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Pulse duration constraint of whistler waves in magnetized dense plasma
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Interactions between large-amplitude laser light and strongly magnetized dense plasma have been investigated
by one- and two-dimensional electromagnetic particle-in-cell simulations. Since whistler waves have no critical
density, they can propagate through plasmas beyond the critical density in principle. However, we have found
the propagation of whistler waves is restricted significantly by the stimulated Brillouin scattering. It is confirmed
that the period during which the whistler wave can propagate in overcritical plasmas is proportional to the growth
time of the ion-acoustic wave via the Brillouin instability. The allowable pulse duration of the whistler wave has
a power-law dependence on the amplitude of the whistler wave and the external magnetic field.
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I. INTRODUCTION

The establishment of a method for generating kilotesla
(kT) order magnetic fields using high-power laser allows us
to examine experimentally laser-plasma interactions (LPIs)
under strong external magnetic fields [1–4]. Such a strong
magnetic field affects not only the dynamics of fast electrons
induced in LPIs but also the laser propagation itself. For ex-
ample, the magnetized fast ignition scheme has been proposed
as a new design of inertial confinement fusion, in which fast
electrons guided by a kT-order magnetic field are expected to
heat an imploded dense core isochorically [5–7].

When a strong magnetic field, of which the cyclotron
frequency exceeds an electromagnetic wave frequency ω, is
applied along the wave propagation direction, the critical
density of the right-handed circularly polarized (RCP) wave
disappears [8]. The critical strength of the magnetic field
is thus defined as Bcr ≡ meω/e, where me and e are the
electron mass and the charge, respectively. The wave with
this cutoff-free phenomenon, the so-called “whistler wave,” is
well known in the geosciences, space sciences, and magnetic
confinement fusion. However, the whistler wave propagation
had not been clarified, especially for the cases with high
frequencies and large amplitudes like ultrahigh intense laser
lights. This is due to the technological difficulty of inducing
the kT-order magnetic field required for the high-frequency
whistler wave propagation. Recent breakthroughs in generat-
ing strong magnetic fields driven by intense laser lights with
capacitor coils provide access to a new parameter regime of
large-amplitude whistler waves in dense plasmas.

In order to generate a large-amplitude whistler wave ex-
perimentally, it requires both high-intensity electromagnetic
waves (laser lights) and strong magnetic fields over the critical
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strength Bcr. Notice that the longer wavelength can reduce
the critical strength significantly. Owing to the chirped pulse
amplification (CPA) [9], the laser intensity becomes strong
enough to accelerate electrons up to relativistic velocity with
the laser wavelength of around 1 μm [10–13]. The CPA tech-
nique is applicable to a light with longer wavelength such as
CO2 lasers to achieve the relativistic intensity [14]. For a CO2

laser with a wavelength of 10 μm, the critical field strength for
whistler wave propagation is about 1 kT, which is about the
same as the current achievement in laser experiments. There-
fore, it will be feasible to study the physics of large-amplitude
whistler waves by using CO2 lasers in the near future. In space
plasmas, the required magnetic field becomes much weaker.
For example, it corresponds to 100 (1) μT for 3 MHz (30 kHz)
radio waves in the Earth’s ionosphere, and 100 nT for 3 kHz
radio waves in the magnetosphere [15–18].

The application of external magnetic fields to the ul-
traintense laser-plasma interaction brings various interesting
phenomena. For example, when the magnetic field is below
the critical magnetic field Bcr, a magnetic vortex is generated
in a weakly magnetized beam plasma system [19,20]. A mod-
erate magnetic field below Bcr can guide fast electron beams
efficiently [5], which has been observed via the measurement
of coherent transition radiation of fast electrons [21]. Electron
cyclotron resonance due to a circularly polarized (CP) laser
will occur at B = Bcr, and the resonance condition in terms of
the magnetic field strength broadens due to the relativistic ef-
fects [22]. When the magnetic field is over Bcr, the R wave, the
CP wave rotating clockwise along the direction of the mag-
netic field, can propagate into dense plasma without cutoff.
In contrast, the L wave rotating counterclockwise propagates
only up to the L-cutoff density. Such wave propagation char-
acteristics in the nonrelativistic regime were demonstrated by
Luan et al. [23]. In the relativistic regime, Yang et al. [24]
reported that the relativistic R-wave pulse heats the electrons
trapped in the wakefield excited in the magnetized dense
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plasma. Recently, the idea of ultrafast ion heating by collid-
ing whistler waves was proposed by Sano et al. [25]. The
colliding two whistler waves form standing waves where the
electromagnetic waves transfer energy directly to ions, which
is far more efficient than the conventional methods such as fast
electron heating and shock wave heating [26].

