
PHYSICAL REVIEW E 104, 035302 (2021)
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Optimization plays a significant role in many areas of science and technology. Most of the industrial
optimization problems have inordinately complex structures that render finding their global minima a daunting
task. Therefore, designing heuristics that can efficiently solve such problems is of utmost importance. In this
paper we benchmark and improve the thermal cycling algorithm [Phys. Rev. Lett. 79, 4297 (1997)] that is
designed to overcome energy barriers in nonconvex optimization problems by temperature cycling of a pool
of candidate solutions. We perform a comprehensive parameter tuning of the algorithm and demonstrate that
it competes closely with other state-of-the-art algorithms such as parallel tempering with isoenergetic cluster
moves, while overwhelmingly outperforming more simplistic heuristics such as simulated annealing.
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I. INTRODUCTION

Optimization is ubiquitous in science and industry. From
the search for the ground state of exotic states of matter such
as high-temperature superconductors in physics [1], topol-
ogy optimization in material science [2], lead optimization in
pharmaceutical drug discovery [3], spacecraft trajectory opti-
mization [4], portfolio optimization in finance [5], scheduling
in transportation [6], and speech recognition in artificial in-
telligence [7] to name a few. One important category of
optimization problems is combinatorial optimization, which
is the search for the minima of an objective function within a
finite but often large set of solutions. Paradigmatic examples
are the traveling salesman problem, the geometrical packing
problem [8], graph coloring, the cutting stock problem, in-
teger linear programming, etc. Many of these problems are
NP-hard, in the sense that the worst-case time to find the
optimum scales worse than a polynomial in the size of the
input. Moreover, these problems are not only computationally
hard to solve in the worst case but also in the typical case.
These problems have a rough energy (cost function) land-
scape, consisting of numerous metastable states. Therefore,
heuristics based on local search—e.g., the greedy algorithm
[9]—tend to perform poorly on these types of problems as
they can easily become trapped in local minima [10].

One way to circumvent this difficulty is to use a stochastic
process such as Metropolis dynamics [11] to randomly access
different parts of the phase space. An example of an algorithm
that utilizes such random sampling is simulated annealing
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(SA) [12]. Simulated annealing is a Markov-chain Monte
Carlo process where a series of quasiequilibrium states are
visited by following an “annealing schedule” during which
the system is gradually cooled from a sufficiently high tem-
perature to a target low temperature. The goal is to guide the
stochastic process through an occasionally complex energy
landscape toward the low-lying states. At high temperatures,
the random “walker” can take long strides across phase space,
thus allowing for the exploration of configurations far away in
Hamming distance. As the system is cooled, the exploration
domain of the walker is reduced according to the Gibbs distri-
bution, and it eventually lands in a low-lying state. There is no
guarantee that this is the true optimum, unless an (impractical)
infinite annealing time is used [13]. Because SA is stochastic
in nature, running many such processes in parallel can in-
crease the chance of finding the true optimum. Nevertheless,
without establishing a way for the phase-space information
gathered by the random walkers to be shared, mere repli-
cation of a simulated annealing process will not yield any
meaningful speedup. Multiple Markov-chain algorithms such
as path-integral Monte Carlo [14–19], parallel tempering (PT)
[20,21], and population annealing [22–26] take advantage of
this “collective knowledge” to efficiently probe the solution
space of a problem.

Closely related to the genetic local search approaches
[27–30], the thermal cycling algorithm (TCA) [31,32] is an-
other heuristic that integrates the power of parallel annealing
processes with the utility of local search methods. The anneal-
ing part of this algorithm ensures that the phase space can be
visited ergodically, whereas the local search part biases the
dynamics toward the lower-energy states. When introduced
in the early 2000s, thermal cycling was shown to outperform
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simulated annealing in solving some limited instances of the
traveling salesman problem. Despite the early indications that
TCA might be a useful tool in dealing with hard optimization
problems, it has not been carefully benchmarked and hence
widely adopted by the optimization community. Here we rein-
troduce the thermal cycling algorithm and outline the basic
pseudocode. In addition, we conduct a comprehensive param-
eter optimization of TCA using synthetic planted problems,
where we compare the performance of TCA to a number of
modern optimizers, including simulated quantum annealing
(SQA). In order to quantify the efficiency of the aforemen-
tioned heuristics, we study how their time to solution (TTS)
[33,34] scales with the problem size. Our results show that
when optimized properly, TCA can indeed be competitive
with the state-of-the-art heuristics and therefore should be
included in physics-inspired optimization platforms.

