation is chosen as the target equation
to capture the phase interface. Unlike previous MRT schemes, an off-diagonal relaxation matrix is adopted in
the present model so that the target phase-field equation can be recovered exactly without any artificial terms. To
check the necessity of removing those artificial terms, comparative studies were carried out among different MRT
schemes with or without correction. Results show that the artificial terms can be neglected at low March number
but will cause unphysical diffusion or interface undulation instability for the relatively large March number cases.
The present modified model shows superiority in reducing numerical errors by adjusting the free parameters. As
the interface transport coupled to the fluid flow, a pressure-evolution lattice Boltzmann equation is adopted for
hydrodynamic properties. Several benchmark cases for multiphase flow were conducted to test the validity of
the present model, including the static drop test, Rayleigh-Taylor instability, and single rising bubble test. For
the rising bubble simulation at high density ratios, bubble dynamics obtained by the present modified MRT
lattice Boltzmann model agree well with those obtained by the FEM-based level set and FEM-based phase-field
models.
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I. INTRODUCTION

Multiphase flows have long been subject to significant
interest in both science and engineering [1]. From the compu-
tational point of view, it is always the focus and difficulty to
capture the phase interface in an accurate, physically consis-
tent, and cost-effective way. The front-capturing approach has
long been widely applied to simulate such moving-interface
problems. In such approach, only the fixed grids are adopted
and no explicit information about the phase interface is re-
quired. The interface motion can be obtained by solving
the phase indicator function over the whole domain, which
makes it relatively easy to implement. Typical front-capturing
methods include the volume-of-fluid (VOF), level-set [2],
phase-field [3], and hybrid methods related, such as level set
coupled with VOF [4] and phase-field coupled with VOF [5].

As a diffuse-interface method, the phase-field method
has emerged as one of the most promising approaches for
modeling multiphase flows because of its physical origins,
simplicity, and scalability. In this method, an order parameter
is introduced to describe the phase transition, which has con-
stant values in the bulk phases and varies smoothly across the
diffused interface in a hyperbolic tangent or similar fashion.
Traditionally, the dynamical evolution for the order param-
eter is given by the Cahn-Hilliard equation (CHE) [6,7] or
Allen-Cahn equation (ACE) [8]. The former is a more popular

*zhujq@hit.edu.cn

option for multiphase flow as it takes on a flux-conservative
form. Unfortunately, although the order parameter in CHE is
conserved globally, spontaneous shrinkage (mass leakage) of
drops or bubbles is inherent to such method [9]. In order to
minimize the shrinkage effect, the profile-corrected [10] and
flux-corrected [11] formulations were developed by adding
flux terms. The fourth-order spatial derivative in original CHE
and additional flux terms in modified versions make these
equations very cumbersome to solve. The Allen-Cahn equa-
tion is easier to handle numerically due to the fact that only
second-order derivative terms are needed to be discretized.
Many efforts have been made to improve its mass conserva-
tion. Sun and Beckermann [12] developed a modified ACE by
subtracting out the curvature-driven interface motion. Later,
inspired by the conservative level-set method [13], Chiu and
Lin [14] reformulated this equation in a conservative form,
referred to as local ACE here. Another kind of conservative
ACE was proposed through introducing a Lagrange multiplier
[15,16], which is called the nonlocal ACE.

Rooted in kinetic theory, the lattice Boltzmann (LB)
method has attracted considerable attention in modeling mul-
tiphase fluid systems. The existing multiphase LB models
include color-gradient model [17], pseudopotential model
[18–21], free-energy model [22], kinetic model [23,24],
and phase-field-based model [25–32]. A comprehensive
overview of different multiphase LB models can be found in
Refs. [33,34]. Here we only focus on the phase-field-based LB
models. The double-distribution-function approach is applied
for this kind of model, in which one distribution function is
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adopted for the fluid flow and the other is for interface cap-
turing. Although several LB schemes have been proposed for
above-mentioned CHE and ACE, there exists a deviation term
in the recovered macroscopic equation through the Chapman-
Enskog analysis. To overcome such deficiency, Zheng et al.
[25] introduced a spatial difference term of the distribution
equation in the LB equation to remove such deviation term
in the recovered CHE. Later, Zu and He [26] applied sim-
ilar strategy by introducing a spacial difference term of the
equilibrium state instead. We note that both modified models
for CHE cannot be conducted locally in the collision process,
which weakens the advantages of parallel computing in LB
method. Another possible way to eliminate the deviation term
is to add a source term in the evolution equation [35,36]. Liang
et al. [28] proposed a modified LB model for Cahn-Hilliard
equation by adding a temporal derivative of phase-field flux.
Later, based on the fourth-order Chapman-Enskog expansion,
Zhang et al. [37] developed a high-order LB model for the
same target equation to improve the accuracy and stability.
With the inclusion of correction terms, the modified model
is able to recover the CHE up to third order. As for the
Allen-Cahn equation, relatively fewer works based on the
framework of LB method have been reported. Geier et al. [31]
first proposed a LB model for the local ACE, which shows
higher accuracy than the CHE-based model. Later, they ex-
tended their model to the three-dimensional case [38,39] and
ternary fluids [40]. Note that their LB models for ACE have
a common defect. They adopted the nonlinear equilibrium
but did nothing to eliminate the deviation terms, which may
cause numerical errors for the case with relatively large Mach
number. Following the strategy to recover the correct CHE
in Ref. [28], both the SRT and MRT schemes to remove the
additional term in local ACE were developed in Refs. [30,32].
A comparative study between the improved MRT model and
the Geier’s SRT model was conducted by Ren et al. [32].
However, although the deviation term has been removed, we
did not find any obvious improvements on numerical accuracy
in their benchmark tests. The necessity to remove the devia-
tion term needs to be illustrated in more stringent conditions.

Recently, Huang and Wu [41] proposed a modified MRT
LB model to recover the convection-diffusion equation with
anisotropic diffusion coefficients. Inspired from their model
as well as Refs. [25,26], here we proposed an alternative MRT
lattice Boltzmann model for the local Allen-Cahn equation.
By introducing an off-diagonal relaxation matrix, the moment
vectors are coupled, which is used to produce diffusion effects
so that the correct macroscopic equation can be recovered.
Free parameters in equilibrium moment vectors and relax-
ation matrix are adjusted to improve the numerical accuracy
and stability. Different from previous models, no spatial or
temporal difference terms are introduced here to remove the
deviation terms, which makes it easy to implement the algo-
rithm on parallel machines. It should be pointed out that the
present modified model can be easily extended to solve the
nonlocal Allen-Cahn equation and the Cahn-Hillard equation.

