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Effects of molecular diffusivity on shock-wave structures in monatomic gases
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We present a full investigation into shock-wave profile description using hydrodynamics models. We iden-
tified constitutive equations that provide better agreement for all parameters involved in testing hydrodynamic
equations for the prediction of shock structure in a monatomic gas in the Mach number range 1.0–11.0. The
constitutive equations are extracted from a previously derived thermomechanically consistent Burnett regime
continuum flow model. The numerical computations of the resulting hydrodynamic equations along with
classical ones are performed using a finite difference global solution (FDGS) scheme. Compared to previous
studies that focused mainly on the density profile across the shock, here we also include temperature profiles as
well as non-negativity of entropy production throughout the shock. The results obtained show an improvement
upon those obtained previously in the bivelocity (or volume and mass diffusion) hydrodynamics and are more
accurate than in the hydrodynamic models from expansions method solutions to the Boltzmann equation.
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I. INTRODUCTION

Shock-wave structure description is one of the best-known
examples and a simple highly nonequilibrium compressible
flow problem (where large gradients of hydrodynamic fields
are present). It has been subjected to theoretical, numerical
and experimental attacks mainly from around the middle of
the 20th Century [1–10] due to the advantages it provides:
(i) flow is one-dimensional and steady state; (ii) no solid
boundaries; and (iii) the upstream and downstream states are
in equilibrium and are connected by simple laws and relations
(the Rankine-Hugoniot relations). Theoretical and numerical
studies of the shock structure based on the classical Navier-
Stokes (NS) equations are described in the literature [1,2,11–
14]. In addition, accurate shock density measurements have
been carried out and reported for argon and nitrogen gases
with Mach number that ranges from supersonic to hypersonic
by Alsmeyer [15]. A number of experimental studies [16–23]
were reported prior to Alsmeyer [15] but most of them are
reassembled in Alsmeyer’s work for comparison. Eventually,
it has been recognized that shock structures in monatomic
gases are not well described by the Navier-Stokes theory. The
shock thickness predicted is too small compared to experi-
ments for Mach numbers larger than approximately 1.5. In
fact, the inadequacy of the classical Navier-Stokes equations
in describing some compressible flows has been the subject
of discussion from a long time [7,15,24,25]. The failure of
the equations in a shock structure description may be tied up
to the basic assumptions such as linear constitutive relations
represented by Newton’s law of viscosity and Fourier’s law
of heat conduction used in closing the system [26] and/or
breakdown of continuum assumption as the mean free path
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becomes comparable to the characteristic length scale of the
system. In other words, one can say that the failure can be
attributed to basic inherent limitations such as the breakdown
of local equilibrium hypothesis.

The principal parameter which is often used to classify the
nonequilibrium state of a gas flow is the Knudsen number,
Kn, and is defined as the ratio of the mean free path of the gas
molecules to the characteristic length of the flow system. Kn
characterizes the gas rarefaction which means that it measures
departure from the local equilibrium. Continuum assumption
is valid for vanishing Knudsen numbers where the gas can
be assumed to undergo a large number of collisions over the
typical length scale. As Kn increases the notion of the gas
as a continuum fluid becomes less valid and the departure of
the gas from the local thermodynamic equilibrium increases.
Therefore, the range of use of the continuum-equilibrium
assumption is limited and confined to Kn � 0.01. Generally,
the shock macroscopic parameter called the shock thickness
is related to the Knudsen number and typically falls be-
tween ≈0.2 and ≈0.3 [7]. Clearly, the range of Kn found
in the shock problem is beyond the classical continuum-Kn
regime and falls into the so-called ‘intermediate-Kn’ regime
(0.01 � Kn � 1). Deriving appropriate continuum hydrody-
namic models or improving the range of applicability of the
existing ones (the Navier-Stokes equations) beyond their lim-
its into the so-called ‘intermediate-Kn’ regime (0.01 � Kn �
1) is still is a critical active area of research.

Gas flows may be described at any Knudsen number
(Kn) by the Boltzmann equation (the central equation in
kinetic theory of gases) [27]. The solution to the Boltz-
mann equation via particle based method DSMC (direct
simulation Monte Carlo) technique has been found to be
very useful in rarefied regime [4,28,29]. Meanwhile, there
are significant attempts made to formulate solution tech-
niques based on the extended hydrodynamic approach.
In an “extended” hydrodynamic approach the problem of
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directly solving the Boltzmann equation is replaced by solving
a system of generalized transport equations either in terms
of the extended hydrodynamic variable set or in terms of
higher-order space derivatives of the hydrodynamic quanti-
ties [30–34]. These equations are typically obtained from the
Boltzmann equation by performing or using techniques such
as: (i) the Chapman-Enskog (CE) expansion [31,32,34,35];
(ii) Grad’s moment method [3,30,36]; (iii) Maximum entropy
method (also called Maximum probability principle some-
times) [37]; and (iv) an hybrid method which combines aspect
of Grad and CE method [33,38]. Following these solution
techniques in extended hydrodynamic approach, numerous
higher-order extended hydrodynamic models arose and most
highlighted commonly used and referenced include: Grad’s
moment equations [3,30,36,39] and Burnett equations [31].
All these higher-order extended hydrodynamic equations may
be superior to some extent in describing the flow physics bet-
ter than the classical NS equations; however, these equations
come with some serious drawbacks with leading reason being
that they are all invaded by physical and numerical instabil-
ities and produce nonphysical flow solutions in many cases
[9,40,41]. To overcome these disadvantages in the extended
hydrodynamic models, variants of Burnett equations (reduced
or augmented Burnett [42], BGK-Burnett [43], regularized
Burnett [44]), regularized moment equations [34,41,45,46],
and second-order descriptions and theories of Woods [47] and
Reese et al. [5] are proposed in the literature.

Recent notable works on improving shock structure pre-
diction results over the classical Navier-Stokes may include:
a second-order continuum theory of Paolucci and Paolucci
[48], a linear irreversible thermodynamic model of Velasco
and Uribe [49], recast Navier-Stokes of Reddy and Dadzie
[50], and Onsager-Burnett equations of Jadhav and Agrawal
[51]. These previous works paid less attention to temper-
ature profile description across the shock layer. Recently,
the authors reinterpreted shock structure predictions of the
classical Navier-Stokes equations using a change of veloc-
ity variable [50]. The results on the shock density profiles
and shock thicknesses better agreed with the experimen-
tal data. However, the procedure predicted very less values
for density asymmetry factor and not so accurate prediction
of the density-temperature separation distance. The present
work expands on this previous work to identify constitu-
tive relations with a full assessment of the shock structure
problem that includes comparison of temperature profiles,
density-temperature separation distance and also considering
nonnegativity of entropy production across the shock.