The paper is structured as follows. In Sec. II we explain the
analysis techniques followed by the details of the algorithm in
Sec. III. Section IV is dedicated to the benchmarking results
of the study. Concluding remarks are presented in Sec. V.

II. DETAILS OF ANALYSIS

The cost function that we minimize in this benchmarking
study is a 2-local Ising spin system, i.e.,

H =
N∑
i

∑
j∈Ni

Ji jsis j +
N∑
i

hisi, (1)

where N is the total number of variables, Ni is the adjacency
list of the ith lattice site, Ji j is the coupling between spin si and
s j , and, finally, hi is an external field applied to spin si ∈ {±1}.

Most algorithms involve multiple parameters that need to
be carefully tuned to observe the true asymptotic scaling.
As such, a comprehensive hyperparameter optimization is in
order. For benchmarking, we use synthetic problems whose
ground state is unique and known beforehand. Here we use the
deceptive cluster loop (DCL) problems [35] that are specif-
ically designed for testing the performance of the D-Wave
[36] quantum annealer against classical algorithms. DCL’s are
inspired by the original frustrated cluster loop (FCL) problems
[37,38], which have a ferromagnetic planted ground state de-
fined on a chimera graph [39]. The chimera topology consists
of a two-dimensional lattice of fully connected bipartite K4,4

cells in which all qubits are coupled ferromagnetically. The
entire K4,4 unit cell can, therefore, be viewed as one virtual
variable. The cells are then connected via randomly chosen
frustrated loops. The magnitude of intercell couplings are
capped at a finite value R that adds local “ruggedness” to
the problems [40,41]. The hardness of the FCL instances can
be tuned by varying the density of the frustrated loops, often
denoted by parameter α. In the DCL problems, the intercell
couplers are multiplied by a scaling factor λ. Depending on
the value of λ, the internal structure of the cells can be masked
or accentuated, thus deceiving the annealers to spend more
time optimizing the local structures rather than finding the
global minimum.

As the measure of performance, we use the TTS [33,34]
that is defined in the following way:

TTS(α) = n(α) τrun, (2)

where n(α) is the number of times that the algorithm must
be repeated, for a given parameter set α, to find the ground
state at least once with a desired probability of pd . τrun is the
average run time, conventionally measured in microseconds.
If we assume that the success probability, i.e., the chance of
hitting the ground state in a single run of the algorithm is
ps(α), then one can show from the binomial distribution that

pd =
n∑

k�1

(
n

k

)
pk

s (1 − ps)n−k = 1 − (1 − ps)n. (3)

We may now use the above expression to find n(α) in Eq. (2):

n(α) = log[1 − pd ]

log[1 − ps(α)]
. (4)

It is customary to set the desired probability in Eq. (4) to a
high confidence value of pd = 0.99. Because the TTS is a
function of the algorithm parameters, a thorough optimization
of the parameters must be performed to reliably compare
heuristics based on it. Note that the optimization is often
multidimensional, which makes the benchmarking a relatively
laborious task. For each set of parameters α and each prob-
lem instance, we repeat the runs 100 times and calculate the
success probability ps(α) as the percentage of the ground-
state hits. This process is repeated for all instances, in this
case, 100, to calculate the median TTS, and the error bars
are estimated using the bootstrap method. The above proce-
dure is carried out for many other parameter-set values, and
the optimal parameters are identified as the global minimum
point of the TTS function. Having calculated the optimal TTS
for all problem sizes (N = 8L2), we can study the scaling
behavior of the algorithm, which is often an exponential, i.e.,

TTSopt ∼ 10a+bL. (5)

The scaling exponent b determines the performance of an al-
gorithm in the asymptotic limit, whereas a is a constant offset
that depends on the factors nonintrinsic to the algorithm, such
as hardware speed, code efficiency, etc. Therefore, a relatively
unbiased way to compare different algorithms is to focus on
the scaling exponent.