In this paper, we focus on the allowable pulse duration
of the whistler waves. Interestingly, whistler waves are in-
termittently observed in the solar wind, but the origin of
the intermittency is still unclear [27,28]. Therefore, it would
be essential to investigate the time window during which the
whistler waves can propagate in dense plasmas. From the
early 1970s, parametric decay instabilities of electromagnetic
waves propagating along an external magnetic field had been
studied intensely [29–32]. We pay attention again to such
instabilities because they might disturb the plasma and thus
determine the time window of the whistler wave propagation.
Compared to the previous studies, we consider electromag-
netic waves with much larger amplitude, namely, relativistic
laser lights.

In this paper, we evaluate numerically the transmittable
pulse duration of laser-generated whistler waves with the help
of one- (1D) and two-dimensional (2D) relativistic electro-
magnetic particle-in-cell codes, PICLS [33]. The outline of
this paper is as follows. In Sec. II we demonstrate the inter-
action of a linearly polarized laser light and an overcritical
plasma with a strong external magnetic field over the critical
magnetic field using the 2D code. The penetration feature of
the incident light beyond the critical density is observed. Here
the differences of the propagation characteristics between the
RCP and the left-handed circularly polarized (LCP) waves are
discussed.

Next, we concentrate our discussion on the whistler wave
and estimate the scaling of its transmittable duration as a
function of the normalized wave amplitude and the applied
magnetic field strength, conducting a series of 1D simulations
with various parameter sets. In Sec. III we have performed the
attentive measurement of the whistler wave propagation and
found that the inverse of the growth rate of the ion-acoustic
wave due to the stimulated Brillouin scattering (SBS) de-
termines the time window of a transmittable whistler wave.
Section IV is dedicated to the summary.

II. SIMULATIONS

A. 2D demonstration

The cutoff of electromagnetic waves traveling along mag-
netic fields disappears when the magnetic field strength
exceeds the critical value. Then the electromagnetic waves
can propagate in plasmas with overcritical densities as the
whistler wave. Here the propagation characteristic of the
whistler waves is investigated using the 2D PICLS code to
reveal the interaction between a linearly polarized laser light
and an overcritical plasma with an application of a strong
external magnetic field.

1. Simulation setup

The target plasma in our simulation is made of fully ionized
carbon and hydrogen ions in equal proportion. The initial den-
sity profile of the plasma consists of three parts. The primary

plasma has a flat electron density profile with a density of
20ncr and a length of 85λL Here λL is the laser wavelength
and ncr = ε0meω

2
L/e2 is the critical density, where ε0 and ωL

are the vacuum permittivity and the angular frequency of laser
light, respectively. The front rarefied plasma has an exponen-
tial electron density profile with a scale length of 20λL from
0.1ncr up to 20ncr. At the rear of the primary plasma, there is
tenuous plasma having an exponential electron density profile
with a scale length of 8λL from 20ncr to 0.1ncr to reduce the
light reflection at the sharp plasma edge. Figure 1(a) shows the
spatial profile of the initial electron density of the front part of
the plasma. The density profile in the y direction is uniform.
Note here that the simulation scale and the plasma density
could scale up or down by the laser wavelength since it is a
purely kinetic simulation. The applied external magnetic field
Bext along the direction of laser propagation (x axis) is set to
5Bcr, which corresponds to 5 or 50 kT for the laser wavelength
of 10 or 1 μm, for example. A linearly polarized laser with
temporal flattop and spatial Gaussian profiles irradiates from
the left boundary (x = 0). The spot diameter is assumed to
be 20λL. The normalized amplitude of the laser electric field
a0 ≡ eEL/(meωLc) is 1.0, which corresponds to 1.37×1016