The rest of this paper is organized as follows. In Sec. II, we
introduce the phase-field theory and then present the newly
developed MRT lattice Boltzmann model for multiphase fluid
systems. A variety of Benchmark tests are conducted in
Sec. III and Sec. IV, followed by summaries in Sec. V.

II. METHODOLOGY

A. Conservative local ACE

In the phase-field theory, a binary fluid can be described by
an order parameter field φ(r, t ), where r denotes the spatial
coordinates while t is time. The free-energy functional of such
system can be simply presented in the Ginzburg-Landau form
[42]

F[φ] =
∫

�

{
ψ (φ) + ε2

φ

2
[∇φ]2

}
dr, (1)

where the term ψ (φ) is a double-well potential to describe
the bulk free-energy density, and the square gradient is the
gradient energy. A simple prescription for ψ (φ) is chosen as
[28]

ψ (φ) = β(φ − φl )
2(φ − φh)2, (2)

which determines the values of φ in buck phases (φh > φl )
such that the interface location is given by (φl + φh)/2. Co-
efficients εφ and β are related to the surface tension σ and
interface width W by [32]

ε2
φ = 3

2|φh − φl |2
W σ (3)

and

β = 12σ

|φh − φl |4W
. (4)

By minimizing the free energy in Eq. (1), one can obtain the
phase field profile for the flat interface at equilibrium state
along the z-axis direction normal to the interface,

φ(z) = φh + φl

2
+ φh − φl

2
tanh

(
2z

W

)
. (5)

The dynamical evolution for the order parameter is governed
by the Allen-Cahn equation [42]

∂tφ + u · ∇φ = Mφ

(
∇2φ − 1

ε2
φ

dψ

dφ

)
, (6)

where Mφ is the mobility coefficient and u is the macroscopic
velocity vector. Equation (6) describes the dynamics of a
nonconserved order parameter, whereas the present problem
is actually strictly conserved (mass conservation and immisci-
bility). To correct this contradiction, a counter term suggested
by Folch et al. [43] is added on the right-hand side of above
equation [12],

∂tφ + u · ∇φ = Mφ

(
∇2φ − 1

ε2
φ

dψ

dφ
− κ|∇φ|

)
, (7)

where the curvature of isocontours can be expressed as κ =
∇ · n with n = ∇φ/|∇φ|. From the asymptotic analysis in
Ref. [43], this counter term cancels the curvature dependence
of the interfacial equilibrium profile of the interface up to first
order. As a result, Eq. (7) relaxes an arbitrary initial phase
field to a hyperbolic tangent profile across the interface and
then sustains this profile during the interface motion. For the
gradient of φ at equilibrium state, denoted by θ , one can get
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the following expressions:

θ = ∂φ

∂z
= 4(φ − φh)(φ − φl )

W (φl − φh)
(8)

and

n · ∇θ = ∂2φ

∂z2
= 1

ε2
φ

dψ

dφ
. (9)

Thus, the last two terms on the right-hand side of Eq. (7) can
be rewritten as −∇ · (θn). By enforcing the divergence-free
condition, the Allen-Cahn equation can be written as [14,30–
32]

∂tφ + ∇ · (uφ) = Mφ

[∇2φ − ∇ · (θn)
]
, (10)

which can guarantee the mass conservation exactly with ap-
propriate boundary conditions [14]. The local ACE can also
be derived from the interface advection equation or the flux
conserving equation, as shown in Refs. [14,31]. The govern-
ing equations for the incompressible flows are governed by
[28–30]

∇ · u = 0, (11a)

ρ(∂t u + u · ∇u) = −∇p + ∇ · � + Fs + Fb, (11b)

where ρ, p, and μ are the density and hydrodynamic pressure
and dynamic viscosity, respectively. � = μ(∇u + ∇uT ) is
the viscous stress tensor and Fb is the body force. The surface
tension force can be calculated by Fs = μφ∇φ where the
chemical potential μφ is defined as

μφ = δF
δφ

= dψ

dφ
− ε2

φ∇2φ.

B. The MRT-LB model for Allen-Cahn equation

Within the framework of lattice Boltzmann theory, the
evolution equation for the order parameter φ using multiple-
relaxation-time algorithm can be expressed as

h(x + eδt , t + δt ) − h(x, t ) = −M−1S[m(x, t ) − meq(x, t )]

+ δt M−1(I − S/2)q(x, t ).
(12)

where m, meq, and q are the moments of distribution function
h, equilibrium distribution function heq, and source term qφ ,
respectively. M is the transformation matrix between velocity
space and moment space so that we have m = Mh, meq =
Mheq, and q = Mqφ . In the following study, the D2Q9 lattice
model is adopted and M can be chosen as [28]

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(13)

The weighting coefficients wi are given by w0 = 4/9, w1−4 =
1/9, and w5−8 = 1/36 and the lattice vectors ei are

e =
[

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
c, (14)

where c is the streaming speed defined as the ratio of lattice
length δx to time increment δt , c = δx/δt . The lattice speed of
sound is cs = c/

√
3.

Since only one conserved moment (m0) exists in the
present problem, it is feasible and simple to adopt the linear
equilibrium distribution. Besides, without the second-order
velocity terms in equilibrium distribution, the deviated term
Mφ

c2
s
∇∇ : (φuu) can be avoided in the recovered macroscopic

equation [32]. Thus, the equilibrium distribution in moment
space can be written as

meq = φ
[
1, α1, α2,

γ ux

c
,−γ ux

c
,
γ uy

c
,−γ uy

c
, 0, 0

]T
, (15)

where α1 and α2 are free parameters. The moments of source
term are given by

q = ζcθ [0, 0, 0, nx,−nx, ny,−ny, 0, 0]T . (16)

The parameters γ and ζ will be determined later through
Chapman-Enskog analysis.

