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Fluid-wall interactions in pseudopotential lattice Boltzmann models
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Designing proper fluid-wall interaction forces to achieve proper wetting conditions is an important area of
interest in pseudopotential lattice Boltzmann models. In this paper, we propose a modified fluid-wall interaction
force that applies for pseudopotential models of both single-component fluids and partially miscible multicom-
ponent fluids, such as hydrocarbon mixtures. A reliable correlation that predicts the resulting liquid contact angle
on a flat solid surface is also proposed. This correlation works well over a wide variety of pseudopotential lattice
Boltzmann models and thermodynamic conditions.
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I. INTRODUCTION

Pseudopotential (PP) lattice Boltzmann (LB) models are
among one of the most popular categories of LB models for
a variety of multiphase flow simulation scenarios [1]. Their
popularity comes mainly from their simplicity in concept and
easiness to implement [2,3]. The idea of PP LB models is
to introduce a fully discretized external body force to the
Navier-Stokes (N-S) equations to facilitate multiphase flow
simulations. This force serves two purposes: it not only pro-
vides a mechanism to separate phases, but also introduces a
surface tension force due to interfacial curvature that balances
the (capillary) pressure difference between the phases [4,5].

There are two categories of PP LB models, single-
component (SC) PP LB models and multicomponent (MC)
PP LB models. In the former, the designed external body
force modifies the linear relationship between the pressure and
the fluid density reproduced by the standard LB models, so
fluids are driven towards two equilibrium states with distinct
densities [2,3]. MC PP LB models, on the other hand, have
been largely restricted to applications when components are
fully immiscible, i.e., each component forms its own phase
and does not significantly dissolve in the other phases [6,7].
In this category, external body forces are designed as repul-
sive forces for individual components to prevent them from
mixing. Only until recently, MC PP LB models for partially
miscible multicomponent fluids (PMMCFs) were proposed
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[8,9]. PMMCFs are referred to fluids, such as hydrocarbon
mixtures where components are present in all phases but
at different concentrations, whereas phases remain partially
miscible with each other [10,11]. Using gasoline as an ex-
ample, when it forms a vapor-liquid (vl) two-phase system,
all the hydrocarbon components would exist in both phases,
but their molar fractions in the two phases are usually vastly
different due to their different volatility. Within each phase,
i.e., vapor or liquid, all hydrocarbon components form a
homogeneous mixture. To accommodate a system of PMM-
CFs, the external body force of a PP LB model must be
defined in terms of phases to bring in thermodynamic infor-
mation that correctly distribute components into phases [8,9].
Then this force is split to individual components based on
their volatility to evolve the distribution functions in the LB
model [9].

In many applications, such as porous media flow, the ability
to handle wetting conditions on solid surfaces is a crucial step
towards achieving realistic multiphase flow simulations. In PP
LB models, the wetting conditions can be easily achieved with
properly designed fluid-wall interaction forces [7,12–16]. The
definitions of such fluid-wall interaction forces are similar to
those fluid-fluid external body force. In those MC PP LB mod-
els applied to fully immiscible components, specific wetting
conditions are realized by making the wall adhesive to wetting
fluids and repulsive to nonwetting fluids. This is controlled by
the signs of adhesive parameters of the designed fluid-wall
interaction forces applied to individual components [7]. Later,
Huang et al. discovered that the wetting condition actually
depended on the difference between the adhesive parameters
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rather than their individual values [14]. Another contribution
of Huang et al. was to build an empirical formula to anticipate
contact angles with respect to adhesive parameter differences
in immiscible MC PP LB models.

The above scheme for MC PP LB models had been modi-
fied to function in SC PP LB models where the intensity of
the fluid-wall interaction force controls the resulting liquid
contact angles [12,13]. Another popular way to handle wetting
conditions in SC PP LB models is the virtual density method
proposed by Benzi et al. [17]. This scheme sets a constant
virtual fluid density at solid nodes, then uses this virtual den-
sity to define the pseudopotential and the fluid-wall interaction
force sequentially. By adjusting the virtual density from the
liquid density to vapor density, one can change the liquid
contact angle from 0◦e to 180◦ [17]. A main issue of the above
schemes is that they can cause a nonphysical mass transfer
layer between the droplet and the solid surface as reported by
Li et al. [16]. These schemes could also cause relatively large
spurious currents near fluid-wall interfaces. Recently, Li et al.
proposed an improved scheme for fluid-wall interaction forces
[16]. Instead of using a constant virtual density to define the
pseudopotential at the wall, Li et al. adopted the weighted
local averaged density. This simple improvement was shown
to effectively eliminate the nonphysical mass transfer layer
and suppress spurious currents.

Although these aforementioned fluid-wall interaction
schemes are able to achieve different wetting conditions in SC
PP LB models via adjusting their tuning parameters, further
improvements remain to be performed in two aspects. First,
functional dependencies or empirical correlations, such as the
one built by Huang et al. [14] for MC PP LB of fully immisci-
ble fluids, remain still absent for the purpose of linking tuning
parameters to contact angles. From the users’ point of view, a
trial and error process is required to find the values of those
tuning parameters for any desired wetting condition, given
that the values of those parameters are largely case dependent.
Second, there is no scheme to realize the wetting conditions
in MC PP LB models for PMMCFs, which largely constrains
the applications of our proposed model. As we will discuss
later, the available fluid-wall interaction schemes that work
well for pure component cases would have some difficulties
to be straightforwardly extend to PMMCF scenarios.