The paper is organized as follows. In Sec. II we start with
a brief overview of the classical Navier-Stokes equations for
compressible flows and the modified constitutive relations
are presented. In Sec. III the modified Navier-Stokes equa-
tions are considered subject to shock structure problem in
monatomic argon gas. The detail of the formulation of the
problem and numerical procedure are then given. Section IV
is completely devoted to analysis based on comparison of
shock macroscopic profiles and different shock macroscopic
parameters with available experiments and other simulation
data. Section V is committed to evaluating the nonnegativity
of entropy generation within the shock layer. Finally, conclu-
sions are drawn in Sec. VI.

II. THE MODIFIED CONTINUUM FLOW EQUATIONS

We adopt the classical conservation equations in an Eule-
rian reference frame as given by

mass balance equation

∂ρ

∂t
+ ∇ · [ρ U ] = 0, (1)

momentum balance equation

∂ρ U

∂t
+ ∇ · [ρ U ⊗ U + p I + �] = 0, (2)

and energy balance equation

∂

∂t

[
1

2
ρ U 2 + ρ ein

]
+ ∇ ·

[
1

2
ρ U 2 U + ρ einU

+ (p I + �) · U + q
]

= 0, (3)

where ρ is the mass-density of the fluid, U is the flow mass
velocity, p is the hydrostatic pressure, ein is the specific in-
ternal energy of the fluid, � is the shear stress tensor, I is
the identity tensor, and q is the heat flux vector. All these hy-
drodynamic fields are functions of time t and spatial variable
x. Additionally, ∇ and ∇· denote the usual spatial gradient
and divergence operators, respectively, while the operator ⊗
denotes the usual tensor product of two vectors. Expression
for the specific internal energy is given by, ein = p/ρ(γ − 1)
with γ being the isentropic exponent. The constitutive models
for the shear stress � and the heat flux vector q as due to the
Newton’s law and the Fourier’s law, are given, respectively,
by

�(NS) = −2 μ
[

1
2 (∇U + ∇U ′) − 1

3 I (∇ · U )
] = −2 μ ∇̊U ,

(4)

q(NS) = −κ ∇T, (5)

where ∇U ′ represents the transpose of ∇U . Coefficients μ

and κ are the dynamic viscosity and the heat conductivity,
respectively. The shear stress can be expressed in terms of
the symmetric part of the velocity gradient D(U ) = (∇U +
∇U ′)/2 and the divergence of the velocity field as

�(NS) = −2μ
[
D(U ) − 1

3 (∇ · U ) I
]

= − 2 μ D(U ) − λ (∇ · U ) I, (6)

where λ = − 2
3μ is the bulk-viscosity coefficient.

The system of Eqs. (1)–(5) is the well known and widely
accepted conventional fluid flow hydrodynamic model for a
viscous and heat conducting fluid, called the classical Navier-
Stokes equations. In the limit of vanishing viscous and heat
conducting terms, the model reduced to the simple gas dy-
namics model known as Euler equations, which are used to
model inviscid and nondiffusive flows.

In the present study, to investigate our shock structure
problem we adapt constitutive equations from previous studies
Dadzie [52] and Brenner [53]:

� = −2 μ ∇̊U − 2 μ
˚∇JD, (7)

q = −κ ∇T − γ

(γ − 1)Pr
p JD, (8)
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with

JD = κm ∇ ln ρ, (9)

where Pr is the Prandtl number and κm is an additional trans-
port coefficient, the molecular diffusivity coefficient, and is
related to the kinematic viscosity coefficient through the fol-
lowing relation:

κm = κm0

μ

ρ
, (10)

where κm0 is a positive constant. Using Eq. (9), the fully
modified stress in Eq. (7) can be expressed as

� = − 2 μ D(U ) − λ (∇ · U ) I − 2 μκm D(∇ ln ρ)

− λ κm (∇ · ∇ ln ρ) I. (11)

Constitutive relations Eqs. (7)–(9) are formally those pro-
posed in Dadzie [52] and Brenner [53] and used in Green-
shields and Reese [7]. The difference in the current expression
being the identified additional factor of γ /[(γ − 1)Pr] in the
heat flux relation. In these constitutive equations, the addi-
tional components in both the shear stress and heat flux stem
from the inclusion of molecular level diffusion in the construc-
tion of the full continuum flow model. They may therefore
be referred to as volume and mass diffusion corrections to
momentum and heat transport and were previously shown
to improve the prediction of some nonequilibrium effects
[54,55]. Examination of the linear stability of the continuum
flow model closed with constitutive relations Eqs. (7)–(9)
to small perturbations following the procedure described in
Reddy and Ganesan [36], Dadzie [52], Dadzie and Reese [56]
and Reddy et al. [57] revealed that they may become tempo-
rally or spatially unstable for some values of km0 . However,
these constitutive equations are shown to be temporally and
spatially stable for any value of km0 in a fully thermomechani-
cally consistent set of equations where an additional transport
equation is added in their derivation Dadzie [52].

In the next sections, we show that use of constitutive re-
lations Eqs. (7)–(9) considerably improve predictions in the
shock profile problem compared to previous models.

III. THE SHOCK STRUCTURE PROBLEM IN A
MONATOMIC GAS

A shock wave is generated when a supersonic gas flows
into a subsonic gas; mathematically, this is nothing but a
discontinuity across which the hydrodynamic fields undergo
discontinuous jumps. In other words, a shock wave involves
a transition between a uniform upstream flow and a uniform
downstream flow, thus, we can treat the shock wave as an
interface of finite thickness between two different equilibrium
states of a gas. Due to the interaction with the subsonic gas
particles, the supersonic gas particles are slowed down and
causes a sharp increase in the density and temperature at this
point. For instance, the normal shock wave can be easily visu-
alized in a balloon bursting [9,58]: when a balloon bursts, the
interior gas is expelled outward radially and it collides with
the stationary exterior gas and causes a build up of particles
at the boundary between the two gases, which moves radially
outward.