III. THERMAL CYCLING ALGORITHM

The thermal cycling algorithm works by periodically heat-
ing and cooling an ensemble of states while following a
decreasing temperature schedule. The ensemble is prepared
by selecting Np lowest energy states among N0 quenched
random configurations. Starting from the initial inverse tem-
perature βi = 0, the above pool of states is annealed toward a
final inverse temperature of β f in NT steps. At a given tem-
perature, some energy is deposited into the ensemble states
using Ns Metropolis updates (heating) followed by an imme-
diate quench via a local search method (cooling). If any of
the resulting states are lower in energy than the original set,
then they are replaced in the pool. The heating-cooling cycle
is repeated Nc times at a fixed temperature. In practice, the
above process steers the ensemble toward the low-lying states
while ensuring that metastable configurations do not hinder
the dynamics. The temperature is then reduced, and the cycles
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Algorithm 1 Thermal Cycling

1: Randomly initialize N0 configurations of the problem.
2: Quench each of the N0 states using a local search algorithm.
3: Construct a pool of states by selecting Np states with the lowest

energy from the above quenched states.
4: Build a list of lattice sites by comparing the spins on a given

site between all pools states. If all aligned, add the site to the
list.

5: for NT steps starting from β = 0 until β = βf do
6: for Nc cycles do
7: Pick a random state from the pool.
8: Add heat to the pool state using Ns Metropolis sweeps

at β, excluding the spins in the site list.
9: Quench the selected state.

10: if lower energy is achieved then
11: Replace the old state in the pool with the new one.
12: Rebuild the site list by comparing the spins between

the updated pool states.
13: end if
14: end for
15: Increase β → β + �β in which the step size �β is

usually constant, i.e, linear schedule.
16: end for
17: Identify the pool state with the lowest energy as the solution of

the problem.

start over. In Algorithm 1, we present a concise outline of the
thermal cycling algorithm.

The main advantage of thermal cycling is the possibility
of using a variety of variable-update classes in the quenching
phase. By using more complex updates, exponentially many
smaller local minima can be skipped in favor of lower-energy
and configurationally more differing ones. This, however,
does not necessarily translate to increased efficiency of the
algorithm as the implementation overhead associated with
those complex moves can negate the overall gain. Thus, there
must be a trade-off between the complexity of the moves
and the speedup owing to the reduced metastability. One of
the simplest updates is a single-spin greedy move (SSGM)
in which the most unstable spins (i.e., spins with the largest
positive local fields) are flipped in a sequential fashion until no
further improvement can be made. Another subset of the move
classes are the double-spin random moves (DSRM), which
consist of first attempting to flip a randomly chosen spin by
itself, and if this is rejected, then trying to flip it together
with one of the neighboring spins (looked up sequentially) that
results in lowering the overall energy. The updates stop when
the rejections accumulate to the total number of bonds in the
problem. Another important type of move that we have stud-
ied here is the Lin-Kernighan cluster move (LKCM) that is
based on the famous Lin-Kernighan algorithm [42,43] which
is considered, to date, one of the most efficient heuristics for
solving the traveling salesman problem (TSP). In a LKCM,
a cluster of spins of size M is constructed starting from the
most unstable spin and then appending the neighboring spins
to it until the total cost of flipping the cluster becomes posi-
tive. The LKCM is essentially a k-opt local search algorithm
[44–46], where k is determined from a sequence of partial
costs, i.e., {c1, c2, . . . , cM}. Here c1 is the cost of flipping the

first spin, c2 is the cost of flipping the first and the second spin
together, and so on. One then flips the set of k spins with the
lowest partial cost, ck . We report the performance of each of
the above move classes in the next section.