The present paper aims at solving the above two deficien-
cies. First, enlightened by the study of Li et al. [16], we will
design a further simplified fluid-wall interaction scheme that
achieves wetting conditions for both SC fluids and PMMCFs.
Second, based on the modified scheme, we will summarize an
empirical correlation to predict the resulting contact angles.
This correlation is applicable for both SC and PMMCF cases
and covers a wide variety of thermodynamic conditions. Com-
pared to its alternatives, the modified scheme mainly has the
advantages on the easiness to implement, and the capability to
function with MC PP LB models for PMMCFs.

The remaining paper is arranged as follows. In Sec. II,
we will give a brief introduction on SC PP LB models and
MC PP LB models for PMMCFs and review some repre-
sentative fluid-wall interaction schemes. Then, in Sec. III,
we will propose the simplified fluid-wall interaction scheme
and formulate the empirical correlation to predict the result-
ing contact angles. Validations of the proposed scheme and

empirical correlation will be conducted in Sec. IV. Finally, the
main conclusions of the paper will be recapitulated in Sec. V.

II. PSEUDOPOTENTIAL LATTICE BOLTZMANN MODELS
AND FLUID-WALL INTERACTION

A. Pseudopotential lattice Boltzmann models

The standard lattice Boltzmann method can be viewed as
an indirect solver of the N-S equations [18]. It tracks the
evolution of distribution functions for a selected set of discrete
velocities. The evolution equation of the distribution function
is known as the lattice Boltzmann equation (LBE). With the
multirelaxation time (MRT) collision operator, LBE can be
written as

fα (x + eαδt , t + δt ) − fα (x, t )

= −(M−1S)αβ

[
mβ (x, t ) − m(eq)

β (x, t )
]

+
[

M−1

(
I − S

2

)]
αβ

�β (x, t )δt, (1)

where fα is the distribution function corresponding to the αth
discrete velocity eα among the selected discrete velocities,
x and t represent the current spatial location and time,
respectively, δt is the time step size, M−1 is the inverse
of the transform matrix M, which converts the distribution
functions into the same amount of moments, S is the diagonal
matrix of relaxation frequencies (i.e.„ the reciprocals of
the relaxation times). For a D2Q9 discrete velocity set,
S = diag[τ−1

ρ , τ−1
e , τ−1

ε , τ−1
j , τ−1

q , τ−1
j , τ−1

q , τ−1
ν , τ−1

ν ],
where τρ, τe, τε, τ j, τq, and τν are relaxation times of
the density, energy, energy square, momentum, energy flux,
and viscous stress moment, respectively [19]. mβ is the βth
moment, and m(eq)

β stands for its equilibrium part. Finally, �β

is the moment form of forcing term for the βth moment.
The above LB model reproduces the continuity and

momentum equations in the N-S equation system. The hydro-
dynamic quantities, such as fluid density ρ, and velocity u are
related to the distribution functions as [20]

ρ =
∑

α

fα, ρu =
∑

α

eα fα + δt

2
F, (2)

where F is the body force in N-S equations.
PP LB models realize multiphase flow simulations by in-

troducing a fluid-fluid interaction force that mimics that of
the molecular interactions. For SC fluids, this force is often
defined as [2]

F(x) = −Gψ (x)
∑

α

wαψ (x + eαδt )eα, (3)

where G is the intensity of the interaction force, ψ (x) is the
pseudopotential at the current location, and ψ (x + eαδt ) are
the pseudopotentials on its neighboring locations with wα

being the weights. To incorporate thermodynamic information
of real fluids into the model to guide phase transition, the
pseudopotential ψ is usually defined via the cubic equations
of state (EOS) [21],

ψ =
√

2
[
pEOS(ρ) − c2

s ρ
]

Gc2
s δt

, (4)
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where pEOS is the pressure predicted by the selected cubic
EOS, cs is the speed of sound, which is a constant associated
to the selected discrete velocity set. It should be noted that
when the pseudopotential is defined in this way, G no longer
controls the intensity of the fluid-fluid interaction force but
only needs to ensure the non-negativity of whole term under
the square root [21].

A well-recognized issue of the above SC PP LB model is
its thermodynamic inconsistency, which means, the resulting
two-phase densities in a simulation, especially the vapor phase
density, would significantly deviate from the values predicted
by the selected cubic EOS [22–24]. This is because as ψ has
been determined by Eq. (4), there is no extra degree of free-
dom to satisfy the chemical balance condition simultaneously,
i.e., the two phases having the same chemical potential [24].
There are several remedies to introduce additional degrees of
freedom to restore thermodynamic consistency [22,24–26].
A frequently used remedy is the modified forcing scheme
proposed by Li et al. [26]. In this scheme, the two forcing
terms associated with the energy and energy square moments
are defined as

�e = 6F ·
(

u + σF
(τe − 0.5)c2

s δtψ2

)
,

(5)

�ε = −6F ·
(

u + σF
(τε − 0.5)c2

s δtψ2

)
,

where σ is a free parameter whose value is tuned to restore
thermodynamic consistency. u, v, and Fx, Fy are the compo-
nents of the fluid velocity and force, respectively. The other
forcing terms are kept the same as those in the standard MRT
collision operator, which is not repeated here. In the present
paper, the forcing scheme of Li et al would be used as the
default scheme in numerical tests, unless otherwise specified.