The evolution of a monatomic ideal gas flow is determined
by the density ρ, the velocity U and the temperature T at any
point in space and time. Its pressure p obeys the perfect gas
law,

p = ρ R T, (12)

where R = kB/m is the specific gas constant with kB and m
being the Boltzmann constant and the molecular mass, respec-
tively. In terms of the specific heat at constant pressure, cp, and
constant volume, cv , a monatomic ideal gas is characterized
by

cp = γ

(γ − 1)
R, cv = 1

(γ − 1)
R, (13)

such that the ratio of cp to cv , called the isentropic constant γ ,
is equal to 5/3.

It is well-known that the viscosity and temperature relation
has a noticeable effect on the shock-wave structure. Here we
adopt the generally accepted temperature-dependent viscosity
power law [7,42]: μ ∝ T s or μ = α T s, where α is a constant
of proportionality taken to be γ s and the power s for almost
all real gases falling between 0.5 � s � 1, with the limiting
cases, s = 0.5 and s = 1 corresponding to theoretical gases,
namely, the hard-sphere and Maxwellian gases, respectively.
In our simulations we use s = 0.75 for a monatomic argon
gas. For a monatomic ideal gas the other transport coeffi-
cient, namely, the heat conductivity coefficient κ is related
to the kinematic viscosity coefficient μ via the relation: κ =
(cp/Pr)μ.

Formulation of the shock structure problem
and numerical procedure

We consider a planar shock wave propagating in the posi-
tive x direction which is established in a flow of a monatomic
gas. For this one-dimensional flow problem, all hydrodynamic
variables are functions of a single spatial coordinate x and
time t ; the system is assumed to be uniform (having no gra-
dients) and infinite along the y and z directions. The flow
velocity and heat flux in the x direction are denoted by u(x, t )
and q(x, t ), respectively, and are zero in the two remaining (y
and z) orthogonal directions. Further, it is straightforward to
verify that the stress tensor has only one nonzero component,
the longitudinal stress which can be expressed as

�xx = − 4

3
μ

∂u

∂x
− 4

3

μκm

ρ

∂2ρ

∂x2
+ 4

3

μκm

ρ2

(
∂ρ

∂x

)2

≡ �,

(14)
and the constitutive relation for the heat flux is

q = −κ
∂T

∂x
− cp

Pr
κm ρ T

∂ ln ρ

∂x
. (15)

With the above definitions, the one-dimensional reduced
balance equations for the modified Navier-Stokes model can
be written in “conservative” form:

∂ρ

∂t
+ ∂

∂x
( ρ u) = 0, (16)

∂

∂t
(ρ u) + ∂

∂x
(ρ u2 + ρR T + �) = 0, (17)
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∂

∂t

(
1

2
ρu2 + Cvρ T

)
+ ∂

∂x

(
1

2
ρ u3 + CpρTu + �u + q

)

= 0. (18)

The one-dimensional classical Navier-Stokes system is ob-
tained by setting κm = 0 in the constitutive relations of
longitudinal stress and heat flux, i.e., in Eqs. (14) and (15),
respectively. The corresponding Euler system is then obtained
by setting � = 0 and q = 0 in Eqs. (16)–(18). A detailed
dimensional analysis on the one-dimensional continuum flow
model showing the importance of the corrections to the con-
stitutive equations is included in the Appendix.

The modified Navier-Stokes equations, for the one-
dimensional stationary shock flow configuration reduced to

d

d
x[ρ u] = 0, (19)

d

d
x[ρ u2 + ρ R T + �] = 0, (20)

d

d
x

[
ρ u

(
1

2
u2 + Cp T

)
+ � u + q

]
= 0, (21)

with the only nonzero longitudinal new shear stress � and the
heat flux q given by

� = −4

3
μ

du

dx
− 4

3

μκm

ρ

d2ρ

dx2
+ 4

3

μκm

ρ2

(
dρ

dx

)2

, (22)

q = −κ
dT

dx
− cp

Pr
κm T

dρ

dx
. (23)

We denote the upstream (x → −∞) and downstream (x →
∞) conditions of a shock, located at x = 0, by a subscript
1 and 2, respectively. That is the upstream and the down
stream equilibrium states are characterised by (ρ1, u1, T1)
and (ρ2, u2, T2), respectively. Across a shock, the finite jump
in each state variable is given by the so-called Rankine-
Hugoniot (RH) relations and conditions [1,2] that connect
the upstream and downstream states of a shock. RH relations
provide necessary conditions for any solution of the system
of Eqs. (19)–(21). The standard Rankine-Hugoniot relations
for the one-dimensional stationary shock flow can be obtained
from the conservation balance laws [Eqs. (19)–(21)] by fol-
lowing the standard procedure given in Ref. [1] and using the
fact that the end states are in “local” equilibrium: there are no
spatial variations in hydrodynamics fields which implies that
the variables � and q are zero at upstream and downstream
end states, as

ρ1 u1 = ρ2 u2, (24)

ρ1 u2
1 + ρ1 R T1 = ρ2 u2

2 + ρ2 R T2, (25)

ρ1 u3
1 + 2 cp ρ1 T1 u1 = ρ2 u3

2 + 2 cp ρ2 T2 u2. (26)

Integration of the system of Eqs. (19)–(21) leads to

ρ u = m0, (27)

ρ u + ρ R T + � = p0, (28)

ρ u

(
cp T + u2

2

)
+ � u + q = m0 h0, (29)

where m0, p0, and h0 are integration constants that represent
the mass flow rate, the stagnation pressure, and the stag-
nation specific enthalpy, respectively, and their values and
expressions can be obtained using the well-known Rankine-
Hugoniot conditions Eqs. (24)–(26). To solve the system
Eqs. (27)–(29), it is convenient to work with its dimensionless
form. We use the following set of dimensionless variables
based on the upstream reference states (denoted with subscript
1) as in Refs. [5,50,59]:

ρ = c2
1

p1
ρ = γ

ρ1
ρ, u = u

c1
, T = R

c2
1

T, p = p

p1
,

x = x

λ1
, μ = μ

μ1
, (30)

where λ1 is the upstream mean free path which is a natural
choice for a characteristic length-scale as changes through
the shock occur due to few collisions and c1 = √

γ R T1 be-
ing the adiabatic sound speed. The upstream mean free path
can be expressed as a function of reference state variables:
λ1 = λ0μ1/ρ1 c1, with λ0 = (16/5)

√
γ /2 π . Further, the di-

mensionless forms of transport coefficients κ and κm are

κ = γ

(γ − 1) Pr
μ and κm = κm0

μ

ρ
, (31)

with the Prandtl number, Pr, is equal to 2/3 for the case of a
monatomic gas.