Another important point that one has to bear in mind is the
duration of the heating phase. As mentioned earlier, the heat-
ing part of TCA ensures that the algorithm remains dynamic
in spite of being quenched to often deep local minima. This
requires that the system is subjected to a sufficient number of
Metropolis updates. On the other hand, to preserve the gains
of the previous cycles, the equilibration must be terminated
in early stages. Otherwise, the system might end up in a
configuration too far away in the phase space.

During the cycling process, the states in the pool are treated
independently from one another. This has the potential pit-
fall that some of the states in the pool might wander off
to energetically unfavorable parts of the configuration space.
As mentioned earlier, this shortcoming can be alleviated by
establishing an interaction between the pool states. One way
to do this is to freeze the variables that are common among all
of the states. We can justify this reduction by realizing that if
the states in the pool have a feature in common, it is very likely
that the feature will also appear in the ground-state configura-
tion. Note that this step is closely related to metaheuristics
such as tabu search [47,48] as well as self-avoiding random
dynamics on integer complex systems (SARDONICS) [49],
search for backbones [50–53] often used in genetic type algo-
rithms, and sample persistence [54,55] which has been used
in conjunction with algorithms such as simulated annealing as
well as simulated quantum annealing.

In Fig. 1, we show the percentage of frozen spins versus the
inverse temperature β for the system size L = 12 in which dif-
ferent colors represent various pool sizes Np. It is interesting
to observe that the freezing mechanism is only helpful when
there is a moderate number of walkers. In other words, with
too few walkers the entire ensemble collapses to one state
very early on in the annealing schedule, whereas with too
many walkers, the probability of all the pool states agreeing
on the value of a particular spin becomes exceedingly low,
hence rendering the freezing practically irrelevant. On the
other hand, with population size around Np = 16, the percent-
age saturates at an optimal value of roughly 60% such that
a considerable number of degrees of freedom are preserved
allowing for independent random walks to continue while still
restraining the walkers from spreading to far from one another
in the configurational space.

IV. RESULTS

In this study, we compare TCA to SA [12], SQA [16],
PT [20,21], and parallel tempering with isoenergetic cluster
moves (PT+ICM) [57]. SQA is the classical implementation
of the quantum annealing process [58,59] in which the system
is initialized in the ground state of a simple Hamiltonian and
adiabatically [60] deformed into a target Hamiltonian whose
ground state is difficult to find. Parallel tempering is a Monte
Carlo algorithm that efficiently samples the equilibrium
configurations of a system using the replica-exchange tech-
nique. The ICM update—which consist of rearranging a large
collection of variables by inspecting the overlap between two
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FIG. 1. The percentage of frozen spins in TCA for the system
size L=12 versus inverse temperature β. The colors on the lines
represent different pool sizes Np. With only a few walkers, there
is more chance of agreement between the spin values at a given
site, hence the system collapses to a single walker early on during
the annealing process, whereas with too many walkers, the freezing
mechanism ceases to function.

replicas—is extremely effective for low connectivity graphs
in which the cluster percolation threshold is small. For this
benchmarking study we have generated 100 DCL instances
for each linear size ranging from L = 8 to L = 16. The DCL
parameters are fixed to a relatively hard regime of α = 0.24,
R = 1, and λ = 3.0 [35]. For each studied algorithm, we op-
timize the parameters via a grid search within its parameter
space. All of the simulations are done on a single thread using
Intel Xeon E5-2680 v4 2.40-GHz and Intel Xeon E5-2673 v4

2.30-GHz processors. In Table I, we have listed the optimal
parameters of the thermal cycling algorithm as well as the
other studied heuristics.