In MC PP LB models, each component is assigned with
a separated set of distribution functions, whose evolution is
tracked by the same LBE in Eq. (1). However, unlike SC
PP LB models, the fluid density and velocity in MC PP LB
models are computed as

ρ̄η =
∑

α

fα,η, ρ =
∑

η

ρ̄η,

ρu =
∑

η

(∑
α

eα fα,η + δt

2
Fη

)
, (6)

where quantities with a subscript η are associated with the
individual component η in the system. Different from fully
immiscible fluids where no mass transfer happens at the
two-fluid interface, phases of partially miscible fluids can
exchange masses to establish new thermodynamic equilibrium
states, in response to the changes in temperature, pressure,
and phase compositions. In these processes, thermodynamic
information plays a crucial role in guiding how components
are redistributed among phases [27,28]. It should be noted
that ρ̄ with an overbar in Eq. (6) refers to the “densities of
components,” which has no thermodynamic significance for
PMMCFs [9].

The same as SC PP LB models, the thermodynamic in-
formation is introduced to MC PP LB models via using

cubic EOS, e.g., the Peng-Robinson EOS [29], to define the
pseudopotential. For the sake of conciseness, the procedure is
briefly summarized as follows: (1) The local molar density ρ̃

and the local molar fraction are input into the cubic EOS for
PMMCFs to compute the thermodynamic pressure pEOS. (2)
Together with the mass density of the phase ρ, the pseudopo-
tential ψ and the total fluid-fluid interaction force applied to
the phase are defined via Eqs. (4) and (3), respectively. (3)
This total interaction force is then split to individual com-
ponents so the distribution functions can evolve [8,9]. More
details on the MC PP LB model for PMMCFs can be found in
Ref. [9], which are no longer repeated here.

B. Fluid-wall interaction

As mentioned before, wetting conditions in the PP LB
models are achieved via fluid-wall interaction forces. One of
the most commonly used fluid-wall interaction schemes is
formulated by Sukop and Thorne [13] as

Fw(x) = −Gwψ (x)
∑

α

wαs(x + eαδt )eα, (7)

where Gw is the intensity of the fluid-wall interaction, s(x +
eαδt ) is a solid phase indicator which equals 1 if the location
(x + eαδt ) is a solid node and 0 otherwise. With this scheme,
the liquid contact angle is adjusted via tuning Gw. In general,
the negative values of Gw often result in hydrophilic wetting
conditions, i.e., a liquid contact angle θ < 90◦, whereas pos-
itive values of Gw lead to hydrophobic wetting conditions,
i.e., θ > 90◦. The small Gw is the smaller the contact angle
θ would be.

Another popular scheme of fluid-wall interaction in SC PP
LB models was proposed by Benzi et al. [17], which relies
on a constant virtual density ρw to achieve wetting conditions.
This fluid-wall interaction scheme can be expressed as

Fw(x) = −Gψ (x)
∑

α

wαψ (ρw )s(x + eαδt )eα, (8)

where ψ (ρw ) is the constant pseudopotential at solid nodes
defined by Eq. (4). Although in the work of Benzi et al. [17]
an analytic correlation was provided to determine ρw for the
desired contact angle θ , in practice, tuning ρw through trial
and error is still inevitable.

The above two schemes can generate a undesired nonphys-
ical mass transfer layer between a staying droplet and the solid
wall [16]. To eliminate this nonphysical mass transfer layer,
Li et al. proposed using the local fluid density rather than
the constant virtual density to define the fluid-wall interaction
force, i.e., the constant virtual density ρw in the scheme of
Benzi et al. was modified as [16]

ρw(x) =
{
φρave(x), φ > 1 for θ < 90◦,
ρave(x) − �ρ, �ρ > 0 for θ > 90◦, (9)

where

ρave(x) =
∑

α wαs′(x + eαδt )ρ(x + eαδt )∑
α wαs′(x + eαδt )

. (10)

Here s′(x + eαδt ) is a fluid phase indicator which equals 1 if
(x + eαδt ) is a fluid node and 0 otherwise. It should be noted
that a limiter is applied to confine ρw(x) between the saturated
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vapor density ρv,sat and the saturated liquid density ρl,sat at a
given temperature. The two tuning parameters φ and �ρ are
adjusted to achieve the desired wetting conditions.

III. A MODIFIED FLUID-WALL INTERACTION SCHEME

Although the fluid-wall interaction scheme of Li performs
well for SC fluids, it is not straightforward to extend to PMM-
CFs. For PMMCFs, the pseudopotential ψ depends on not
only the fluid density ρ, but also the molar fraction ci. How-
ever, due to the complex dependency of pEOS on the molar
fraction ci, it is difficult to generate a guideline to tune ρw and
cw,i at the same time to achieve a desired wetting condition.

In both the scheme of Benzi et al. [17] and the scheme of
Li et al. [16], although the value of the virtual density ρw is
adjusted, the ultimate goal is to define proper pseudopotential
at the solid locations, i.e., ψw to control the wetting condi-
tions. Following the idea of Li et al. to define the fluid-wall
interaction using the local information [16], we propose a
fluid-wall interaction scheme that reads

Fw(x) = −Gψ (x)
∑

α

wαψw(x + eαδt )s(x + eαδt )eα, (11)

where

ψw(x) = ϕψave(x),

ψave(x) =
∑

α wαs′(x + eαδt )ψ (x + eαδt )∑
α wαs′(x + eαδt )

, (12)

where ϕ is a parameter controlling the resulting contact angle
in the simulations. With ϕ > 1, a contact angle θ < 90◦ is
expected, and with ϕ < 1, θ > 90◦ is expected. The above
equation is similar to the scheme of Li et al., but differences
exist in three key aspects. Instead of computing ψw through
a properly defined virtual density (in the work of Li et al.),
(in the proposed scheme) ψw is directly constructed. Second,
a uniform scheme is used here for the whole range of contact
angles from 0◦ to 180◦, in contrast with the scheme of Li et al.
that uses two separate schemes for contact angles θ > 90◦
and θ < 90◦. Last, no limiter has been added to confine ψw.
This is mainly to consider that the liquid and vapor densities
would deviate from their saturated values with the existence of
curved interfaces and associated capillary pressure. Alrthough
these deviations are usually small, ψw is unconfined to reduce
the artificial influence.