The nondimensionalized form of the integral conservation
Eqs. (27)–(29) can then be obtained using the dimensionless
quantities defined via Eqs. (30) and (31) as

ρ u = m0, (32)

− 1

λ0 Ma1
� = T

u
+ u − p0, (33)

− (γ − 1)

λ0 Ma1
q = T − (γ − 1)

2
u2 + (γ − 1) p0 u − h0, (34)

where Ma1 is the upstream Mach number defined as the ratio
of the speed of the gas to the speed of sound through the gas,
Ma1 = u1/c1. Expressions for the quantities m0, p0, and h0

can be then obtained as

m0 = γ Ma1, p0 = 1

γ Ma1

(
1 + γ Ma2

1

)
,

h0 = 1 + (γ − 1)

2
Ma2

1, (35)

and the expressions for the dimensionless shear stress (�) and
the heat flux (q) are given by

� = −4

3
μ

du

dx
− 4

3

( γ

λ0

)μ κm

ρ

d2ρ

dx2

+ 4

3

( γ

λ0

)μ κm

ρ2

(
dρ

dx

)2

, (36)

q = −κ
dT

dx
− γ

(γ − 1) Pr
κm T

dρ

dx
. (37)
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FIG. 1. Variation of normalized velocity (uN) profiles in Ar shock layer: (a) Ma1 = 1.55, (b) Ma1 = 3.38

We solve the final system Eqs. (32)–(34) using a numeri-
cal scheme, namely, finite difference global solution (FDGS)
developed by Reese et al. [5] with well-posed boundary con-
ditions. The specific details of FDGS scheme can be found in
Ref. [5].

IV. MACROSCOPIC FIELDS ACROSS THE SHOCK LAYER

We perform numerical simulations of stationary shock
waves located at x = 0 using FDGS scheme by consider-
ing a computational spatial domain of length 50λ1 covering
(−25λ1, 25λ1) with 1000 spatial grid points. This is wide
enough to contain the entire shock profile ranging from super-
sonic to hypersonic without altering its structure. The constant
κm0 in the molecular mass diffusivity coefficient κm is set to
0.5 [60] in all the present simulations. To compare the shock
structure profiles among the theoretical and experimental data,
the position x has been scaled such that x = 0 corresponds to a
value of the normalized gas density ρN = (ρ − ρ1)/(ρ2 − ρ1)
equals 0.5. Other hydrodynamic fields, namely, the velocity
and the temperature profiles are normalized via uN = (u −
u2)/(u1 − u2) and θN = (θ − θ1)/(θ2 − θ1), respectively. Fig-
ures 1(a) and 1(b) show the comparison of the normalised
velocity profiles obtained from the classical and the new
modified Navier-Stokes equations for Ma1 = 1.55 and Ma1 =
3.38, respectively. As the flow varies from hypersonic or
supersonic to subsonic across the shock, the velocity is max-
imum or high at the upstream part of the shock, decreases
through the shock and attains its smallest value at the down-
stream part of the shock. The velocity profiles obtained from
the modified NS model are more diffusive than the classi-
cal NS profile at both upstream and downstream part of the
shock which is evident from Fig. 1. However, for hypersonic
flow for which Ma1 � 6.5 (figure not shown) we observed
that the modified NS profiles are steepened at the upstream
part of the shock but still more diffusive than the classical
profiles.

A. Density profiles

Experimental data exist for monatomic argon gas density
variations across shock layer [15]. We take a detailed com-
parison of density field across the shock with experimental
results of Alsmeyer [15] and also with the classical Navier-
Stokes equations. Figure 2 shows the normalized density ρN

profiles through an argon shock wave as predicted by the
modified Navier-Stokes and the classical Navier-Stokes equa-
tions compared with the experimentally measured density
data and available Bird’s Monte Carlo simulation (later called
DSMC—direct simulation Monte Carlo) data from Alsmeyer
[15]. Figures 2(a)–2(d) correspond to upstream Mach num-
bers of Ma1 = 1.55, 2.05, 2.31, and 3.38, respectively. In each
panel: the dashed line (black) and the solid line (red) represent
solutions of the Navier-Stokes equations and the modified
Navier-Stokes equations, respectively. The filled circles (blue)
represent the experimental data of Alsmeyer [15] and the filled
squares (green) superimposed in Figs. 2(a) and 2(b) represent
the DSMC data. From panel Fig. 2(a) one observes that for the
upstream Mach number of 1.55 the classical Navier-Stokes is
able to predict well the upstream part of the shock layer in
comparison with the experimental data but completely fails to
predicts the downstream part of the shock layer. While the
modified Navier-Stokes equations produce good agreement
with the experimental data with a small disparity at the up-
stream part of the shock layer and is more diffusive than the
experimental data. Further the modified Navier-Stokes model
produce good agreement with the DSMC data in the middle of
the shock and is more diffusive at both the upstream and the
downstream part of the shock as it is evident from Fig. 2(a).
The modified Navier-Stokes predictions for the normalized
density profiles show excellent agreement with the experi-
mental data for the upstream Mach number of Ma1 = 2.05,
2.31, 3.38, and 3.8, which is evident from Figs. 2(b)– 2(d)
and 3(a), respectively, and also show excellent agreement with
the DSMC data for the upstream Mach number of Ma1 =
2.05 and Ma1 = 3.8, which is visible from Figs. 2(b) and
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FIG. 2. Variation of normalized density (ρN) profiles in Ar shock layer: (a) Ma1 = 1.55, (b) Ma1 = 2.05, (c) Ma1 = 2.31, (d) Ma1 = 3.38.
In each panel, the dashed line (black) represents the solution of classical Navier-Stokes equations (CNS), the solid line (red) represents the
solution of modified Navier-Stokes equations (MNS), and the filled circles (blue) represent the experimental data of Alsmeyer [15]. The DSMC
data from Alsmeyer [15] is superimposed in panels (a) and (b) as filled squares (green).

3(a), respectively. Overall, an excellent agreement between
predictions of the modified Navier-Stokes equations and the
experimental data of Alsmeyer [15] is found for weak shocks
(Ma1 ∼ 1) to moderate strong shocks (Ma1 ∼ 3).