Note that since we are dealing with a high-dimensional op-
timization space, global optimality is neither guaranteed nor
necessarily unique. We observe that most of the TCA parame-
ters are robust with respect to the problem size and the number
of annealing steps NT —much like SA—is the only varying
parameter. This is valuable information as it eliminates the
necessity of a full parameter optimization in a practical im-
plementation of the algorithm. In reality, the total effort in a
TCA simulation is roughly proportional to NT NpNcNs with
some additional overhead caused by the local search. This
suggests that correlation between the above parameters can be
expected. For instance, similar performance can be achieved
by increasing the number of walkers or by extending the
annealing schedule while having a moderate pool size.

In Figs. 2 and 3 we show some examples of such parameter
optimization. Figure 2 shows time to solution versus the total
number of sweeps in PT+ICM for various problem sizes.
The minimum of the curve marks the optimal sweep values.
Figure 3(a) illustrates a two-dimensional cross section of the
parameter space of TCA for the system size L = 12. The rest
of the parameters are fixed to the values listed in Table I. Here,
the color map represents the TTS values in a logarithmic scale.
The axes show the number of cycles Nc and the number of
annealing steps NT . We observe two minima with comparable
depth within error bars, corroborating the fact that NT and Nc

are anticorrelated. Figure 3(b) shows the TTS as a function of
the pool size Np. Beyond the horizontal dashed line marked
by the hatched region, none of the benchmark problems can
be solved in 100 independent attempts. It is interesting to
observe that having a sufficiently large number of walkers
is essential for the efficiency of the algorithm. Although it is
intuitive that having more walkers will increase the chance of
finding the ground state, the additional computational effort

TABLE I. Optimal parameters of the studied algorithms for different linear problem sizes L. Here NT represents the total number of
algorithmic steps in each heuristic. For example, in SQA, one algorithmic step involves building a Wolff cluster [56] in the imaginary time
direction by sweeping randomly through all lattice sites, whereas in PT, an algorithmic step in defined as a Metropolis sweep over each replica
followed by a tempering exchange move. βi and β f are the highest and lowest temperatures that the algorithm operates between. TCA involves
the additional parameters of Np, Nc, and Ns which are the pool size, the number of heating-cooling cycles per temperature, and the number
of Metropolis sweeps, respectively. In SQA, Np determines the number of Suzuki-Trotter slices while βc = βq/Np sets the “classical” inverse
temperature with βq being the temperature at which the underlying quantum annealing process is performed. Finally, for PT M is the number
of temperatures which are spaced as a geometric sequence. When PT is accompanied with ICM updates, 2M replicas are used.

SA SA+DSRM TCA SQA PT

L NT β f NT β f NT Np Nc Ns β f NT Np βc NT M βi β f

8 2896 0.25 3242 0.25 128 16 32 16 0.20 65536 32 1.0 2220 8 0.10 0.20
9 8192 0.25 7529 0.25 256 16 32 16 0.25 92681 32 1.0 3246 8 0.10 0.25
10 11585 0.30 11621 0.30 512 16 64 32 0.25 185363 32 1.0 5686 16 0.10 0.25
11 46340 0.30 26989 0.30 512 16 128 32 0.30 262144 32 1.0 10787 16 0.10 0.30
12 65536 0.30 41127 0.30 724 16 128 32 0.30 262144 32 1.0 17695 16 0.10 0.30
13 92680 0.30 62675 0.30 724 16 128 32 0.30 370727 32 1.0 21899 24 0.10 0.30
14 262144 0.30 95514 0.30 1024 16 128 32 0.30 524289 32 1.0 34954 24 0.10 0.30
15 1048576 0.30 145556 0.30 1024 16 128 32 0.30 741455 64 1.0 58909 32 0.10 0.30
16 1482910 0.30 221815 0.30 1448 16 128 32 0.30 1048576 64 1.0 96183 32 0.10 0.30
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FIG. 2. Optimization of total sweeps for PT+ICM using various
system sizes. The minimum TTS points correspond to the optimal
sweep values.

of doing so negates any potential gains as seen from the flat
regions in the TTS curves.