As ψw is defined directly by the modified scheme, this
scheme is extendable to MC PP LB model for PMMCFs since
there is no need to determine ρw and ci,w separately to obtain
proper pEOS. With the proposed fluid-wall interaction scheme,
the resulting contact angle θ is found to linearly depend on the
value of ϕ as

cos θ = −1

2
(ϕ − 1)CGc4

s

δt3

δx

(
ψ2

v,sat − ψ2
l,sat

)
γlg

, (13)

where C is an empirical constant, ψl,sat and ψg,sat are the
pseudopotential corresponding to the saturated liquid density
and saturated vapor density, respectively. γlg is the liquid-
vapor surface tension results from the PP LB model, which
can be either computed analytically [1,24] or from the Young-
Laplace equation in a simple case of a suspending droplet in a

gaseous environment. Alternatively, substituting the definition
of ψ in Eq. (4) into the correlation proposed above, Eq. (13)
can be rewritten in terms of the saturated vapor density ρv,sat

and the saturated liquid density as

cos θ = (ϕ − 1)Cc4
s

δt2

δx

(ρl,sat − ρv,sat )

γlg
, (14)

since the saturated vapor and liquid are corresponding to the
same pressure.

The formulation of Eq. (13) can be explained as follows.
According to Young’s equation, the contact angle is deter-
mined by three surface tensions, i.e., the vapor-solid (vs)
surface tension γgs, the liquid-solid (ls) surface tension γls,
and the liquid-vapor surface tension γlg, as

cos θ = γgs − γls

γlg
. (15)

For PP LB models, the surface tension can be quantified as
[30,31]

γ =
∫ +∞

−∞
(Pxx − Pyy)dx = −1

2
Gc4

s δt3
∫ +∞

−∞

∣∣∣∣dψ

dx

∣∣∣∣
2

dx,

(16)
where Pxx and Pyy are the normal and transverse components
of the pressure tensor, and the integral is from one bulk phase
to another across an interface. Although it is difficult to use
the above definition to compute the three surface tensions, we
might use it to approximate them for the purposes of Eq. (13).
As the fluid-wall interactions in the liquid and vapor phases
are computed using the same scheme with the local informa-
tion, it is reasonable to argue that the gradient of ψ has similar
distribution and the two interfaces have close thickness. As a
result, we will have∫

gs

∣∣∣∣dψ

dx

∣∣∣∣
2

dx ∝ ψ2
v,sat

δx
,

∫
ls

∣∣∣∣dψ

dx

∣∣∣∣
2

dx ∝ ψ2
l,sat

δx
. (17)

Using Eqs. (16) and (17) in Young’s equation, we will have

cos θ ∝ −1

2
Gc4

s

δt3

δx

ψ2
v,sat − ψ2

l,sat

γlg
. (18)

In the proposed scheme, the parameter ϕ is deployed to con-
trol the resulting contact angle, which results in cos θ > 0
when ϕ > 1, i.e., θ < 90◦, and cos θ < 0 when ϕ < 1. Thus,
the first guess of the dependency of cos θ on ϕ can be per-
formed as cos θ ∝ (ϕ − 1), which leads to

cos θ ∝ −1

2
(ϕ − 1)Gc4

s

δt3

δx

ψ2
v,sat − ψ2

l,sat

γlg
. (19)

By introducing a factor C for the above dependency and by
replacing ψv,sat and ψl,sat in the above equation with the satu-
rated densities ρv,sat and ρl,sat, we finally reach the empirical
correlation in Eq. (14). This empirical correlation was later
found to predict the resulting contact angle well under vari-
ous thermodynamic conditions with different PP LB models.
The only two places in the correlation where input from the
simulations were used are in the estimation of surface tension
γlg and the constant C. Although the surface tension γlg can
be determined via the EOS when the reduced temperature
is selected, it could be more convenient to determine γlg
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via simulations of a static droplet suspending in the vapor
environment. The value of C is indeed determined by fitting
in the simulation results, but it is also shown that the same
value of C applies to different reduced temperatures, different
EOS (limited to pure component cases), different choices of
scaling, and different pseudopotential models. Therefore, the
recommended values of C can be directly used by readers
without performing extra simulations. The other parameters:
ρl,sat and ρv,sat are readily obtained from applying the the
Maxwell equal area rule for the isochemical potential con-
dition, and they are already available for initialization and
thermodynamic consistency examination. G, cs, δx, and δt

are just constants. By fitting in the results obtained in the
following section, we recommend C = −0.465 for pure sub-
stance cases and C = −0.45 for MC partially miscible fluid
cases.