Figures 3(b)–3(d) show the normalized density profiles
comparison between the modified and the classical Navier-
Stokes equations along with the experimental results for
hypersonic upstream Mach numbers of Ma1 = 6.5, 8, and 9,
respectively. It is seen in Figs. 3(b)–3(d) that the predictions
by modified Navier-Stokes equations for the variation of the
density within the shock layer are in very good agreement
with the experimental data, however, one can notice that the
modified NS profiles are slightly less diffusive compared to
the experimental profiles and are more diffusive than the clas-
sical profiles at the upstream part of the shock layer. Similar
kind of behavior is reported in Paolucci and Paolucci [48]
using a second-order continuum theory for density profiles
in argon gas at Ma1 = 9. Overall, from Figs. 2 and 3 we
conclude that the modified Navier-Stokes solutions are in ex-
cellent agreement with the experimental results of Alsmeyer

[15], are in good agreement with the Bird’s Monte Carlo
simulation (DSMC) data, and are better than the classical
Navier-Stokes prediction at all upstream Mach numbers dis-
cussed here.

B. Temperature profiles

Due to unavailability of experimental data for the tem-
perature profiles within the shock layer here we make use
of available temperature profiles from Bird’s Monte Carlo
simulation data (DSMC data) with s = 0.72 which is reported
in Alsmeyer [15] and are limited for only few upstream
Mach numbers. Comparison of shock temperature profiles are
rarely reported due to the fact that the temperature is more
sensitive quantity since it is a higher-order moment of the
velocity distribution. No clear comparison of the prediction
of the temperature profiles by the major theoretical models
including Grad’s 13-moment model, Regularized 13-moment
equations, Burnett equations are reported in the literature.
However, here in Fig. 4, we report the comparison of nor-
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FIG. 3. Variation of normalized density (ρN) profiles in Ar shock layer: (a) Ma1 = 3.8, (b) Ma1 = 6.5, (c) Ma1 = 8, (d) Ma1 = 9. In each
panel, the dashed line (black) represents the solution of classical Navier-Stokes equations (CNS), the solid line (red) represents the solution of
modified Navier-Stokes equations (MNS), and the filled circles (blue) represent the experimental data of Alsmeyer [15]. The DSMC data from
Alsmeyer [15] is superimposed in panels (a) and (d) as filled squares (green).

malized temperature TN profiles as predicted by the modified
Navier-Stokes equations and the classical Navier-Stokes equa-
tions with the Bird’s DSMC results assembled in Alsmeyer
[15]. Figures 4(a)–4(d) correspond to upstream Mach num-
bers of Ma1 = 1.55, 2.05, 3.8, and 9, respectively, with the
dotted black lines representing the solutions of the classical
Navier-Stokes, the solid red lines representing the solutions
by the modified Navier-Stokes equations and the filled blue
circles represent the Bird’s Monte Carlo simulation data from
Alsmeyer [15]. From Fig. 4 one can observe that predictions
by the modified Navier-Stokes equations are in qualitative
agreement with the Monte Carlo simulation data at high up-
stream Mach numbers (Ma1 > 3).

C. Shock macroscopic parameters: Shock thickness, density
asymmetry, and temperature-density separation

In this section, we discuss three important parameters,
namely, shock thickness, Lρ , density asymmetry factor, Qρ ,
and temperature-density separation, δT ρ , which are often used

to characterize shock-wave properties instead of comparing
the full shock-wave profile. Schematic of these three shock pa-
rameters are illustrated in Fig. 5. Frequently, in studying shock
structures only the first two shock parameters (shock thickness
and density asymmetry) are validated against experimental
data (where available) and other numerical simulation results.
These two shock macroscopic parameters are defined based
on shock density profiles as seen from schematic diagram in
Fig. 5.

The usual shock thickness or width, Lρ , is defined as
[7,12,14,15]

Lρ = ρ2 − ρ1∣∣ max
( dρ

dx

)∣∣ (38)

and is based on the density profile and depends mainly on the
central part of the shock wave. Note that from the definition
of Lρ , one can infer that it has a linear dependence on the den-
sity difference between the upstream and downstream states
and inversely proportional to a slope corresponding to the
maximum density gradient. In general, the nondimensional
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FIG. 4. Variation of normalized temperature (TN ) profiles in Ar shock layer: (a) Ma1 = 1.55, (b) Ma1 = 2.05, (c) Ma1 = 3.8, (d) Ma1 = 9.
In each panel, the dashed line (black) represents the solution of classical Navier-Stokes equations (CNS), the solid line (red) represents the
solution of modified Navier-Stokes equations (MNS), and the filled squares (green) represent the DSMC data taken from Alsmeyer [15].

inverse shock thickness, δ = λ1/Lρ , is used instead of shock
thickness, Lρ , to compare computational results with experi-
ments as it possesses an important feature that is, it represents
actually the Knudsen number of the shock structure flow prob-
lem. In other words, one can say that the shock thickness, Lρ ,
acts as the characteristic dimension of the flow configuration
[7].

The most extensive collection of experimental data for
the reciprocal shock thickness (δ) in argon gas is recorded
in Ref. [15]. In Fig. 6 the reciprocal shock thickness as a
function of upstream Mach number predicted by the modified
Navier-Stokes, the classical Navier-Stokes and other theories
such as Burnett and a second-order continuum theories is
compared with experimental data (open and filled circles) and
also with the DSMC simulation data (filled squares). To ac-
cess the accuracy of the numerical scheme (FDGS technique),
the predictions by the classical Navier-Stokes equations with
s = 0.72 (black solid line) using the FDGS technique are
compared with the predictions of NS model with s = 0.72
(filled diamond symbols) using other numerical scheme pre-
sented in Paolucci and Paolucci [48]. Numerical predictions

by classical Navier-Stokes using FDGS technique shows ex-
cellent agreement with the numerical results of Paolucci and
Paolucci [48] [see Fig. 6(a)] and this validates the accuracy
of numerical scheme used here. Figure 6(a) further shows the
predictions of the modified Navier-Stokes equations for the
reciprocal shock thickness (the inverse density thickness) in
argon gas for an upstream Mach number up to Ma1 = 11,
with experimental data assembled from Alsmeyer [15]. Pre-
dictions from the classical Navier-Stokes with s = 0.75 (see
black short dashed line) are also presented for the sake of
completeness. From Fig. 6(a), one can observe that the classi-
cal Navier-Stokes equations with s = 0.75 and with s = 0.72
(see black solid line) predict the reciprocal shock thickness to
be 1.4 to 2 times the measured values over the entire Mach
number range presented. In other words, we can say that the
classical Navier-Stokes equations predict very small values
for the shock thickness (Lρ). Predictions from the modified
Navier-Stokes equations with s = 0.75 is found to follow very
closely the experimental results of Alsmeyer [15] (see filled
blue circles) and is also in good agreement with the other
experimental data.
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TABLE I. Description of the plotted data in Figs. 6 and 7.