To recover the correct macroscopic equation, we intro-
duce an off-diagonal relaxation matrix in the present modified
model, which is expressed as

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s0 s01 s02 0 0 0 0 0 0
0 s1 0 0 0 0 0 0 0
0 0 s2 0 0 0 0 0 0
0 0 0 s3 0 0 0 0 0
0 0 0 0 s4 0 0 0 0
0 0 0 0 0 s5 0 0 0
0 0 0 0 0 0 s6 0 0
0 0 0 0 0 0 0 s7 0
0 0 0 0 0 0 0 0 s8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

Following the parameters choices in Ref. [45], we set s3 =
s5 = s j , s4 = s6 = sq, and s7 = s8 = sp. The off-diagonal ele-
ments are determined by

s01 = α2

α1

γ − 1

γ
s1 (18)

and

s02 = −γ − 1

γ
s2. (19)

The macroscopic variable φ is calculated by

φ =
8∑

i=0

hi. (20)

Note the basic form of the present MRT-LB model is simi-
lar to that of conventional ones, but there is a major difference
in the relaxation time matrix. In the conventional MRT-LB
models, the diagonal relaxation matrix is adopted instead,
which is expressed as S = diag(s0, se, sε, s j, sq, s j, sq, sp, sp).
Table I lists different conventional MRT-LB schemes and their
corresponding error term Rφ in the recovered macroscopic
equation. Among them, MRT-A and MRT-C are the original
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TABLE I. The equilibrium distribution function heq = M−1meq, source term qφ = M−1q, and the artificial term Rφ in different models.
In the present model, the weighting coefficients w̄i are given by w̄0 = (1 − α1 + α2)/9, w̄1−4 = (4 − α1 − 2α2)/36, and w̄5−8 = (4 + 2α1 +
2α2)/36.

Model Equilibrium function heq
i Source term qφ

i Rφ

MRT-A wiφ(1 + ei ·u
c2

s
) wiei · θn Mφ

c2
s
∇ · ∂t (φu)

MRT-B [32,44] wiφ(1 + ei ·u
c2

s
) wi

ei ·[∂t (φu)+c2
s θn]

c2
s

0

MRT-C [16,31] wiφ[1 + ei ·u
c2

s
+ (ei ·u)2

2c4
s

− u·u
2c2

s
] wiei · θn Mφ

c2
s
∇ · [∂t (φu) + ∇ · (φuu)]

MRT-D wiφ[1 + ei ·u
c2

s
+ (ei ·u)2

2c4
s

− u·u
2c2

s
] wi

ei ·[∂t (φu)+∇·(φuu)+c2
s θn]

c2
s

0

Present φ(w̄i + wiγ
ei ·u
c2

s
) 3ζwiei · θn 0

forms using linear and nonlinear equilibrium function, re-
spectively. By setting α1 = −2, α2 = 1, γ = 1, and ζ = 1/3,
our model reduces to MRT-A. MRT-B can be considered as
the corresponding MRT schemes for Geier’s model [31]. The
error terms for MRT-A and MRT-C are in the order of O(Ma2),
which will cause numerical error in the case of large Mach
number. To remove the deviated term in MRT-A, a time-
dependent source term is added in the modified model [32],
denoted as MRT-B here. Using the same strategy, MRT-C
with correction term is also presented for comparative studies,
labeled by MRT-D. Although both MRT-B and MRT-D satisfy
Rφ = 0, the additional source terms introduced need to be
computed with nonlocal numerical schemes, which reduces
the efficiency of parallel calculation. Our proposed model
provides an alternative way to recover the correct macroscopic
equation. The off-diagonal relaxation matrix S produces dif-
fusion effects to eliminate artificial term without sacrificing
locality of the model. From the computational point of view,
the existence of off-diagonal elements has little effect on the
implementation of MRT-LB model. The slight difference lies
in the collision step of m0, i.e.,

m∗
0 = s0

(
m0 − m̄eq

0

) + s01
(
m1 − m̄eq

1

)
+ s02

(
m2 − m̄eq

2

) + δt q0, (21)

where m̄eq = meq − δt q/2 and the additional terms related
to s01 and s02 will make the present model a little more
expensive.

C. Chapman-Enskog analysis

Next, the Chapman-Enskog analysis will be conducted
to recover Eq. (10) by the present modified model. The
second-order Taylor series expansion of the evolution equa-
tion Eq. (12) yields

Dm + δt

2
D2m + O

(
δ2

t

) = − S
δt

(m − meq ) +
(

I − S
2

)
q,

(22)
where D = I∂t1 + E · ∇ and E = (Ex, Ey) can be expressed
as

Ex = M[diag (e0x, e1x, . . . , e8x )]M−1,

Ey = M[diag (e0y, e1y, . . . , e8y)]M−1.
(23)

The following multiscale expansions are applied,

∂t = ε∂t1 + ε2∂t2, ∇ = ε∇1,

m = m(0) + εm(1) + ε2m(2) + . . . , q = εq(1).
(24)

Substituting these expansions into Eq. (22), the evolution
equation can be reorganized in the consecutive orders of ε as

ε0 : m(0) = meq, (25a)

ε1 : D1m(0) − q(1) = − S
δt

[
m(1) + δt

2
q(1)

]
, (25b)

ε2 : ∂t2m(0) + D1

(
I − 1

2
S
)[

m(1) + δt

2
q(1)

]
= − S

δt
m(2),

(25c)

where D1 = I∂t1 + E · ∇1. Equation (25a) indicates that

m(i)
0 = 0, i � 1. (26)

The explicit expression of Eq. (25b) can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂t1φ + γ∇1 · (φu)

α1∂t1φ

α2∂t1φ − γ∇1 · (φu)
γ

c ∂t1φux + 4+α1
6 c∂x1φ − q3

− γ

c ∂t1φux + α1+α2
3 c∂x1φ − q4

γ

c ∂t1φuy + 4+α1
6 c∂y1φ − q5

− γ

c ∂t1φuy + α1+α2
3 c∂y1φ − q6

2γ

3 ∂x1φux − 2γ

3 ∂y1φuy
γ

3 ∂x1φuy + γ

3 ∂y1φux

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= − S
δt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

m(1)
1

m(1)
2

m(1)
3 + δt

2 q3

m(1)
4 + δt

2 q4

m(1)
5 + δt

2 q5

m(1)
6 + δt

2 q6

m(1)
7

m(1)
8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(27)
To simplify analysis, the left-hand side of Eq. (27) can be con-
sidered as a vector, L = D1m(0) − q(1), with nine elements.
The ith element within the vector is expressed as Li = [L]|li ,
for instance, [L]|l1 = ∂t1φ + γ∇1 · (φu). Here we define a
linear operation Ψ among the vector elements as [L]|Ψ (li ) =
Ψ (Li ). Due to the off-diagonal relaxation matrix S, the first
equation in Eq. (27) is related to m(1)

1 and m(1)
2 . Using the linear

operation, Ψ (li) = l0 − s01
s1

l1 − s02
s2

l2, then the first equation
can be expressed as

[L]|Ψ (li ) = L0 − s01

s1
L1 − s02

s2
L2 = 0, (28)

which can be organized as(
1 − α1s01

s1
− α2s02

s2

)
∂t1φ +

(
γ + γ s02

s2

)
∇1 · (φu) = 0.