In Fig. 4 we show the scaling results of the thermal cycling
algorithm with various move classes—that is, SSGM, DSRM,
and LKCM, as explained in Sec. III. The main panel of Fig. 4
displays the optimal TTS values for different system sizes L,
with the lines fitted to the largest five system sizes. The inset
of the figure shows the scaling exponent b in Eq. (5) obtained
from the linear fits. Note that the height of the boxes represents
the error bars. It is clear that the DSRM are significantly more
efficient than the other two types of move classes that we
have studied here. It is interesting to note that the LKCM
become less efficient as the problem size increases despite
giving almost two orders of magnitude in constant speedup
for smaller systems sizes. We speculate that this is due to the
increased overhead of constructing a long sequence of partial
costs—which requires building a large cluster of spins as we
explained in Sec. III—relative to the optimal subcluster that
is flipped in the end. It is worth mentioning here that the
efficiency of the LKCM is to some extent topology-dependent
because the updates are, in essence, cluster moves, and there-
fore might perform better when implemented on a different
set of problems.

In Fig. 5(a), we show the scaling curves of various
algorithms, corresponding to the optimal values of their
parameters, as a function of the linear size L. As before, the
TTS values are reported in the logarithmic (base 10) scale
where the linear fits are interpreted as exponential scalings.
There is a considerable constant offset associated with PT and
PT+ICM, which is due to the use of a highly optimized im-
plementation by Salvatore Mandrà as a part of NASA/TAMU
UFO. Figure 5(b) shows the scaling exponent b [the slope
of the linear fit in Fig. 5(a)]. We observe that TCA (with
DSRM) scales overwhelmingly better than SA, in agreement
with previous TSP studies. It is also more efficient than PT
and even competitively close to SQA. Note that PT is already
established as a powerful heuristic in many optimization-
related applications. SQA and PT+ICM show the best

FIG. 3. (a) Parameter tuning of the thermal cycling algorithm
using DCL problems of linear size L=12. The figure shows the
number of cycles Nc versus the number of annealing steps NT , with
the rest of the parameters fixed to the values listed in Table I. The
color map shows the TTS values. Two minima with similar depths are
observed. The lowest minimum corresponds to the optimal parame-
ters. (b) Optimization of the pool size Np of TCA for a various system
sizes. Above the horizontal dashed line, none of the problems can be
solved in 100 attempts. Across all problem sizes studied Np = 16 is
sufficient.

performances among the studied solvers. This can be ascribed
to the structure of the DCL problems that involve tall but
thin barriers that can be easily tunneled through using SQA.
Isoenergetic cluster moves are also well suited for the DCL
problems as they cause large rearrangements of the variables,
resulting in an efficient sampling of the configuration space.

We have also included SA+DSRM in which simulated
annealing is augmented by the double-spin random moves
used in TCA as explained earlier in Sec. III. We notice that
unlike TCA, the improvement is negligible which highlights
the fact that the efficiency of TCA does not solely arise from
the use of complex quench moves but rather because of the

035302-5



AMIN BARZEGAR et al. PHYSICAL REVIEW E 104, 035302 (2021)

FIG. 4. Main panel: TTS of the thermal cycling algorithm versus
the linear problem size L. Various quenching schemes consisting
of SSGM, DSRM, and LKCM are displayed. The lines represent
a linear fit in the logarithmic (base 10) scale to the five largest
system sizes. We observe a sizable constant speedup with the LKCM
although it diminishes at larger system sizes. Inset: Scaling exponent
b corresponding to the slope of the linear fits in the main panel.
The height of the boxes represents the error bars. The best scaling
is obtained when TCA is used in conjunction with DSRM. These
moves are simple enough to cause minimal overhead, yet complex
enough to considerably reduce the number of the metastable states.

population-based nature of the algorithm. With a single ran-
dom walker in SA, the zero-temperature quenches tend to
strongly disturb the equilibrium distribution of states obtained
by the finite-temperature Metropolis moves. On the contrary,
with multiple walkers, the effect of such quenches is prop-
agated slowly through the population allowing the downhill
moves to be exploratory rather than disruptive. This can be
best seen in Fig. 3(b) where TTS values increase dramatically
once the pool size drops down to a handful of walkers.