Data label (line/symbol) Description of the data

modified NS solution with κm0 = 0.5 and s = 0.75
classical NS solution with s = 0.75 using FDGS technique
classical NS solution with s = 0.72 using FDGS technique

classical NS solution with s = 0.72 from Paolucci and Paolucci [48]
experimental results of Alsmeyer [15]

experimental results of Linzer and Hornig [16], Camac [17],
Schultz-Grunow and Frohn [18], Russell [19], Robben and Talbot [20],

Schmidt [21], Rieutord [22], and Garen et al. [23].
DSMC results with s = 0.72 taken from Lumpkin and Chapman [42]

Burnett theory results of Lumpkin and Chapman [42]
second-order continuum theory results of Paolucci and Paolucci [48]

Brenner Navier-Stokes results of Greenshields and Reese [7]
recast Navier-Stokes results of Reddy and Dadzie [50]

In Fig. 6(b), the predictions of the modified Navier-Stokes
equations for the reciprocal shock thickness as a function
of upstream Mach number are compared with the theoreti-
cal results from Burnett equations [42] (black long dashed
line) and second-order continuum equations of Paolucci and
Paolucci [48] (green dash dot line) along with the Alsmeyer
experimental data (filled blue circles) and also with the DSMC
data (filled green squares). It can be seen that the prediction
by the modified NS equations shows an excellent agreement
with the Alsmeyer experimental results and a close reasonable
agreement with the DSMC results of Lumpkin and Chapman
[42] at all upstream Mach numbers ranging from Ma1 = 1.55
to 9. Some visible deviations from the Alsmeyer experimental
results are present in Burnett [see Fig. 6(b)]. Overall, judged
by the inverse shock thickness, it is found from Fig. 6 that the
modified Navier-Stokes model gives good agreement with the
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FIG. 5. Schematic of shock macroscopic parameters—shock
thickness (Lρ ), shock asymmetry (Qρ ), and temperature-density sep-
aration (δT ρ ).

experimental results of Alsmeyer [15] and a reasonable good
agreement with the DSMC results [42].
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Shock thickness, Lρ , does not express anything about the
overall shape of the shock due to the fact that it depends
only on the maximum density gradient around the middle
of the shock. In fact, shock thickness fails to provide ade-
quate detailed information about shock profile: i.e., it may be
possible that the experimentally measured profiles and calcu-
lated profiles from different theories may differ considerably
with the shock thickness being the same. Therefore, a second
important shock macroscopic parameter called the density
asymmetry factor, Qρ , can be used to describe the actual shape
of the shock structure as it measures skewness of the density
profile relative to its midpoint [7]. The shock asymmetry, Qρ ,
is defined based on the normalized density profile, ρN, with its
center, ρN = 0.5, located at x = 0, as

Qρ =
∫ 0
−∞ ρN (x) dx∫ ∞

0 [1 − ρN (x)]dx
≡ area of region A1

area of region A2
. (39)

From definition Eq. (39) it is clear that a symmetric shock-
wave profile will have a density asymmetry quotient of unity,
while for realistic shock waves its value is around unity and
asymmetric shock profiles are predicted in experiments for
strong hypersonic shock waves for which Qρ is always grater
than unity.

Predictions of the modified Navier-Stokes equations for
the density asymmetry quotient Qρ are compared with experi-
mental data of Alsmeyer [15] and Schmidt [21] along with the
other theoretical predictions from the classical Navier-Stokes,
a second-order continuum theory of Paolucci and Paolucci
[48] and Brenner-Navier-Stokes equations in Fig. 7(a). One
can observe that the classical Navier-Stokes equations predict
an asymmetry quotient of more than unity (which means that
the upstream part of the shock profile is more skewed than
downstream) at all upstream Mach numbers and are far away
from the experimental predictions. Brenner Navier-Stokes
equations predicts Qρ < 1 (meaning that the downstream part
of the shock profile is more skewed than the upstream part)
for all upstream Mach numbers studied, however, predicted
values for Qρ show a close agreement with the experimental
values for only weak shocks (Ma1 ∼ 1). In contrast to the
predictions of classical and Brenner Navier-Stokes, it is ex-
perimentally reported that the density profile has a significant
asymmetry (Qρ = 1 ± 0.15) at all upstream Mach numbers.
The modified Navier-Stokes predicts an asymmetry quotient
of around unity at low upstream Mach numbers and its value
increases with shock strength. It is found that Qρ values pre-
dicted by the modified NS equations fall within 8% deviation
from the experimental data and within 5% deviation from the
prediction by the second-order continuum theory Paolucci and
Paolucci [48] which is evident from Fig. 7(a). It can be seen
that the current modified Navier-Stokes and the second-order
continuum theory of Paolucci and Paolucci [48] are better
in predicting reasonable density asymmetry factor at all up-
stream Mach number.