(29)
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According to Eqs. (18) and (19), one can obtain the first-order
equation as

∂t1φ + ∇1 · (φu) = 0. (30)

Similarly, by enforcing the same linear operation Ψ at the
ε2 scale, the first equation in Eq. (25c) is written as

[∂t2m(0) + (I∂t1 + E · ∇1)L(1)]|Ψ = 0, (31)

where the vector L(1) = (I − S/2)[m(1) + δt q(1)/2]. Using
Eqs. (25b) and (28) gives

L(1)
i =

{
δt L0/2, i = 0,

δt Li(1/2 − 1/si ), i �= 0.
(32)

Utilizing the relation, α1s01 + α2s02 = 0, the first term in
Eq. (31) yields

[∂t2m(0)]|Ψ = ∂t2φ. (33)

Substituting Eq. (32) into Eq. (31), the next two terms can be
expressed as

[∂t1L(1)]|Ψ = η1∂t1∇1 · (φu) (34)

and

[E · ∇1L(1)]|Ψ = −Mφ∇2
1φ

+ η2∇1 · [∂t1(φu) − c2ζθn/γ ],
(35)

where η1 is determined by

η1 = δt

(α2 + γ

s2
− α2

s1

)γ − 1

γ
(36)

and Mφ and η2 are related to relaxation times s j and sq by

η2 = −δt

[(
s−1

j − 0.5
) + α2 − α1

α1

(
s−1

q − s−1
j

)
(γ − 1)

]
(37)

and

Mφ = c2δt

[(
s−1

j − 0.5
)(

1 − s01

s1

)4 + α1

6

−(
s−1

q − 0.5
)( s01

s1
+ s02

s2

)α1 + α2

3

]
. (38)

In order to obtain the second-order equation as

∂t2φ = Mφ∇1 · [∇1φ − θn], (39)

the following constraints need to be satisfied:

ζc2η2/γ = −Mφ (40)

and

η1 + η2 = 0. (41)

Combined equations Eqs. (30) and (39), the macroscopic
equation can be exactly recovered as Eq. (10).

Following the similar procedure, the macroscopic equa-
tions with or without error terms can also be recovered for
different MRT-LB models in Table I. For these conventional
MRT-LB schemes, the moment vectors are decoupled and the
linear operation is simplified as Ψ (li ) = l0. Then the term in
Eq. (34) equals zero and the deviation terms emerged from
Eq. (35) will be retained in MRT-A and MRT-C but will be
removed in MRT-B and MRT-D by introducing additional

source terms. The off-diagonal relaxation matrix for present
MRT-LB model provides an alternative way to cancel out
such deviation term by producing the term of η1∂t1∇1 · (φu).
It should be noted that this strategy is not suitable for the
case with nonlinear equilibrium function. In that case, the
unwanted terms of ∂k∂l (φukul ) will emerge in Eq. (35), which
cannot be removed thoroughly by the present modified model.
The parameters s1, s2, s j , sq, γ , α1, and α2 could have different
choices as long as they are satisfied the relations in Eqs. (38)
and (41). One simple choice is to set s1 = s2 = se, sq = s j ,
α1 = −4 + 2�, and α2 = 4 − 3�, where � is freely adjusted
to improve the stability and accuracy. Based on Eqs. (38),
(40), and (41), we have

Mφ = �

3γ
c2(1/s j − 0.5)δt , (42)

ζ = �/3, (43)

and

γ = 1 + sε (1/s j − 0.5). (44)

According to Eq. (42), s j in the present model is determined
by the mobility Mφ , the relaxation factor se, and parameter
�, which allows more flexibility in the design of relaxation
matrix.

D. The MRT-LB model for hydrodynamic equations

The discrete Boltzmann equation for the pressure distribu-
tion function fi with a general forcing term Fi is written as
[28,46]

∂t fi + ei · ∇ fi = � f + Fi, (45)

where the collision term is � f = −Λi j ( f j − f eq
j ). The equi-

librium distribution function f eq
i is given by

f eq
i =

{
(w0 − 1)p + ρc2

s s0(u), i = 0,

wi p + ρc2
s si(u), i �= 0,

(46)

where

si(u) = wi

[
ei · u

c2
s

+ (ei · u)2

2c4
s

− u2

2c2
s

]
.

The density of the fluid is obtained from the phase field

ρ = ρl + φ − φl

φh − φl
(ρh − ρl ), (47)

where ρh and ρl are the densities of the heavy and light fluids,
respectively. The discrete forcing term is [28]

Fi =(ei − u) · {si(u)c2
s ∇ρ + [si(u) + wi](Fs + Fb + Fa)

}
.

(48)
where Fa = qu = ρh−ρl

φh−φl
Mφ∇ · (∇φ − θn)u is the interfacial

force. To get an explicit discretized version of Eq. (45), the
following modified distribution function is used:

f̄i = fi − δt

2
(� f + Fi ). (49)

Then the modified equilibrium distribution function becomes

f̄ eq
i = f eq

i − δt

2
Fi. (50)
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From Eqs. (49) and (50), we obtain

f̄i − f̄ eq
i = [I + δtΛ/2]i j

(
f j − f eq

j

)
. (51)

The final form of evolution function reads as

f̄i(x + eiδt , t + δt ) − f̄i(x, t ) = −Λ̄i j
(

f̄ j − f̄ eq
j

) + δt Fi,

(52)
where Λ̄i j satisfies Λ̄ = δtΛ[I + δtΛ/2]−1. Within the MRT
framework, Λ̄ is replaced by M−1S f M, where S f is a diagonal
matrix and expressed as S f = diag(s f

0 , s f
1 , s f

2 , . . . , s f
8 ). The

parameters s f
7 and s f

8 are defined as s f
7 = s f

8 = 1/τ f , where
τ f is related to the dynamic viscosity by

τ f = μ

ρc2
s δt

+ 0.5. (53)