IV. NUMERICAL TESTS

In this section, we would test the modified fluid-wall in-
teraction scheme for handling wetting conditions in both the
SC PP models and the MC PP model for PMMCFs, and
validate the empirical correlation for contact angle predictions
against the actual contact angles from the simulations. The
case of a static droplet sitting on a smooth flat solid surface is
adopted. The same case was also selected by many previous
studies to examine the performances of fluid-wall interaction
schemes in achieving wetting conditions [16,32] The compu-
tational domain is Nx × Ny = 400 × 300. The x direction is
periodic, and the y direction is bounded by two solid walls.
The halfway bounce-back scheme is used to implement the
no-slip boundary condition on the two walls. Initially, a liquid
droplet of radius R0 = 50 is placed on the bottom wall. This
initial condition is realized via a density field,

ρ(x, y, t = 0) = ρl,sat + ρv,sat

2
− ρl,sat − ρv,sat

2

× tanh

{
2[

√
(x − xc)2 + (y − yc)2 − r0]

W

}
,

(20)

where (xc, yc) = (Nx/2, 5) is the center location of the droplet
and W = 5 is initial interface thickness. The reduced Peng-
Robinson (PR) EOS for pure substances [21,29],

pPR
EOS = ρRST

(1 − bρ)
− aα(T )ρ2

1 + 2bρ − b2ρ2
,

α(T ) = [1 + (0.374 64 + 1.542 26ω − 0.269 92ω2)

× (1 −
√

T/Tc)]2 (21)

is selected as pEOS to compute ψ through Eq. (4), where
T is the temperature, RS is the specific gas constant, a =
0.457 24RST 2

c /pc, b = 0.0778RSTc/pc are the attractive and
covolume parameters defined by the critical temperature Tc,
the critical pressure pc, and the specific gas constant RS. ω is
Pitzer’s acentric factor of the cubic EOS. In our simulations,
we choose a = 1/49, b = 2/21, RS = 1 in LB units unless
otherwise specified. The acentric factor of water ω = 0.344 is
selected.

Simulations are conducted with the MRT version of Li
et al. of the forcing scheme [26] to restore thermodynamic
consistency. This method is chosen because of its popularity.
A free parameter σ in this scheme is adjusted to ensure the
core region of the droplet has the same chemical potential as
the vapor environment further away from the droplet. For the
chosen reduced Peng-Robinson EOS, the chemical potential
is calculated as

μPR(ρ) = RST

[
ln

(
ρ

1 − bρ

)
+ 1

1 − bρ

]

− aα

2
√

2b
ln

[
1+ (

√
2+ 1)bρ

1− (
√

2− 1)bρ

]
− aαρ

1+ 2bρ− b2ρ2
.

(22)

The kinematic viscosity is set to be 0.15 identically for both
the vapor and the liquid phases. Except that τν is constrained
by the kinematic viscosity ν as τν = ν/(c2

s δt ) + 0.5, other re-
laxation times in the MRT collision operator are free to choose
as long as numerical stability is ensured. Here we choose
τρ = τ j = 1.0, τe = τε = 1.25, and τq = 2/3. We have per-
formed extensive tests with other values of τe and τq, and with
the single-relaxation time setting under different choices of
kinematic viscosity, the results of the contact angles are only
slightly affected. For the sake of conciseness, those results are
not represented here.

The liquid-vapor surface tension γlg is needed to use the
empirical correlation Eq. (13). In the present paper, γlg is
numerically obtained from the case of a suspending droplet
in vapor environment. This supporting case is conducted
in a fully periodic domain of Nx × Ny = 300 × 300, with a
liquid droplet fixed at the center of the domain. The other
thermodynamics related parameters are chosen identical to
the corresponding droplet-wall interaction case. A surface
tension can be measured from the Young-Laplace law as
γlg = r�p when the steady state is reached, where r is ter-
minal droplet radius and �p is the capillary pressure. To
improve the accuracy, γlg used in Eq. (13) is averaged from
four simulations with the initial droplet radii r0 = 30, 40, 50,
and 60.

First, we verify the ability of the proposed fluid-wall inter-
action scheme to achieve different wettability conditions. At
T = 0.8Tc, the steady state density contours of three wetting
conditions: θ ≈ 60◦, 90◦, and 120◦ are shown in Figs. 1–3,
respectively, for the proposed scheme and three aforemen-
tioned schemes proposed by Sukop and Thorne [13], Benzi
et al. [17], and Li et al. [16]. The parameters, i.e., Gw in
Sukop and Thorne’s scheme, ρw in the scheme of Benzi
et al., φ and �ρ in the scheme of Li et al. are obtained via
trial and error processes until the desired contact angles are
achieved, whereas in the present scheme, the parameter ϕ is
directly obtained from Eq. (14). For readers to reproduce those
results, values of these parameters have been given in the
caption of each figure. All four schemes are able to achieve
those desired wetting conditions, but the two schemes using
global constants to define fluid-wall interaction force result
in nonphysical mass transfer layers between the droplet and
solid surface, especially for cases with large contact angles,
i.e., θ = 90◦ and 120◦. The two schemes using the local infor-
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FIG. 1. Static contact angle θ ≈ 60◦ by four tested fluid-wall interaction schemes: (a) Sukop and Thorne’s scheme, (b) the scheme of
Benzi et al., (c) the scheme of Li et al., and (d) the proposed scheme. The parameters are Gw = −2.71, ρw = ρv,sat + 0.48(ρl,sat − ρv,sat )φ =
1.21, �ρ = 0, and ϕ = 1.1.

mation to define the fluid-wall interaction forces, on the other
hand, are free of this issue.