or 1.37×1018 W/cm2 for the 10 or 1 μm laser wavelength.
Here EL and c are the electric field of laser light and the
speed of light. We adopt the absorbing boundary condition for
electromagnetic fields and the reflection boundary condition
for particles except fast electrons with the Lorentz factor more
than 2. These fast electrons are absorbed at x-boundaries,
although not many electrons could reach the x-boundaries
during the whole simulation time of 195τL, where τL is the
laser period. The time and spatial resolutions are 40 time steps
per laser period and 40 cells per laser wavelength, and the
particle numbers per cell are 11, 1, and 5 for electrons, C, and
H ions, respectively. The fourth-order spline interpolation is
taken into account to suppress numerical heating.

2. Results of 2D PIC simulations

Figure 1 shows the initial electron density profile and
temporal evolutions of the electromagnetic field amplitude√

(eE/meωLc)2 + (eB/meωL)2 in the plasma, where the elec-
tromagnetic field does not include the external magnetic field.
(Hereafter the external magnetic field is excluded for whole
observation.) A linearly polarized light can be considered as
superposition of RCP and LCP waves to the direction of the
light propagation. In the presence of the strong magnetic field
along with the propagation path, the linearly polarized light
separates into the R and L waves naturally. It is noted that the
polarity of CP waves is defined by the direction of the wave-
number vector, while the R or L wave rotation is defined by the
direction of the magnetic field. For all simulations conducted
in this paper, the direction of the external magnetic field is
the same as that of the incident laser wave-number vector
so that the R and L waves correspond to the RCP and LCP
waves, respectively. According to the linear dispersion rela-
tion, there is the cutoff at the density nL/ncr = 1 + Bext/Bcr

for the L wave. In the current simulation with Bext = 5Bcr, the
L cutoff is six times the critical density at x = 91λL. On the
other hand, the whistler mode of the R wave has no cutoff.
Figure 1(b) shows that both the R and L waves propagate in
the dense region beyond ncr. The incident laser propagates as

035205-2



PULSE DURATION CONSTRAINT OF WHISTLER WAVES … PHYSICAL REVIEW E 104, 035205 (2021)

FIG. 1. (a) Initial electron density and the electromagnetic field amplitude at t =(b) 75τL, (c) 105τL, (d) 135τL,(e) 165τL, and (f) 195τL at
the front of the target. Both R and L waves can propagate till the L cutoff of 6ncr and the L wave is reflected at the L cutoff. An R wave having
no cutoff can initially propagate into dense plasma more than 6ncr , but it finally cannot propagate.

the linearly polarized form till the position of x = 91λL where
the electron density is ne = 6ncr. At t = 105τL [Fig. 1(c)], the
laser light reaches the L cutoff, then the L-wave component is
reflected, and only the R-wave component propagates further
into the denser region at x > 91λL. At t = 135τL [Fig. 1(d)],
the electromagnetic wave observed in the region x > 91λL

is only the whistler wave. Additionally, the standing wave
due to the incident and reflected L waves can be seen at
60 λL < x < 90 λL. It is known that the standing CP wave
causes efficient plasma heating and its collapse excites the
large density modulations [25]. Actually, ions in the region are
heated up to 20 keV on average. Then the large density mod-
ulations are caused by the collapse of the standing L wave,
and the injected electromagnetic wave is reflected below the L
cutoff as shown in Fig. 1(f). At t = 165τL and later [Figs. 1(e)
and 1(f)], the amplitude of the whistler wave decreases, and
finally no whistler waves are seen in the dense plasma of
ne > 6ncr despite that the laser light keeps irradiating with
constant intensity. This 2D simulation demonstrates that there
is a time window in which the whistler wave can go forward
in the overcritical plasmas.