Using a linear interpolation, one can obtain the dynamic vis-
cosity μ as [47]

μ = μl + φ − φl

φh − φl
(μh − μl ), (54)

where μh and μl are the viscosity of the heavy and light
phases, respectively. The macroscopic variables are calculated
by

u =
[∑

ei f̄i

c2
s

+ 0.5δt (Fs + Fb)

]
/(ρ − 0.5δt q), (55a)

p = 1

1 − w0

[∑
i �=0

f̄i + c2
s

2
δt u · ∇ρ + ρc2

s s0(u)

]
. (55b)

We note the gradient and Laplacian operators exist in the
present model, which increases the complexity to implement.
Based on the relation in Eq. (47), the gradient of density
can be reduced to compute ∇φ. Using the isotropic central
schemes, the gradient and Laplacian of φ are calculated by

∇φ = 1

c2
s δt

∑
i

eiwiφ(x + eiδt , t ) (56)

and

∇2φ = 2

c2
s δ

2
t

∑
i

wi[φ(x + eiδt , t ) − φ(x, t )]. (57)

The directional derivatives ei · ∇φ that appear in the calcula-
tion of Fi in Eq. (50) and (52) are calculated by central and
mixed finite differences of φ, noted by superscripts c and m
on the gradient operators, respectively. Their expressions are
given by [38]

δt ei · ∇cφ|(x,t ) = φ(x + eiδt , t ) − φ(x − eiδt , t )

2
(58)

and

δt ei · ∇mφ|(x,t ) = − 1

4
[φ(x − eiδt , t ) + 3φ(x, t )

−5φ(x + eiδt , t ) + φ(x + 2eiδt , t )].
(59)

Previous studies have analyzed the effects of force discretiza-
tion using isotropic central scheme (ICS) and mixed scheme
(MS). The mixed scheme is shown to violate the exact mass
and momentum conservation [48–50]. However, as reported
in Ref. [51], the nonconservative forcing terms seem to have

negligible effects for the actual dynamics. Here we checked
the mass conservation in the case of static drop system. Dif-
ferent from the findings in Ref. [49], both central and mixed
schemes in the present phase-field-based LB model are able
to guarantee the mass conservation very well.

III. NUMERICAL TESTS FOR INTERFACE CAPTURING

In this section, we will check the performance of the
proposed MRT-LB model for the interface capturing. In the
following tests, velocity fields have been prespecified and only
the Allen-Cahn equation is solved. The conventional MRT-LB
schemes presented in Table I are also adopted for comparative
studies. Through the Chapman-Enskog analysis at ε3 scale,
the leading error term for the conventional MRT-LB models
can be written as

Rφ3 = −
(

s−1
j − 1

2

)(
s−1

e + s−1
p − 1

)
c2

s δ
2
t ∇2∇ · φu. (60)

To make the comparative analysis simple and convincing, we
fix sp = 1 and take different choices of se to consider the effect
of high-order error terms. Other relaxation parameters can be
chosen freely within an appropriate range. Here we set s0 = 1,
s2 = s1 = se, and sq = s j . In conventional MRT-LB models,
s j is chosen as s j = 1/τh, where τh is uniquely determined by
the mobility based on Mφ = (τh − 0.5)c2

s δt . For the present
MRT model, two free parameters, i.e., se and � (or s j), exist
to tune the stability and accuracy according to Eq. (42). Once
se and s j are given, the off-diagonal elements can be obtained.
The phase field is initialized by its equilibrium state. Ideally,
the order parameter should be bounded between φl and φh

during the simulation. However, strict boundedness of φ is
hard to achieve due to numerical dispersion. To quantitatively
evaluate the numerical dispersion, the relative maximum and
minimum values of order parameter are introduced and de-
fined as [32]

φ̄max = φmax − φh

φh − φl
, φ̄min = φmin − φl

φh − φl
. (61)

The numerical accuracy is described by the relative error of φ,
i.e.,

Er =
∑

x |φ(x, T ) − φ(x, 0)|∑
x |φ(x, 0)| . (62)

A. Zalesak’s rotation

The Zalesak’s rotation is widely used to measure the
numerical accuracy of interface-capturing techniques in main-
taining sharp corners. A notched disk of radius 80 and notch
width 16 is initially placed in the center of a L0 × L0 box. The
imposed velocity field is given by [31]

u = −U0π
( y

L0
− 0.5

)
, v = U0π

( x

L0
− 0.5

)
, (63)

where L0 = 200. Different from the periodic boundary
adopted in Refs. [26,28,31] the nonequilibrium extrapolation
boundary condition is employed here to avoid the singularity
emerged at the corner. Theoretically, the disk will maintain its
shape during the rotation and return to the initial condition
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FIG. 1. Comparisons of the relative errors of different MRT-LB models for the cases at (a) U = 0.025, Mφ = 0.001; (b) U = 0.1, Mφ =
0.1; and (c) U = 0.25, Mφ = 0.1.

at T = 2L0/U0. In this test, phase interface width and sur-
face tension are fixed at W = 2 and σ = 0.04, respectively.
The phase indicators are φh = 1 and φl = −1. A comparative
study on different LB models will be presented below.

First, we conduct the simulation at U0 = 0.025 and Mφ =
0.001. In this case, all these above mentioned models are able
to capture a stable and accurate interface after one period.
Relative errors for the MRT models at various se are plotted in
Fig. 1(a). Compared with their corresponding SRT schemes,
these MRT models have very limited improvement on the
numerical accuracy. On the contrary, as se � 0.5, artificial dif-
fusion occurs and the interfaces become instability. Note that
the curves of log10(Er) versus se for different MRT models
are coincided with each other, which implies the additional
artificial terms can be ignored in such condition.