Apart from the widely used shock macroscopic parameters,
inverse shock thickness and density asymmetry factor, there
is another important shock structure parameter which is de-
fined based on the spatial difference between the temperature
and density shock profiles, called density-temperature separa-
tion, δT ρ . It is well-known that the variation in density and
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FIG. 7. (a) Variation of density asymmetry or shape factor, Qρ , as
a function of upstream Mach number, Ma1, for argon gas. (b) Varia-
tion of temperature-density spatial lag, δT ρ , as a function of upstream
Mach number, Ma1, for argon gas. Details on the description of
plotted data is indicated in Table I.

temperature within a shock do not occur at the same time
due to the different finite relaxation times between momentum
and energy transports. Spatial temperature variations occur
well before spatial variations of density profile. The spatial
difference between the normalized density and temperature
profiles is denoted by δT ρ and is defined as

δT ρ = |x(0.5 TN) − x(0.5 ρN)|. (40)

From definition Eq. (40) it is clear that the temperature-
density separation measures the distance between the mid-
points of normalized temperature and density profiles. Predic-
tions by the different hydrodynamic theories for δT ρ are usu-
ally compared with available DSMC data [7,42], due to lack
of experimental data. Figure 7(b) shows the comparison of
shock macroscopic parameter temperature-density separation,
δT ρ , obtained from modified Navier-Stokes, Brenner-Navier-
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Stokes, recast Navier-Stokes, and classical Navier-Stokes
equations with DSMC data of Lumpkin and Chapman [42].
It can be seen from Fig. 7(b) that the DSMC data with
a viscosity-temperature exponent s = 0.72 shows that δT ρ

value increases with increasing Mach number, in particular in-
creases from ≈1.5λ1 to ≈2.9λ1 when Mach number increases
from 1.5 to 8. One can observe that predictions from the
classical Navier-Stokes and recast Navier-Stokes equations
increasingly under-predict δT ρ with increasing shock strength,
while Brenner Navier-Stokes equations over-predict δT ρ for
upstream Mach numbers, Ma1 < 2 and then increasingly
under-predict from there. All hydrodynamic models presented
here show a decreasing trend of δT ρ for 1.5 � Ma1 � 3 and
then shows increasing trend of δT ρ from around Ma1 > 3.
Modified Navier-Stokes equations shows the closest agree-
ment with the DSMC data especially at high upstream Mach
numbers as seen in Fig. 7(b).

V. ENTROPY GENERATION WITHIN THE SHOCK LAYER

Here we present and analyze the overall entropy generation
and entropy profiles within the shock layer. From classi-
cal fluid theory, we know that the specific entropy s is an
increasing function of internal energy ein and these two ther-
modynamic quantities are interrelated via the Gibbs equation,

ρ T
Ds

Dt
= ρ

Dein

Dt
+ pρ

D

Dt

(
1

ρ

)
, (41)

where D/Dt = ∂/∂t + U · ∇ denotes a material derivative.
As a consequence of the Gibbs Eq. (41), the energy balance
Eq. (3) can be replaced by an equation on the entropy s =
cv ln(T/ργ−1) and is obtained as

ρ
Ds

Dt
+ ∇ ·

( q
T

)
= ṡgen, (42)

where ṡgen denotes the rate of entropy generation and is
given as

ṡgen = 1

T

[
� : ∇U − 1

T
(q · ∇T )

]
. (43)

It is note worthy to mention here that Eq. (42) serves as a
mathematical formulation of the second law of thermodynam-
ics and accordingly the entropy generation rate ṡgen should be
a nonnegative quantity for any physically admissible process.
The nondimensionalized entropy generation rate inside the
shock layer for the modified Navier-Stokes equations can be
obtained as

ṡgen = 4

3

μ

T

(
du

dx

)2

+ 4

3

( γ

λ0

)μ

T

κm

ρ

d2ρ

dx2

du

dx

−4

3

( γ

λ0

)μ

T

κm

ρ2

(
dρ

dx

)2 du

dx

+ κ

T
2

(
dT

dx

)2

+ γ

(γ − 1) Pr

κm

T

dρ

dx

dT

dx
. (44)

Setting κm = 0 reduces Eq. (44) to the underlined terms
only and represents the rate of entropy production for
the classical Navier-Stokes equations which appears always

nonnegative. To justify the nonnegativity of the entropy
production rate for the modified continuum equations one
observes the following in Eq. (44). Across the shock layer,
the gradient of velocity is always negative as the velocity pro-
gressively decreases from supersonic/hypersonic upstream
to subsonic downstream. The gradients of temperature and
density are always positive due to the fact that they pro-
gressively increase within the shock. Consequently, all terms
represented in Eq. (44) are always positive throughout the
shock layer except the over lined term. This term repre-
senting the second-order derivative of density, (d2ρ/dx2) in
Eq. (44), changes sign from positive to negative within the
shock layer. However, contribution to the entropy production
due to this term appears negligible when the full expression
in Eq. (44) is evaluated within the shock layer. This results
in the nonnegativity of the full entropy generation rate, ṡgen,
at all Mach number. This is illustrated in Figs. 8(a) and 8(b)
for two different upstream Mach numbers, Ma1 = 1.75 and
Ma1 = 6, respectively. Moreover, on these figures one ob-
serves that the modified Navier-Stokes generates entropy in
a wider region compared to the classical. This means that
the modified Navier-Stokes captures more nonequilibrium ef-
fects in the shock region than the classical [61]. Figure 8(c)
and 8(d) then shows the nondimensional specific entropy
s = [1/(γ − 1)] ln(T /ργ−1) profiles across the shock layer
for upstream Mach numbers of Ma1 = 1.75 and Ma1 = 6.
DSMC data of the specific entropy at the same Mach numbers
from Schrock [61] are also plotted on these figures. From
Figs. 8(c) and 8(d) one can observe that the entropy maximum
and/or peak is occurring within the shock layer. While all
models approximately predict the same spatial location for the
peak, the magnitude of the peak in the modified Navier-Stokes
is higher than in the classical. The modified Navier-Stokes
matches the DSMC prediction of the magnitude of the peak.
Overall the DSMC high specific entropy profiles corroborate
the modified Navier-Stokes with its wider entropy generation
region as seen upstream of the shock on Figs. 8(a) and 8(b)
[61].