The above phenomena can be realized in 1D simulations
as well with the same initial parameters. Figure 2 shows
the comparison of the electromagnetic field amplitudes in

1D and 2D simulations at t = 135τL, where the green line
represents the electromagnetic field in the 1D simulation and
the sky-blue line is a cross section in the 2D simulation at the
center (y = 30λL). The dashed line indicates the position at
the L cutoff. The behaviors of the electromagnetic wave are
almost identical in both 1D and 2D simulations. Therefore,
for simplicity, 1D simulations are adopted in the following
analysis. Hereafter, we focus only on the propagation features
of the R waves in overcritical plasma or the whistler waves.

B. 1D analysis

The 2D simulation shows that the duration of the whistler
wave has a finite limit. To investigate this feature quanti-
tatively, we perform a series of 1D simulations of R-wave
propagation in magnetized dense plasmas. Here the key pa-
rameters are the laser amplitude and the external magnetic
field.

1. Simulation setup

A hydrogen target having a flat density profile with a thick-
ness of 50λL and a density of 60ncr is set in 1D geometry.
Plasmas with exponential density profiles are placed in front
of and behind the flat-density target with a scale length of
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FIG. 2. Comparison of the electromagnetic field amplitudes be-
tween one- and two-dimensional simulations at t = 135τL, where
purple, green, and sky-blue lines represent initial electron density, 1D
electromagnetic field, and cross section of the 2D electromagnetic
field at the center (y = 30λL), respectively, and the dashed line indi-
cates the L cutoff of six times the critical density. Initial parameters
are the same on both 1D and 2D simulations except the laser spatial
profile.

Lsc from 0.1ncr to 60ncr. To clarify the effects of the scale
length, a wide range of Lsc is considered from 1 to 20λL. As
a fiducial model, the scale length is set to 1λL. The initial
electron density profile of the fiducial model is shown in
Figs. 3(a) and 3(b) with a black-dashed line. An RCP laser
light, which penetrates into the magnetized plasma as the
whistler wave, comes from the left boundary, and its temporal
profile is semi-infinite. A uniform external magnetic field is
applied along the direction of the laser propagation with the
strength of Bext = 5Bcr in the same way as the 2D simula-
tion. We use the absorbing boundaries for the electromagnetic
fields and the reflection ones for particles. In order to remove
the boundary effects, sufficiently large vacuum regions are
prepared at both the front and rear of the plasma. The size
of the computational domain is thus set to 350λL, and the flat
plasma is placed at 150 � x � 200λL. The normalized laser
amplitude considered here is ranging from a0 = 0.01 to the
relativistic amplitude a0 = 1. The PICLS1D simulations have
been carried out until t = 3000τL for the a0 = 0.01 cases and
750 τL for the other cases. The number of electrons (ions)
per cell is 50 (50), and the temporal and spatial resolutions
are set to 100 time steps per laser period and 100 cells per
laser wavelength, where the cyclotron motion in the strong
magnetic field of Bext = 5Bcr is well resolved.

2. Results of 1D PIC simulations

The 1D PIC simulations reproduce the temporal constraint
of whistler waves as seen in 2D PIC simulations. We found
that the constraint strongly depends on the wave amplitude
as shown in Fig. 3. Each figure shows the time evolutions of
electric fields perpendicular to the external magnetic field for
the cases of (a) a0 = 0.01 and (b) 1.0 and snapshots of y and
z components of the transverse electric field for (c) a0 = 0.01
at t = 360τL and (d) a0 = 1.0 at t = 240τL.

The laser-generated whistler wave shows the stable propa-
gation in the dense target for a relatively longer time in the
case of the weak amplitude a0 = 0.01. The amplitudes of
the transverse electric field are unchanged before and after
the propagation in the dense plasma region, showing almost
perfect transparency of the RCP wave. Under the condition
of the perfect transparency, the normalized amplitude of the
laser-generated whistler wave in the plasma is expressed as

aW ≡ eEW

meωLc
= 1√

N

eEL

meωLc
= a0√

N
, (1)

with the refractive index N , given as

N =
(

1 − ω2
pe/ω

2
L

1 − ωce/ωL

)1/2

(2)

where ωce indicates the electron cyclotron frequency. The
refractive index is N = 4 in the current setup, and the ob-
served amplitude agrees well with the half of the incident one.
Later at t = 720τL, the whistler wave starts to be reflected
partially at the front plasma. Finally (at t = 1500τL), the wave
is totally reflected so that no transmission to the rear vacuum
is observed.