Since the deviation terms in MRT-A and MRT-C are in the
order of O(Ma2), to show the effect of this term clearly, two
cases with larger velocity are studied. The mobility is fixed at
Mφ = 0.1 and the velocity is set as U = 0.1 and U = 0.25, re-
spectively. The relative errors for different MRT-LB models at
varied relaxation parameter se are presented in Figs. 1(b) and
1(c). It can be seen that the accuracy of these MRT-LB mod-
els are affected greatly by the relaxation factor se. Both the
present model and the MRT-LB schemes with correction (i.e.,
MRT-B and MRT-D) have smaller relative errors than the con-
ventional ones without correction (i.e., MRT-A and MRT-C).
For the case of U = 0.1, MRT-C produces the largest numer-
ical errors, which seems counterintuitive that the nonlinear
equilibrium function performs worse than the linear one. This
can be explained by the additional error term in MRT-C. Once
the correction terms added, such counterintuitive phenomenon
is disappeared between MRT-B and MRT-D. Among these
modified MRT-LB schemes, our present model has better per-
formance than MRT-B and MRT-D, especially when se is in
the range of 1.0 to 1.5. As the velocity increases to U = 0.25,
MRT-A and MRT-C fail to obtain the phase field within an ac-
ceptable error range. On the contrary, by carefully setting the
value of se, we could reduce the relative errors to 7.05 × 10−3

for MRT-B, 5.89 × 10−3 for MRT-D and 6.53 × 10−3 for our
proposed model, respectively, which shows the necessity to
remove those deviation terms. Figure 2 shows the phase inter-
faces after one period obtained by different MRT-LB schemes
for the case of U = 0.25. The relaxation parameter se is set
as 0.8 in MRT-A and MRT-B, 1.2 in MRT-C and MRT-D,
and 0.4 in the present model so that all these models presents

their best performances. To show the artificial diffusion better,
the contours are displayed within a range of −0.9 � φ � 0.9.
For the interface obtained by MRT-A, we observe the slot
is obviously slanted and the circular interface is serrated at
small se. As se increases, the serrated interface will spread to
the whole circle interface, as shown in Fig. 2(a). The jagged
interface can be avoided in MRT-C by using nonlinear equi-
librium function, but unphysical diffusion will emerge due to
the additional error term Mφ

c2
s
∇∇ : (φuu). After introducing

the correction source terms, stable phase interfaces can be
obtained by MRT-B and the artificial diffusion can be avoided
in MRT-D. Using our newly proposed model, a stable and
accurate interface can also be obtained, as shown in Fig. 2(e).
Relative minimum and maximum values of φ at time T for
the case of U = 0.25 are listed in Table II. It is shown that
both φ̄max and |φ̄min| in the present model are smaller than the
conventional MRT-LB models. These tests demonstrate that
without the deviation terms, the present modified MRT model
shows superiority in reducing relative error and dispersion
error under the condition of relatively large velocity.

B. Drop in shear flow

To check the performance in capturing the complex defor-
mation of phase boundaries, a two-dimensional (2D) circular
interface with radius R = L0/5 is placed in the center of a
L0 × L0 box with an imposed velocity field [32],

u = −U0 sin

(
4πx

L0

)
× sin

(
4πy

L0

)
cos

πt

T
,

v = −U0 cos

(
4πx

L0

)
× cos

(
4πy

L0

)
cos

πt

T
, (64)

where L0 is fixed at 500. The period time is defined as T =
1.25L0/U0. The parameters φh, φl , W and σ are set the same
as those in Zalesak’s disk test.

We compared the present MRT model with other conven-
tional MRT-LB schemes by enforcing U = 0.25 and Mφ =
0.1. By using the present MRT model, interface evolutions
in one period are depicted in Fig. 3 with an interval of T/8.
The circle is continuously stretched by the vortices during
the first half period and formed a thin filament at time T/2.
Then the vortices rotate in opposite direction and the thin
filament moves back to the initial configuration at time T due
to the periodic nature of the flow field. From Fig. 3(h), we
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FIG. 2. Comparisons of the interface shapes after one period at U = 0.25 obtained by (a) MRT-A, (b) MRT-B, (c) MRT-C, (d) MRT-D,
and (e) the present model. The contours for phase field are displayed within a range of −0.9 to 0.9.

find that the final profile after one period agrees well with the
initial state. Figure 4 plots the effects of adjustable relaxation
parameter se for different models at time t = 2T . Once again,
MRT-C presents the largest numerical errors and the counter-
intuitive phenomenon between MRT-A and MRT-C happens.
By adding the correction terms, both MRT-B and MRT-D are
able to reduce the numerical errors effectively. For MRT-B,
the relative error has a minimum value of 1.03 × 10−3 at
se = 0.8, while the minimum value for MRT-D is 1.02 × 10−3

at se = 0.9. Our present model maintains relatively low nu-
merical errors within a wide range of se from 0.6 to 1.5. Phase
interfaces obtained by different MRT-LB schemes at se = 0.6
are plotted in Fig. 5. We note the phase interface is slightly
distorted in MRT-A and obvious artificial diffusion occurs
in MRT-C. It should be pointed out that the error terms in
MRT-C will have more obvious effects on the phase interface
evolution in the case of φh + φl �= 0. For instance, if we set
φh = 1 and φl = 0 instead, then the interface shape obtained
by MRT-C after one period will become much more distorted,
as shown in Fig. 6. For this case, the artificial diffusion is
disappeared inside the circle due to φ ≈ 0 in that region.

All these modified models can capture a stable and accurate
interface, whether φh + φl equals zero or not. The effects of
numerical dispersion on φ̄min and φ̄max are listed in Table III.
Again, our present modified MRT-LB model is able to reduce
the numerical dispersion to some extent.

IV. NUMERICAL TESTS FOR MULTIPHASE FLOWS

As the interface capturing coupled to the Navier-Stokes
equations, four dimensionless parameters are introduced to
describe physical multiphase fluid, i.e., the density ratio λρ =
ρh/ρl , the viscosity ratio λμ = μh/μl , the Reynolds number
Re = ρhU0L0/μh, and the Eötvös number Eo = ρhU 2

0 L0/σ ,
where U0 and L0 are the velocity and length scales, respec-
tively. For a better comparison with available data reported
in literature, the Péclet number Pe = U0L0/Mφ , and the Cahn
number Cn = W/L0 for the phase-field equation will be used.

A. Static drop test

The static drop is a fundamental test to validate the numer-
ical model for the multiphase flows. Here we simulate a 2D

TABLE II. Relative minimum and maximum values of φ, [φ̄min, φ̄max], for Zalesak’s disk tests at U = 0.25.

se MRT-A MRT-B MRT-C MRT-D Present

0.4 [−0.096, 0.077] [−0.058, 0.048] [−0.056, 0.053] [−0.053, 0.046] [−0.039, 0.032]
0.8 [−0.085, 0.101] [−0.043, 0.037] [−0.042, 0.037] [−0.037, 0.032] [−0.030, 0.019]
1.2 [−0.084, 0.097] [−0.031, 0.024] [−0.032, 0.030] [−0.026, 0.021] [−0.015, 0.017]
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FIG. 3. Interface evolution in one period for the present MRT model at se = 0.4.

drop centered at a square box. The width of the computational
domain is L0 = 256 and the radius of drop is R = 64. The
coordinates of the drop center is (0, 0). All the boundaries
are set to be periodic. The phase field is initialized by its
equilibrium state and correspondingly the initial density field

FIG. 4. Comparisons of the relative errors of different MRT-LB
models at U = 0.25.

is given by

ρ(x, y) = ρh + ρl

2
+ ρh − ρl

2
tanh

(
2

R −
√

x2 + y2

W

)
.