It is also noteworthy that the two schemes using local
information to define ψw generally result in better numer-
ical stability than their counterparts using global constants.
This is mainly due to two reasons. First, schemes using local
information avoid having large gaps between ψw at wall loca-
tions and their neighboring fluid locations as pointed out by Li

et al. [16]. Second, large spurious currents, i.e., nonphysical
velocities around the static interface, which are often regarded
as one of the main causes for the numerical instability for
PP LB models, are suppressed by the two schemes utilizing
local information. From Figs. 4–6, the vector plots of the
steady state velocity fields of the four fluid-wall interaction
schemes are compared for the case of θ ≈ 60◦, 90◦, and 120◦,
respectively. The two schemes defining ψw with the local

FIG. 2. Static contact angle θ ≈ 90◦ by four tested fluid-wall interaction schemes: (a) Sukop and Thorne’s scheme, (b) the scheme of Benzi
et al., (c) the scheme of Li et al., and (d) the proposed scheme. The parameters are Gw = −2.14, ρw = ρv,sat + 0.305(ρl,sat − ρv,sat ), φ =
1.0, �ρ = 0, and ϕ = 1.0.
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FIG. 3. Static contact angle θ ≈ 120◦ by four tested fluid-wall interaction schemes: (a) Sukop and Thorne’s scheme, (b) the scheme of
Benzi et al., (c) the scheme of Li et al., and (d) the proposed scheme. The parameters are Gw = −1.58, ρw = ρv,sat + 0.155(ρl,sat − ρv,sat ), φ =
1.0 �ρ = 0.385, and ϕ = 0.9.

information have much smaller spurious currents. In
the case of θ = 120◦, the proposed scheme has even
slightly less spurious currents compared to the scheme
of Li et al..

From now on, we focus on validating the empirical cor-
relation Eq. (13) in predicting the contact angle against the
actual contact angles obtained from the simulations. The gen-
erality of this correlation will be examined with different

thermodynamic conditions and choices of PP LB models. As
a start, a convergence study is conducted to ensure that the
grid resolution, i.e., 400 × 300 is sufficient to provide reli-
able benchmark results of contact angles for comparisons. As
shown in Fig. 7, the contact angles generated by different grid
resolutions almost collapse with each other, which justifies
the reliability of the numerical contact angles to serve as
benchmark results.

FIG. 4. Spurious currents around a static droplet of contact angle θ = 60◦ on a flat surface by four tested fluid-wall interaction schemes:
(a) Sukop and Thorne’s scheme, (b) the scheme of Benzi et al., (c) the scheme of Li et al., and (d) the proposed scheme.
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FIG. 5. Spurious currents around a static droplet of contact angle θ = 90◦ on a flat surface by four tested fluid-wall interaction schemes:
(a) Sukop and Thorne’s scheme, (b) the scheme of Benzi et al., (c) the scheme of Li et al., and (d) the proposed scheme.

For reduced PR EOS described in Eq. (21), the con-
tact angles predicted from Eq. (13) are compared with
the corresponding contact angles obtained from PP LB
simulations in Fig. 8 under different temperatures. The
liquid-to-vapor density ratios in these tests range from 10
at Tr = 0.9 to 870 at Tr = 0.6. It can be seen that the

empirical correlation Eq. (13) results in good predictions
of the contact angles in most examined cases with only
a few exceptions with ϕ − 1 � 0.25 under Tr = 0.6 and
0.7 where the contact angles are overpredicted. The largest
relative deviation is about 14%, which is still reasonably
accurate.

FIG. 6. Spurious currents around a static droplet of contact angle θ = 120◦ on a flat surface by four tested fluid-wall interaction schemes:
(a) Sukop and Thorne’s scheme, (b) the scheme of Benzi et al., (c) the scheme of Li et al., and (d) the proposed scheme.
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FIG. 7. The resulting contact angles with based on different grid
meshes. The initial droplet radii are 30,–50 for the grid resolutions
of 240 × 180, 320 × 240, and 400 × 300, respectively.

It should be pointed out that the proposed fluid-wall in-
teraction scheme and the correlation of Eq. (13) have been
validated for contact angles between 30◦ and 150◦. This range
covers the contact angles of most realistic liquids on flat
smooth surfaces. The proposed fluid-wall interaction scheme
does not have difficulties to tackle very small contact angles
(θ → 0) given a sufficiently large computational domain to re-

FIG. 8. The comparison between the actual contact
angles from PP LB simulations and their expectations
for the reduced PR EOS under different temperatures.
Parameters (in LB units) used in the correlation: at Tr = 0.9,

ρl,sat = 5.908, ρv,sat = 0.5801, γlg = 0.028 80; at Tr = 0.8, ρl,sat

= 7.204, ρv,sat = 0.1971, γlg = 0.074 74; at Tr=0.7, ρl,sat=8.080,

ρv,sat = 0.055 63, γlg = 0.1274; at Tr = 0.6, ρl,sat = 8.725, ρv,sat

= 0.010 23, γlg = 0.1844.