In contrast, when a0 = 1.0, the reflection occurs much
earlier, so that only a short pulse about 10λL of the laser-
generated whistler wave can propagate into the dense plasma,
as seen in Figs. 3(b) and 3(d). The transmitted whistler wave
recovers its amplitude with slight modulations. Thus, the
transmittable pulse duration obviously depends on the laser
amplitude.

The dependence of the transmitted pulse duration of the
laser-generated whistler wave is studied on the normalized
laser amplitude a0, the scale length Lsc of the front plasma,
and the external magnetic field Bext. The transmitted pulse
duration is evaluated as the full width at the half maximum
of the amplitude in the vacuum region behind the plasma. We
perform 18 runs with different combinations of the parameters
and summarize the results in Fig. 4. Despite the difference in
the magnetic field strength and the scale length, the tendency
of the transmitted pulse duration to a0 shows a similar depen-
dence with the same power law. The averaged power index
of all the six parameter sets is −0.66 ± 0.08, which is shown
by the dashed line in Fig. 4. The transmitted pulse duration
is longer for the cases of the stronger magnetic field or the
longer scale length. For all cases, the laser-generated whistler
waves are eventually reflected so that the transmittable pulse
duration is limited to the finite duration.

For the cases of a scale length of 1λL, precise simulations
with higher resolution have been carried out to investigate the
dependence of the transmitted pulse duration on the external
magnetic field. The resolutions are set to 1000 time steps per
laser period and 1000 cells per laser wavelength to capture the
cyclotron motion in the strong magnetic field of Bext = 80Bcr

at the maximum. Figure 5(a) shows the behaviors of trans-
mitted pulse duration against the normalized laser amplitude
for the cases of Bext = 5Bcr, 10Bcr, 20Bcr, 40Bcr, and 80Bcr.
The dependence of the normalized laser amplitude shows the
same scaling as in Fig. 4 except two cases of (a0, Bext ) =
(2.0, 5Bcr ) and (5.0, 10Bcr ). In these two exceptional runs, the
transmitted pulse may be too short to evaluate the duration
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FIG. 3. Upper panels show the time evolution of perpendicular electric fields of electromagnetic wave in the cases of (a) a0 = 0.01 and
(b) 1.0, where each color indicates the electric fields at the corresponding time and the black dashed line indicates the initial electron density.
Lower panels show snapshots of the y and z components of the perpendicular electric field at (c) a0 = 0.01, t = 360τL and (d) a0 = 1.0,
t = 240τL.

correctly. Thus, hereafter, these two cases are ignored in the
fitting analysis.

The transmittable whistler wave depends clearly on the
laser amplitude and the external magnetic field, whereas the
plasma scale length has little influence. In magnetized dense

FIG. 4. Behavior of transmitted pulse duration against the nor-
malized laser amplitude. All lines show the same tendency of a power
law. The average power index of all the six color lines is −0.66,
which is plotted as a dashed line.

plasmas, the normalized amplitude of whistler waves is dif-
ferent from that of the incident RCP laser in the vacuum.
The propagation feature of the whistler waves should be de-
termined by the whistler wave amplitude in the magnetized
plasmas rather than the laser amplitude in the vacuum. Ac-
cording to our simulation results, the laser wave seems to
transmit into magnetized dense plasmas almost entirely owing
to the smooth density distribution of the plasma. Then the
normalized amplitude of the laser-generated whistler wave is
given by Eq. (1). Here we consider a fitting formula of the
pulse duration τ as a power-law function of aW and Bext. As-
suming the dependence as τ ∝ ap1

WBp2
ext, the simulation data for

the cases of a0 = 0.1, 0.2, 0.5, and 1.0 are fitted by the least-
squares method. The obtained power indexes are p1 = −0.67
and p2 = 0.86, respectively. Since p1 ≈ −p2, then almost all
the simulation data are unified as a function of aW/(Bext/Bcr ),
which is shown by Fig. 5(b). The interpretation of this power-
law dependence is discussed in the following section.