VI. CONCLUSIONS

In this work we presented a full numerical investigation
into shock-wave profile description in a monatomic gas using
hydrodynamics models by identifying constitutive equations
that provide better agreement for all parameters involved
in the prediction of shock structures. We have shown that
our identified constitutive equations allow for nonnegative
entropy production rate across the shock for the modified
hydrodynamic equations. A detailed comparison between the
predictions of the modified hydrodynamic equations with
Alsmeyer’s experimental data and DSMC data along with
classical Navier-Stokes hydrodynamic solutions is presented
for upstream Mach number ranging between 1.5 and 11. First,
we focused on the shock density profiles as accurate data
from the experiments are available. We then included compar-
ison of shock temperature profiles with available DSMC data.
Finally, we showed the comparison of all three well-known
shock macroscopic parameters (inverse shock thickness, den-
sity asymmetry factor and temperature-density separation)
with available experimental and DSMC data. Our analysis

035111-11



REDDY AND DADZIE PHYSICAL REVIEW E 104, 035111 (2021)

-0.03

 0

 0.03

 0.06

 0.09

 0.12

 0.15

-10 -5  0  5  10

(a)

–sgen
.

x

MNS
CNS

-2

 0

 2

 4

 6

 8

 10

 12

-10 -5  0  5  10

(b)

–sgen
.

x

MNS
CNS

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-15 -10 -5  0  5  10  15

(c)N
on

di
m

en
si

on
al

 s
pe

ci
fi

c 
en

tr
op

y
(– s )

x

MNS
CNS

DSMC

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-15 -10 -5  0  5  10  15

(d)N
on

di
m

en
si

on
al

 s
pe

ci
fi

c 
en

tr
op

y
(– s )

x

MNS
CNS

DSMC

FIG. 8. (a, b) Nondimensional entropy production rate (ṡgen ) and (c, d) nondimensional specific entropy profiles within the shock: (a, c)
Ma1 = 1.75, (b, d) Ma1 = 6. In each panel, the dashed line (black) and the solid line (red) refer to solutions from classical Navier-Stokes
(CNS) and modified Navier-Stokes equations (MNS), respectively. The available DSMC data from Schrock [61] are superimposed for the
specific entropy profiles in panels (c) and (d) as filled squares (green).

showed that the modified hydrodynamic equations provide
excellent quantitative agreement with experimental data as
well as with DSMC data at all Mach numbers discussed and
especially best in reproducing experimental trends for the
shock density and inverse shock thickness profiles. In fact we
conclude that the results are improvement upon those obtained
previously in bivelocity hydrodynamics and more accurate
than those obtained using equations from the extended hy-
drodynamic approach of kinetic theory. Further implications
of these results as related to recently proposed recast Navier-

Stokes equations are still to be investigated. However, the
presently identified constitutive equations that are of volume
and mass diffusion type may be specifically adopted in a
multi-scale simulation for better shock structure descriptions.
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APPENDIX: DIMENSIONAL ANALYSIS OF THE MODIFIED CONTINUUM FLOW MODEL

The one-dimensional modified Navier-Stokes model can be written in “conservative” form as

∂ρ

∂t
+ ∂

∂x
( ρ u) = 0, (A1)
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∂

∂t
(ρ u) + ∂

∂x
( ρ u2 + ρ R T + � ) = 0, (A2)

∂

∂t

[
1

2
ρ u2 + 1

(γ − 1)
ρ R T

]
+ ∂

∂x

[
1

2
ρ u3 + γ

(γ − 1)
ρ R T u + � u + q

]
= 0, (A3)

with constitutive relations for the longitudinal stress � and the heat flux q as

� = − 4

3
μ

∂u

∂x
− 4

3

μκm

ρ

∂2ρ

∂x2
+ 4

3

μκm

ρ2

(
∂ρ

∂x

)2

, (A4)

q = −κ
∂T

∂x
− γ

(γ − 1)Pr
κm R T

∂ρ

∂x
. (A5)

For a shock-wave structure in a monatomic gas, let us assume the characteristic length scale to be L, the speed of sound being
the natural choice for the velocity scale U (∼√

γ R Tref) and L/U to be the natural advection time scale. With these scales, we
introduce the following dimensionless variables:

x = x

L
, u = u

U
, t = tU

L
, T = R

U 2
T, ρ = ρ

ρref
, μ = μ

μref
. (A6)

Using the scaled variables given in Eq. (A6), the one-dimensional conservation equations become

∂ρ

∂t
+ ∂

∂x
( ρ u) = 0, (A7)

∂

∂t
(ρ u) + ∂

∂x
( ρ u2 + ρ T ) = μref

ρref U L

∂

∂x

(
4

3
μ

∂u

∂x

)
+

(
μref

ρref U L

)2
∂

∂x

[
4

3
κm0

μ2

ρ2

∂2ρ

∂x2 − 4

3
κm0

μ2

ρ3

(
∂ρ

∂x

)2]
, (A8)

∂

∂t

[
1

2
ρ u2 + 1

(γ − 1)
ρ T

]
+ ∂

∂x

[
1

2
ρ u3 + γ

(γ − 1)
ρ T u

]

= μref

ρref U L

∂

∂x

(
4

3
μ u
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∂x
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ρ3 u
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ρref U L

∂

∂x

(
κ

∂T

∂x
+ κm0κ

T

ρ

∂ρ

∂x

)
.

(A9)

It is well-known that shock structure is an example of highly nonequilibrium and rarefied gas flow, hence, the generally
accepted dimensionless parameter which measures the gas rarefaction is the Knudsen number (Kn) and is defined as the ratio of
the mean free path (λ) of the gas molecules to the characteristic length scale (L) of the system: Kn = λ/L. The mean free path of
the gas is proportional to the viscosity coefficient and inversely proportional to the density and the square root of the temperature
of the gas molecules. Using the current scales the mean free path of gas is given as

λ ∝ μref

ρref
√

γ R Tref
= μref

ρref U
. (A10)

Finally, the dimensionless conservation equations involving Knudsen number as dimensional parameter are

∂ρ

∂t
+ ∂

∂x
( ρ u) = 0, (A11)

∂

∂t
(ρ u) + ∂

∂x
( ρ u2 + ρ T ) = Kn

∂

∂x

(
4

3
μ

∂u

∂x

)
+ Kn2 ∂

∂x

[
4

3
κm0

μ2

ρ2

∂2ρ

∂x2 − 4

3
κm0

μ2

ρ3

(
∂ρ

∂x

)2]
, (A12)
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1

2
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]
+ ∂
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1

2
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(γ − 1)
ρ T u

]

= Kn
∂
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(
4

3
μ u

∂u

∂x

)
+ Kn2 ∂

∂x

[
4

3
κm0
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ρ2 u
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3
κm0

μ2

ρ3 u

(
∂ρ

∂x

)2]
+ Kn

∂

∂x

(
κ

∂T

∂x
+ κm0κ

T

ρ

∂ρ

∂x

)
. (A13)

One observes that most new diffusion terms in the dimensionless conservation equations [Eqs. (A11)–(A13)] may be
neglected in the vanishing limit of Knudsen number (Kn → 0). However, as the Knudsen number increases (as in the case
of shock profile description) these terms may no longer be neglected.
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