(65)
For the present modified MRT-LB model, we fixed Mφ =
0.01, se = 0.3, and � = 1. Other computational parameters
are set the same as those in Ref. [49], i.e., the drop density
ρh = 1, the vapor density ρl = 0.2, the Cahn number Cn =
0.04, kinematic viscosity ν = (τ f − 0.5)c2

s δt = 0.2, and the
coefficient β = 0.01. To check the effects of force discretiza-
tion, we will test four different schemes, i.e., MRT-B with
the isotropic central scheme (MRT-B-ICS), MRT-B with the
mixed scheme (MRT-B-MS), the present model with the
isotropic central scheme (present-ICS) and the present model
with the mixed scheme (present-MS). Figure 7 presents the
spurious currents at t = 1 × 106δt , when the equilibrium state
has been reached. The magnitude of spurious currents are
of O(10−7) for all four schemes. As the same force dis-
cretization adopted, no obvious differences for the spurious
currents are observed between MRT-B and the present model.
Different from the results obtained by mixed schemes, the
spurious current using isotropic central schemes are only con-
fined to the interface vicinity and have little effect on the
bulk phases. The density profiles from the drop center to the

TABLE III. Relative maximum and minimum values of φ, [φ̄min, φ̄max], for a drop in shear flow (U = 0.25).

se MRT-A MRT-B MRT-C MRT-D Present

0.4 [−0.062, 0.067] [−0.047, 0.050] [−0.048, 0.049] [−0.045, 0.048] [−0.036, 0.037]
0.8 [−0.042, 0.080] [−0.025, 0.024] [−0.029, 0.029] [−0.023, 0.025] [−0.013, 0.015]
1.2 [−0.029, 0.031] [−0.015, 0.017] [−0.020, 0.020] [−0.014, 0.014] [−0.005, 0.006]
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FIG. 5. Comparisons of the interface shapes after two periods at U = 0.25 obtained by (a) MRT-A, (b) MRT-B, (c) MRT-C, (d) MRT-D,
and (e) the present model. The contours are displayed within a range of −0.9 � φ � 0.9.

point (L/2, 0) are shown in Fig. 8(a). It can be seen that the
density profiles for these four schemes match the analytical
solution given by Eq. (65) very well. Figure 8(b) presents
the pressure profiles at y = 0, where the pressure is defined
by P = p − ε2

φφ∇2φ − ε2
φ|∇φ|2/2 + p0 and p0 = φ∂φψ − ψ

is the equation of state [28]. According to the Laplace law,
the pressure differences in two bulk phases should satisfy the
relationship �P = Ph − Pl = σ/R, where Ph and Pl are the
pressure of heavy and light phases, respectively. The ratio
between the surface tension calculated by the Laplace law and
the analytical solution of Eq. (4), σLBM/σ , is 0.9893, 0.9966,

FIG. 6. Phase interface obtained by MRT-C by setting φh = 1
and φl = 0.

0.9893, and 0.9966 for those four schemes, respectively. From
this point of view, the mixed schemes are a little more accurate
than the isotropic central schemes.

We also evaluate the mass conservation for the system
and separated phases. The relative error for the total mass
is defined as Et = |Mt (t ) − Mt (0)|/Mt (0), where Mt (t ) =∑

x ρ(x, t ) is the total mass at time t . Similarly, we can ob-
tain the mass for liquid phase Mh(t ) and vapor phase Ml (t ).
Correspondingly, their relative changes are given by Eh =
[Mh(t ) − Mh(0)]/Mt (0) and El = [Ml (t ) − Ml (0)]/Mt (0). Ta-
ble IV lists the mass changes at equilibrium state. As pointed
out in Ref. [49], the isotropic central scheme can keep the
global mass conservation better than the mixed scheme. How-
ever, for the ACE-based lattice Boltzmann models, we did not
find any obvious differences between these two schemes. Both
schemes in MRT-B and the present model can conserve the
global mass very well. As for the relative errors Eh and El ,
the results obtained by ACE-based models are two order of
magnitude smaller than those in Ref. [49], which may benefit
from the conservative nature of Allen-Cahn equation. Con-
sidering the performance on both reducing artificial currents
and keeping mass conservation, the isotropic central forcing
scheme should be a better choice for the present model and
will be adopted in the following simulation.

B. Rayleigh-Taylor instability

We now examine the present model by the classic problem
of Rayleigh-Taylor (RT) instability, which has been widely
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TABLE IV. Relative mass changes of the total system and two separated phases at equilibrium state.

Eh El Et

Potential-ICS [49] 7.7815 ×10−2 −7.7815 ×10−2 7.4510 ×10−13

Potential-MS [49] −1.5485 ×10−2 1.5483 ×10−2 1.1805 ×10−6

MRT-B-ICS 2.9848 ×10−4 −2.9848 ×10−4 −2.8972 ×10−12

MRT-B-MS 3.2338 ×10−4 −3.2338 ×10−4 −2.7990 ×10−12

Present-ICS 3.0045 ×10−4 −3.0045 ×10−4 −3.1161 ×10−12

Present-MS 3.2451 ×10−4 −3.2451 ×10−4 −2.7969 ×10−12

used to validate multiphase flow models [26,52–54]. Con-
sider a rectangular domain of [0, L0] × [−2L0, 2L0] filled
with two layers of fluids with different densities. Initially, the
denser fluid rests on the lighter one with a small perturbation
0.1L0 cos(2πx/L0) on the interface y = 0. As the instability
of interface develops, these two fluids will penetrate into each
other. To be consistent with Ref. [26], the Atwood number
At = ρh−ρl

ρh+ρl
is introduced to describe the density rations be-

tween two phases. The reference velocity is chosen as U0 =√
gL0. The timescale is specified as t0 = √

L0/(gAt ), such that
the dimensionless time is t∗ = t/t0. In our simulations, a grid
size of 200 × 800 is applied such that L0 = 200. The interface
width and the surface tension are W = 5 and σ = 5 × 10−5,
respectively. Other parameters are set as At = 0.5 (λρ = 3),
λμ = 1, Pe = 1000, and Re = 3000. The nonslip boundary
condition is applied on the top and bottom walls while the
periodic boundary condition is imposed at the lateral sides.