III. DISCUSSION

Numerical simulations reveal that there exists a constraint
on the pulse duration of whistler waves. The SBS is one of
the plausible mechanisms of this limitation. If the SBS is the
cause, the pulse duration would be inversely proportional to
the SBS growth rate. Here we perform additional simulations
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FIG. 5. Behaviors of transmitted pulse duration against (a) the
normalized laser amplitude a0 and (b) the production of the normal-
ized amplitude of the whistler wave and the inverse of the external
magnetic field aW/(Bext/Bcr ).

to measure the growth rate of ion-acoustic waves due to the
SBS. For the sake of simplicity, a uniform plasma with a
thickness of 300λL is adopted as a target because the impact
of the front exponential plasma can be ignored (see Fig. 4).

Figure 6 shows time evolutions of the perpendicular elec-
tric fields of an electromagnetic wave and ion phase space for
the cases of a0 = 0.1. The injected RCP wave starts to interact
with the target at t = 50τL in this simulation. At t = 360τL,
the perpendicular electric field E⊥ is spatially constant inside
the plasma. However, fluctuations in the perpendicular electric
field increase gradually with time. Eventually, the injected
RCP wave cannot propagate into the target and is reflected
at the front surface at t = 540τL. The generation of strong
ion-acoustic waves is observed at the corresponding timing,
as shown in Fig. 6(b). Simultaneously, the plasma density
fluctuation occurs, and the average electron energy reaches to
around 50 eV at the area where the laser cannot propagate. For
comparison, a similar simulation with no external magnetic
field has been conducted. We have checked that the injected
RCP wave is completely reflected at the sharp interface, and
no SBS is caused in the target plasma because the RCP wave
cannot propagate into the overdense plasma.

FIG. 6. Time evolutions of perpendicular electric fields of trans-
verse electromagnetic wave (a) and ion phase space (b) in the cases
of a0 = 0.1, where each color indicates the corresponding time and
the black dashed line indicates initial electron density.

The ion-acoustic wave amplitude is evaluated by phase-
space snapshots at every laser cycle by fitting with a sinusoidal
curve. Then the linear growth rate can be calculated from the
time evolution of the amplitude. Figure 7 shows the obtained
growth rate of ion-acoustic waves against the normalized laser
amplitude a0. Eight runs for the cases of a0 = 0.025, 0.05,
0.1, 0.2, 0.4, 0.8, 1.6, and 3.2 have been conducted, where the
other parameters are identical. The behavior of the growth rate
exhibits a power-law dependence, although it is saturated for
the relativistic intensity because it becomes comparable to the
laser frequency. The best fit in the range from a0 = 0.025 to
a0 = 1.6 is 0.34a0.67

0 Therefore, the transmitted pulse duration
scales as τ ∝ a−0.67

0 , which agrees well with the numerical
result shown in Fig. 4.

Furthermore, the comparison of the growth rates between
the simulations and the theory reveals that the excitation of
the ion acoustic wave is caused by the SBS. The linear growth
rate of the ion acoustic wave due to the SBS in the cold limit
has been derived as [29,30]

γ

fL
=

√
3π (2α)1/3 , (3)
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FIG. 7. The growth rate of an ion-acoustic wave estimated from
1D PIC simulations. The obtained data are fitted well by a function
of 0.34a0.67

0 . For the relativistic-intensity case of a0 > 1, the growth
rate seems saturated because it becomes comparable to the laser
frequency.

where

α = me

mi

Bcr

Bext
N2a2

W . (4)

Here fL and mi indicate the laser frequency and the ion mass,
respectively. The normalized amplitude of aW is expressed
by 2a0/(N + 1) because of the transmission of the electro-
magnetic wave at uniform planar interface. Apparently, the
growth rate increases with the amplitude of the whistler wave.
It also has the dependence to the external magnetic field and
the electron density, like ∝ B−2

ext , ne approximately. Then the
analytical growth rate is estimated as γ = 0.553a2/3

0 using
the simulation condition, which is in good agreement with the
formula of the observed growth rate.