FIG. 9. The comparison between the actual contact angles from
PP LB simulations and their expectations for different values of a in
LB units. Parameters (in LB units) used in the correlation are ρl,sat =
7.204, ρv,sat = 0.1971, γlg = 0.051 69, 0.074 74, and 0.1095 when
a = 1/98, 1/49, and 2/49, respectively.

duce boundary confinement, but achieving very large contact
angles (θ → 180) is found to be only possible with relatively
small liquid-to-vapor density ratios. With relatively large den-
sity ratios, the droplet would detach from the wall rather than
staying when very large contact angles are pursued. The same
issue was also found in our own implementation of the fluid-
wall interaction scheme of Li et al., but was less profound
with the other two schemes using global constants to define
the fluid-wall interaction forces. This indicates a potential
advantage of the latter two schemes in terms of wider range of
achievable contact angles. However, as the proposed scheme
and the scheme of Li et al. already covers the contact angles
likely to be encountered in reality, their practical use is not
affected.

Next, we show that the validity of Eq. (13) holds under
various scalings between the physical parameters and their
counterparts in LB units. Specifically, it has been well known
that when using PP LB models, the attraction parameter a of
the adopted EOS is subjected to adjustment in LB units to
change the resulting surface tension and numerical stability.
In Fig. 9, we compare the predicted and actual contact angles
with three values of a, a = 1/98, a = 1/49, and a = 2/49
in PR EOS at Tr = 0.8. As clearly shown in the figure, good
predictions of the contact angle are always obtained regardless
of the choice of a, which further demonstrates the generality
of the proposed correlation.

Equation (13) is also validated with different choices of
cubic EOS. For other cubic EOS, e.g., the van der Waals
(vdW) EOS,

pvdW
EOS = ρRST

1 − bρ
− aρ2, a = 27R2

ST 2
c

64pc
, b = RSTc

8pc
, (23)
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FIG. 10. The comparison between the actual contact angles from PP LB simulations and their expectations for different choices
of cubic EOS: (a) vdW EOS, parameters (in LB units) used in the correlation: at Tr = 0.9, ρl,sat = 5.800, ρv,sat = 1.490, γlg =
0.016 02; at Tr = 0.8, ρl,sat = 6.764, ρv,sat = 0.8388, γlg = 0.044 81; at Tr = 0.7, ρl,sat = 7.492, ρv,sat = 0.4481, γlg = 0.081 39; at Tr =
0.6, ρl,sat = 8.090, ρv,sat = 0.2092, γlg = 0.1242 in the LB units. (b) CS EOS, parameters used in the correlation: at Tr =
0.9, ρl,sat = 0.2481, ρv,sat = 0.04543, γlg = 8.616 × 10−4; at Tr = 0.8, ρl,sat = 0.3072, ρv,sat = 0.021 73, γlg = 2.463 × 10−3; at Tr =
0.7, ρl,sat = 0.3581, ρv,sat = 9.297 × 10−3, γlg = 4.585 × 10−3; at Tr = 0.6, ρl,sat = 0.4062, ρv,sat = 3.082 × 10−3, γlg = 7.192 × 10−3;
at Tr = 0.5, ρl,sat = 0.4541, ρv,sat = 6.268 × 10−4, γlg = 0.010 31.

and the Carnahan-Starling (CS) EOS [33],

pCS
EOS(ρ) = ρRST

1 + bρ/4 + (bρ/4)2 − (bρ/4)3

(1 − bρ/4)3
− aρ2,

a = 0.4963
R2

ST 2
c

pc
, b = 0.18727

RSTc

pc
, (24)

the contact angles predictions are compared with their actual
values under different temperatures. Parameters (a, b, and RS)
in LB units are set to a = 1/49, b = 2/21, RS = 1 for vdW
EOS and a = 1, b = 4, RS = 1 for CS EOS. As shown in
Fig. 10, the correlation in Eq. (13) still performs exceptionally
well regardless of EOS choice. The liquid-to-vapor density
ratio from vdW EOS ranges from 4 to 40 in these tests,
whereas the density ratio with CS EOS is between 5 and 720.

In the previous tests, the forcing scheme of Li et al. [26]
is specifically used to ensure thermodynamic consistency is
obtained. However, Eq. (13) still holds when other PP LB
models are used. Besides the forcing scheme of Li et al.,
the modified fluid-fluid interaction force proposed by Ku-
pershtokh et al. [25] is also frequently utilized to restore
thermodynamic consistency. Compare to the origin definition
in Eq. (3), Kupershtokh et al. defined the fluid-fluid interaction
force as [25]

F(x) = −βGψ (x)
∑

α

wαψ (x + eαδt )eα

− 1 − β

2
G

∑
α

wαψ2(x + eαδt )eα, (25)

where β is the tuning parameter, through adjusting which the
thermodynamic consistency is restored. Correspondingly, the

fluid-wall interaction force should also be modified as

F(x) = −βGψ (x)
∑

α

wαψw(x + eαδt )s(x + eαδt )eα

− 1 − β

2
G

∑
α

wαψ2
w(x + eαδt )s(x + eαδt )eα, (26)

where ψw is still computed from Eq. (12).

FIG. 11. The comparison between the actual contact angles from
PP LB simulations with the modified definition of the interaction
forces of Kupershtokh et al.. Parameters used in the correlation are
as same as those in Fig. 8.
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As shown in Fig. 11, the empirical correlation still holds
when the model of Kupershtokh et al. is adopted. For
the choice of the reduced PR EOS with a = 1/49, b =
1/21, R = 1, and ω = 0.344, the predicted contact angles
still match well with the actual values in the simulations.
The value of β is tuned in each case to ensure the chemical
potentials in the two bulk phases are always equal.