The evolution of interface is shown in Fig. 9 at dimension-
less time t∗ = 0.5, 1, 1.5, 2, and 2.5. At the early stage, the
falling spike of heavy fluid and rising bubble of light fluid

FIG. 7. Velocity fields at t = 1 × 106δt : (a) MRT-B-ICS,
(b) MRT-B-MS, (c) present-ICS, and (d) present-MS.

are formed. With the decreasing of the height of spike tip,
two counter-rotating vortices are appeared in the heavy fluid.
The development of the roll-up structure of the present results
agrees well with those in Refs. [32,55]. To quantitatively
describe the temporal evolution of the interface, the positions
of bubble and liquid front are treated as benchmark quantities.
Fig. 10 plots the evolution of both bubble and liquid front
obtained by the present model, along with the benchmark
datas from previous studies [26,32,47]. Good agreements are
reached among these results.

C. Single rising bubble

Bubble rising problems are investigated to test the accuracy
of the present numerical schemes at high density ratios. A
circular bubble with radius r = 0.25 m is initially placed
at (0.5 m, 0.5 m) in the rectangular domain 1 m × 2 m. The
scales for length and velocity are chosen as L0 = 2r and
U0 = √

2gr, respectively. Table V lists dimensionless param-
eters which specify the test cases in our simulations. The
corresponding physical parameters refer to Ref. [56]. For the
present phase-field based LB model, the mesh 300 × 600 is
adopted, which is fine enough to obtain grid-independent re-
sults. The bounce-back boundary condition is applied at the
top and bottom boundaries, whereas the specular-reflection
scheme is imposed on the lateral walls.

Simulations of case 1 are conducted at a relative low
Eo number. In Fig. 11, the bubble shape at time t = 3 s is
compared with the benchmark computations by FEM-based
level-set method [56] and FEM-based phase-field method
[57]. As it can be seen, the results by current method agree
very well with both reference solutions. To describe the tem-
poral evolution of a bubble quantitatively, the centroid of the
bubble is introduced as benchmark quantity. The centroid
movement plotted in Fig. 12 has a good agreement with the
reference simulations.

For case 2, the density ratio and viscosity ratio are in-
creased to 1000 and 100, respectively, and the Eo number is
125. In the scenario with high Eo, the surface tension force is
relatively weaker and the bubble could undergo a severe shape

TABLE V. Dimensionless numbers for case 1 and case 2.

Case λρ λμ Re Eo

1 10 10 35 10
2 1000 100 35 125
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FIG. 8. Static droplet tests simulated by MRT-B and the present modified model: (a) density profile and (b) pressure profile.

deformation. Typical time evolutions of the bubble shape are
presented in Fig. 13. We compare the bubble shapes at time
t = 3 s with the reference solutions in Fig. 14. Results ob-
tained by the present model and FEM-based phase-field model
are in a good agreement. Similar bubble shapes were also
obtained by solving the flux-corrected Cahn-Hilliard equation
in Ref. [27]. However, compared with the shapes obtained by
the level-set model in Ref. [56], there exists some obvious
discrepancies in bubble tails. These two tails did not break off
and no satellite droplets were generated in the present model.
This difference may be inherent to the phase-field approach,
in which the interface is represented as a thin layer with finite
width. As shown in Ref. [56], the size of the tails become very
small before splitting. Therefore, the phase-field method will
have trouble in capturing the filament structure as it is close
to or smaller than the interface width. One can expect that
the bubble may break off when the interface width tends to
zero. The vertical movement of the bubble centroid, as shown
in Fig. 15, is predicted very similarly for these three methods.
And surprisingly, the different bubble tails have little effect on
the bubble mass center. Although the benchmark solution for
this case is rather inconclusive, we may still conclude that the

FIG. 9. Interface patterns of Rayleigh-Taylor instability: [(a)–
(e)] The present model at t∗ = 0.5, 1, 1.5, 2, 2.5; (f) Ref. [32] at
t∗ = 2.5; and (g) Ref. [55] at t∗ = 2.5.

FIG. 10. Time evolution of the bubble front (upper curves) and
liquid front (button curves).

FIG. 11. Bubble shapes at the time t = 3 s for case 1, in compar-
ison with benchmark computations conducted by Aland et al. [57]
and Hysing et al. [56].
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FIG. 12. Center of mass over time for case 1.

FIG. 13. Typical time evolution of the bubble interface for test
case 2 with time interval �t = 0.6 s.

FIG. 14. Bubble shapes at the time t = 3 s for case 2, in compar-
ison with benchmark computations [56,57].

FIG. 15. Center of mass over time for case 2.

accuracy of the present model is comparable with FEM-based
phase-field model.

V. SUMMARY AND CONCLUSION

We have proposed a modified multiple-relaxation-time
lattice Boltzmann model for the conservative Allen-Cahn
equation. By introducing an off-diagonal relaxation matrix,
the target macroscopic equation can be recovered without in-
troducing any extra terms. Free parameters in the equilibrium
momentum vectors and relaxation matrix can be designed
to improve the accuracy and stability. Combined with the
pressure-based LB model for hydrodynamics, the proposed
model can be applied to simulate the immiscible multiphase
flow systems. Several numerical experiments have been con-
ducted to demonstrate the accuracy and reliability of the
present modified MRT-LB model. Results obtained by our
model agree well with the corresponding analytical solutions
or benchmark computations. Compared with conventional
MRT-LB models without correction, the modified models
have better performance under the conditions with relatively
high Mach number. The computational cost for the present
MRT-LB model is about 1% higher than MRT-A but almost
the same with the modified model proposed by Ren et al.
[32]. For the simulation of multiphase flows, the proposed
MRT-LB model can easily handle the complex interface de-
formation, even in the case of high density and high viscosity
ratios. The obtained results by the present LB model have
comparable accuracy as the ones using FEM-based model. As
a strategy to remove the artificial term in recovered macro-
scopic equation, the present model can be easily extended to
treat the Cahn-Hlliard equation or other convection-diffusion
equations.
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