The excitation of the ion-acoustic wave by the SBS
causes significant density modulations in ion and electron
density profiles. These density modulations induce the reflec-
tion of the electromagnetic wave (see the Appendix). The
density-modulation structure is preserved until the end of
the simulation after it is generated. Therefore, the reflection
of the RCP wave continues throughout the calculation.

The transmittable pulse duration will be proportional to
the inverse of the growth rate as τ/τL = A fL/γ , where A is
a proportional constant. Using the simulation results in Fig. 5,
the correlation of the transmitted pulse duration against the
theoretical growth rate is shown in Fig. 8. The proportional
constant has weak dependence of the external magnetic field.
For the cases of 5Bcr and 80Bcr, the fitted values of A are
5.90 ± 0.05 and 13.2 ± 0.2, respectively. Based on the all
data in Fig. 8, the proportional constant is estimated as A =
10.2 ± 0.6. Then we obtain a formula of the transmittable
pulse duration as follows:

τ

τL
= A√

3π

(
2

me

mi

Bcr

Bext
N2a2

W

)−1/3

. (5)

The transmittable pulse duration certainly scales as ∝
a−2/3

W . Furthermore, in the limit of ωpe/ωL � Bext/Bcr �
1, the refractive index is approximately given by N2 ≈

FIG. 8. The behavior of the transmitted pulse duration against
the theoretical growth rate. The transmitted pulse duration τ/τL is
proportional to the inverse of the growth rate fL/γ . The proportional
constant is estimated as around 10 by the fitting (dashed line). Two
cross marks are obtained from 2D simulations of spatially uniform
irradiation with the same setup of 1D simulations for the cases of
Bext = 5Bcr and a0 = 0.5, 1.0. The comparison between 1D and 2D
simulations shows almost the same results.

(ω2
pe/ω

2
L)/(Bext/Bcr ), and then the duration is given by

τ

τL
∼ A√

3π

(
2

me

mi

ω2
pe

ω2
L

)−1/3(
aW

Bcr

Bext

)−2/3

. (6)

The transmittable pulse duration scales as ∝ (aW/Bext )−2/3,
which agrees well with the numerical results shown in
Fig. 5(b). To lengthen the transmittable pulse, the normalized
whistler-wave amplitude aW should be smaller, and the exter-
nal magnetic field should be stronger.

For comparison, 2D simulations of spatially uniform irra-
diation with the same setup of 1D simulations for the cases
of Bext = 5Bcr and a0 = 0.5, 1.0 have been conducted. The
obtained transmitted pulse lengths are plotted as two cross
marks in Fig. 8. It is confirmed that transmitted pulse lengths
of 1D and 2D simulations are almost the same.

It will be useful to comment on the plasma heating using
laser-generated whistler waves. According to the previous
studies on the whistler-wave applications, electron cyclotron
resonance heating [22] and ion heating via standing whistler
waves [25,26] are expected as efficient heating methods. How-
ever, these applications would be inefficient if the whistler
wave is terminated by the SBS. Therefore the transmitted
pulse duration is the crucial parameter. In general, a plasma
target irradiated by a intense laser is preexpanded due to
the prepulse that is delivered before the main pulse. Thus,
the main pulse must propagate in the preexpanded plasma
with a smooth density distribution. In such a situation, the
normalized amplitude of the laser-generated whistler wave aW

is expressed by that of the injected laser a0 through Eq. (1).
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Substituting Eq. (1) into Eq. (5), we can derive the formula of
the transmittable pulse duration of a laser-generated whistler
wave as a function of a0. The expression using the normalized
laser amplitude is practical for the estimation of the transmit-
table pulse duration in actual laser experiments. According to
this formula and our simulation study, it is found that whistler
waves with a duration of a few tens of periods can propagate
into a dense plasma of ne/ncr = 60 for the relativistic laser
of a0 ∼ 1 with the external magnetic field of Bext/Bcr = 5.
Thus the direct interaction of a relativistic laser-generated
whistler wave and dense plasma is achievable, and therefore
the experiments for the demonstration of the plasma heating
by the whistler waves could be realized.