V. CONCLUSION

In this paper we have thoroughly benchmarked the thermal
cycling algorithm. Our results demonstrate that TCA is a com-
petitive heuristic for solving problems with complex struc-
tures as it takes advantage of repeated heating and cooling to
push the system toward the lower-energy states while ensuring
that the system does not get trapped in an excited state. By
reducing the variables among the TCA replicas, the stochastic
process can be further accelerated, and the system can be
guided more effectively toward the global minimum using the
collective “memory” of the solution pool. Having carefully
tuned the parameters, we show that TCA can be as effective as
the state-of-the-art algorithms such as SQA, while overpow-
ering SA and PT by great margins in the asymptotic scaling.

Due to the special structure of the DCL problems, which
involve tall yet narrow barriers, SQA and PT+ICM outper-
form TCA because they utilize quantum effects and cluster
updates to bypass those barriers. The true advantage of TCA

FIG. 5. Comparison between the scaling results of the studied al-
gorithms using the DCL problems. (a) TTS versus the linear problem
size L for various algorithms. Note that TTS is given on a logarithmic
(base 10) scale. (b) Scaling exponent b in Eq. (5) for various algo-
rithms. The height of the boxes represents the error bars. The TCA
data points correspond to the best performing quenching scheme,
i.e., DSRM, shown in Fig. 4. TCA scales better than SA and PT,
and even comparable to SQA within the error bars. PT+ICM shows
the best scaling. However, the latter is due to the great efficiency
of the ICM updates in sampling the DCL phase space which is
nonrepresentative for denser industrial problems. Unlike in TCA, the
addition of DSRM quenches to SA (SA+DSRM) does not improve
the performance.

might be revealed when using dense graphs with broad barri-
ers, where PT+ICM and SQA would naturally struggle. TCA
also lends itself to being integrated with ICM updates because
it involves simultaneous annealing of many system replicas.
This is in close analogy with to the iterative partial transcrip-
tion algorithm [61,62]. It has been shown by Ochoa et al. [63]
that a lower-energy state can be generated by overlapping two
excited states via an ICM update. Therefore, one interesting
addition to TCA could be trying to push the pool states further
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down in energy by performing ICM updates at the end of the
cycle, provided that the graph density is low enough and the
clusters do not percolate.

ACKNOWLEDGMENTS

We thank A. Möbius for useful discussions regarding
various aspects of the thermal cycling algorithm, and also
providing code for the DSRM. The authors also acknowl-
edge Jonathan Machta for critically reviewing the manuscript.
H.G.K. thanks Dr. Pimple Popper for visualizations of energy
landscapes. We thank Texas A&M University, NASA Ames
Research Center, and Microsoft Quantum Group for providing
access to computational resources. This work is supported in
part by the Office of the Director of National Intelligence

(ODNI), Intelligence Advanced Research Projects Activity
(IARPA), via MIT Lincoln Laboratory Air Force Contract
No. FA8721-05-C-0002. S.M. also acknowledges the support
from the Intelligence Advanced Research Projects Activity
(IARPA) (IARPA IAA 1198) and the Defense Advanced Re-
search Projects Agency (DARPA) (IAA 8839, Annex 125).
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, of ODNI, IARPA, DARPA or the U.S. Government.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. The work of H.G.K. was
performed before joining Amazon Web Services.

[1] V. Stanev, C. Oses, A. G. Kusne, E. Rodriguez, S. Curtarolo,
and I. Takeuchi, Machine learning modeling of supercon-
ducting critical temperature, npj Comput. Mater. 4, 29
(2018).

[2] M. P. Bendsøe, Topology Optimization (Springer US, Boston,
MA, 2009), pp. 3928–3929.
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