At last, the proposed fluid-wall interaction scheme and
associated contact angle correlation are examined for the
recently proposed MC PP LB model for PMMCFs. Unlike
the thermodynamic equilibrium of pure substances where the
liquid-vapor two-phase coexistence only establishes under a
specific pressure at a given temperature, the two-phase coex-
istence of PMMCFs could happen over a range of pressures
given a certain temperature. For validation purposes, here we
examine the fluid-wall interaction schemes for four binary
two-phase systems at the thermodynamic equilibrium, two
systems of methane C1 and propane C3 mixtures, and the other
two systems of propane C3 and pentane nC5 mixtures. The
thermodynamic properties of these tested systems are given
in Table I.

The MC PP LB simulations are again conducted with Li
et al.’s forcing scheme [26] to ensure thermodynamic con-
sistency. However, for MC PP LB models, the forcing term
must be defined for each individual component. This means,
once the total interaction force and the parts attributed to
individual components have been defined, the forcing term �η

is computed as

�η =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

6Fη · (
u + σF

(τe−0.5)c2
s δt ψ2

)
−6Fη · (

u + σF
(τε−0.5)c2

s δt ψ2

)
Fη,x

−Fη,x

Fη,y

−Fη,y

2(uFη,x − vFη,y)
uFη,y + vFη,x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (27)

where Fη = (Fη,x, Fη,y ) is the force attributed to component
η, whereas u and F without the subscript are the velocity and
interaction force subjected to the phase. The tuning parameter
σ is again adjusted to ensure thermodynamic consistency is
achieved. For MC partially miscible fluids, thermodynamic
consistency is achieved by enforcing identical fugacities in
the two bulk phases. For more details on the fugacity com-
putation, readers may refer to Ref. [9].

The case of a staying droplet contacting with a flat solid
wall is again adopted with the same domain size Nx × Ny =
400 × 300. The initial cell-volume density field for the ith
component is defined as

ρ̄i(x, y, t = 0) = ρ̄i,l,sat + ρ̄i,v,sat

2
+ ρ̄i,l,sat − ρ̄i,v,sat

2

× tanh

[
2(

√
(x − xc)2+ (y− yc)2− R0)

W

]
,

(28)

TABLE I. Thermodynamic properties of tested binary systems.
Top table: the thermodynamic properties of individual components
from left to right: component, critical pressure, critical temperature,
Pitzer’s acentric factor, and molar mass [27]. Bottom table: the
thermodynamic properties of binary systems at thermodynamic equi-
librium from left to right: temperature, pressure, molar fraction of
the first component in the liquid phase (x2 = 1 − x1), molar fraction
of the first component in the vapor phase (y2 = 1 − y1), the mass
density of the liquid phase, and the mass density of the vapor phase.

pci Tci

(psia) (◦R) ωi Mi

C1 666.40 343.33 0.0104 16.043
C3 616.00 666.06 0.1522 44.097
nC5 488.60 845.80 0.2514 72.150

T p ρl,sat ρv,sat

Components (R◦) (psia) x1 y1 (lb/ft3) (lb/ft3)

C1 + C3 530 500 0.16914 0.66363 29.478 2.8507
C1 + C3 430 200 0.12906 0.87844 36.458 0.92650
C3 + nC5 580 40 0.40175 0.83732 35.719 0.88778
C3 + nC5 550 40 0.20193 0.72287 38.441 0.37389

where ρ̄i,l,sat, ρ̄i,v,sat are computed based on the material
balance as

ρ̄i,l,sat = ρl,sat
xiMi∑
i xiMi

, ρ̄i,v,sat = ρv,sat
yiMi∑
i yiMi

. (29)

The comparison between the predicted contact angles
from Eq. (13) and their corresponding contact angles cap-
tured from simulations for the selected are shown in Fig. 12
for the selected PMMCF systems. The comparisons clearly

FIG. 12. The comparison between the actual contact angles
from PP LB simulations with partially miscible MC hydrocar-
bon fluids. Parameters used in the correlation (in LB units),
case 1: ρl,sat = 8.297, ρv,sat = 0.8024, γlg = 0.039 51; case 2: ρl,sat

= 10.26, ρv,sat = 0.2608, γlg = 0.1098; case 3: ρl,sat = 7.677,

ρv,sat = 0.1908, γlg = 0.081 86; case 4: ρl,sat = 8.262, ρv,sat =
0.080 36, γlg = 0.1133.
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demonstrate that not only the proposed scheme can handle
the wetting conditions for PMMCFs, but also the resulting
contact angles are still very well predicted by the proposed
correlation.

V. CONCLUSIONS

In this paper, we proposed a modified fluid-wall interaction
scheme to handle wetting conditions for PP LB models. This
scheme is not only able to capture a wide rage of contact
angles with SC PP LB models, but also works well with the
recently developed MC PP LB model applied to PMMCFs,
which further expands the application of PP LB models to
important multiphase flow simulation scenarios. Compared
to the other schemes restricted to SC PP LB models, the
proposed scheme eliminated the nonphysical mass transfer
layer between the staying droplet and the solid surface and

further suppressed spurious currents around the liquid-vapor
interfaces.

Based on the proposed scheme, a contact angle correlation
was developed to predict the resulting static contact angles.
The validity of the proposed correlation had been examined
for a wide variety of thermodynamic conditions, including
different temperatures, different choices of pressure scaling,
different cubic EOSs, and different PP LB models, includ-
ing two widely selected SC PP LB models and the recently
developed MC PP LB model for PMMCFs. The utility of
using this correlation to eliminate painful trial and error in
order to achieve any desired wetting conditions has been fully
demonstrated.
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