IV. SUMMARY

The growth of the SBS constrains the transmittable pulse
duration of whistler waves. In the simulations, the laser-
generated whistler wave transmits the overcritical dense
plasma at the early stage. However, it is gradually reflected
due to the growth of ion-acoustic waves. As the result, the
transmitted pulse duration is inversely proportional to the
growth rate of ion-acoustic waves by the SBS. The whistler
wave’s duration is proportional to the square of the third of
the whistler wave amplitude and the inverse of the external
magnetic field strength, i.e., τ ∝ (aW/Bext )2/3.

Our results ensure that whistler waves can propagate suf-
ficiently longer term to realize novel heating scenarios due
to whistler wave application in the dense plasmas, e.g., elec-
tron cyclotron resonance heating and ion heating via standing
whistler waves [22,25,26]. For the case of the dense plas-
mas, such as a solid density plasma or imploded overcritical
plasma, collisional effects also terminate the whistler wave.
One example of the whistler wave application for ther-
monuclear fusion was reported and the collisional effects on
whistler wave propagation in dense plasma were discussed
[26]. For the application of the above heating mechanism
using whistler waves for the laser fusion scheme, the effects
of the SBS and collision should be considered to optimize the
target design.
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APPENDIX: DEMONSTRATION OF ALMOST-PERFECT
REFLECTION VIA DENSITY MODULATION

The wavelength of the ion-acoustic wave excited by the
SBS is about half of the whistler wavelength. For the case of
Fig. 6(b), the whistler wavelength is the fourth of the injected
laser wavelength λL/4, and then the wavelength of the ion-
acoustic wave is ∼λL/8. A sufficiently developed ion-acoustic
wave generates density modulation, which has a periodic

FIG. 9. Perpendicular electric fields of transverse electromag-
netic wave and electron density for the same simulation as Fig. 6
(a) and another simulation with density modulation (b), where each
color indicates corresponding time and the solid and dashed lines
indicate electric fields and electron density, respectively.

structure with the same wavelength as the ion-acoustic wave.
Figure 9(a) shows the perpendicular electric fields of elec-
tromagnetic wave and electron density at t = 540τL in the
same simulation as Fig. 6. There is an apparent periodic
structure in the electron density profile, and its period is about
λL/8. The initial density is 60ncr for this case. However, the
lower baseline density becomes around 30ncr, and the peak
density of the bumps reaches over 120ncr. The optical path
difference between reflected waves from adjacent bumps is
nearly equivalent to the whistler wavelength. Then it satisfies
the condition of the constructive interference for the reflected
wave. This mechanism is the same as the principle of the
dielectric multilayer mirror. We have simulated the whistler
wave propagation to the dense plasma with a significant den-
sity modulation to verify this phenomenon.

The baseline and bump densities are set to 30 and
120ncr, respectively. Assuming the average density is 60ncr,
and the distance between adjacent bumps becomes λL/8,
each layer thickness is determined as dbump = λL/24 and
dbase = λL/12. In this situation, the optical path differ-
ence between reflected waves from adjacent bumps is
calculated as 2(Nbumpdbump + Nbasedbase ) = 2(

√
31λL/24 +
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√
8.5λL/12) = ∼ 0.95λL, which roughly satisfies the condi-

tion of the constructive interference, where Nbump and Nbase

are the refractive indices for the bump and baseline den-
sities, respectively. Figure 9(b) shows the initial electron
density profile and perpendicular electric fields of electro-

magnetic wave at t = 54τL. In the simulation, the injected
laser interacts with the plasma at t = 50τL. Therefore, the
laser-generated whistler wave is mostly reflected immediately
after laser interacting the plasma for the case with density
modulation.
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