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Semianalytical modeling of the mass transfer in microfluidic electrochemical chips
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This paper reports a mass transfer model of a reactant flowing in a large aspect ratio microfluidic chip made of
a channel with electrodes on the side walls. A semianalytical solution to the two-dimensional Fickian diffusion
of a reactant in a microchannel, including the electrochemical reaction at the electrode interface and the velocity
profile obtained from the Navier-Stokes equations in a fully developed laminar regime, is found. The solution
is written in the Laplace domain in terms of transfer functions. The proposed solution is an extension of the
Lévêque approximation describing the reactant diffusion from the electrode to the middle of the microfluidic
channel. The main applications of this work are the use of the obtained transfer functions for the measurement
of the Faradic current density or the chemical concentration at the electrode interface. The study can also be
extended to the heat transfer in microfluidic electrochemical chips (temperature or heat flux measurements at the
electrode interface).
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I. INTRODUCTION

A microfluidic electrochemical chip is made of a mi-
crochannel (width and height typically lower than a mil-
limeter), with electrodes on opposite walls (either top and
bottom or left and right). An electric potential and a cur-
rent density are generally applied between these electrodes.
In such devices, several chemicals flow to produce charge,
mass, and often heat transfer at the electrode interface. Due to
their small dimensions and the good control of the hydraulic
conditions, they are more frequently used for a wide range
of applications. For example, they are good candidates to
improve chemical energy conversion into electricity [1,2]. In
their comprehensive review, Safdar et al. [3] reported that
microfluidic fuel cells have unique advantages compared to
conventional fuel cells, such as a high surface area-to-volume
ratio, ease of integration, cost-effectiveness, and portability.
Another major application of the microfluidic electrochemical
device is electrodialysis [4], in particular to produce drinking
water from sea water. In their works, Schlumpberger et al.
[5] reported that extensive research is underway to develop
improved water treatment methods, which have attracted re-
newed attention in such applications. This confirms the unique
capabilities of microfluidic electrochemical chips towards the
development of new technologies. Microfluidic electrochem-
ical chips also embed a wide range of sensors for biological
and medical diagnostic such as glucose monitoring [6]. Thus,
following these remarkable efforts to develop new and effi-
cient microfluidic electrochemical chips, the need for a better
understanding of the mass transfer between the electrodes in
microfluidic channels is crucial to predict the performances of
these devices and to specify new guidelines for improved chip
designs. In particular, the combination of the velocity profile
and the mass diffusion has to be taken into account properly to
describe the correct electrode mass transfer, or eventually the

heat transfer as it is governed by similar physics and occurs
simultaneously during any chemical reaction [7].

The heat and mass diffusion in microchannels have been
extensively studied throughout the literature [8–10]. Most
of the studies were focused on the chemical reaction at
the middle of the channel without any electrodes. These
studies took advantage of the flat velocity profile at the
center of the microchannel with a large width-to-height as-
pect ratio, γ = lc/h. They have been mainly focused on the
binary first-order reaction-diffusion equation, which can be
solved analytically [8]. Such models used in combination
with chemical field measurements obtained from fluorescence
imaging techniques [9], Raman spectroscopy [11], or infrared
spectroscopy [12,13] enabled accurate measurements of the
reaction properties, i.e., the mass diffusivity and the reaction
rate coefficient. These works have led to a better understand-
ing of the reaction properties in laminar reactors. In contrast,
few studies have been focused on the mass transfer at the
electrode interface in the microfluidic chips, mainly due to
a nonconstant velocity profile near the electrodes or the mi-
crochannel walls.

Close to the wall, the velocity profile in the microchannel is
no longer flat due to the no-slip condition (the same assump-
tion can be made close to the electrodes [14]). In such cases,
the mass transfer differs from the classical solution derived in
the middle of the channel. Ismagilov et al. [15] showed that
the expression of the diffusion boundary layer, δD, along the
channel length, x, follows a typical power law of one-third,
i.e., δD ∝ x1/3, as theoretically predicted in the seminal works
from Lévêque [16]. The complete description of this phe-
nomenon (mass diffusion with a nonconstant velocity profile)
is known under the name of the Graetz problem [17]. Several
solutions to this problem were found, using a parabolic lami-
nar profile [18,19]. However, the case of mass transfer at the
electrode’s interface when the flow profile is not parabolic has
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been less studied. Bazant’s group is one of the most active on
this topic, publishing several works where it was shown how
the current density distribution in microfluidic fuel cells was
affected by the velocity profile [20–22]. Thus, the develop-
ment of new mass transport analytical models focused on the
exact velocity profile in the microchannel would achieve two
goals. The first would be a strengthened understating of the
reactant concentration distribution in energy conversion chips,
and the second would be convenient measurements of the
current density distribution at the channel/electrode interface
from a known or measured concentration field.

A prime interest in the research of analytical or semianalyt-
ical solutions of heat and mass transfer in microfluidic chips is
to develop accurate measurement techniques of heat or mass
flux density distributions. In the case of mass transfer, the con-
centration distribution can be relatively well measured using
several spectroscopic methods (Fourier transform infrared,
Raman, UV, or visible spectroscopy). If an accurate model
of the mass transfer is associated with these measurements,
it is possible to estimate the flux density using an inverse pro-
cessing method [23]. In particular, the formalism of transfer
functions (in terms of system analysis) is a very useful tool for
performing the rapid and accurate inverse method [24]. Thus,
with the development of a microfluidic electrochemical chip,
research of the mass transfer function between the concentra-
tion field and the mass flux at the electrode interface needs
to be pursued toward the development of accurate inverse
methods and new experimental characterization methods for
those systems.

The present work aims to address this research of semi-
analytical solutions of the mass transfer in a microfluidic
electrochemical chip to derive the scaling and physical laws,
and the system transfer function linking the mass flux and
the concentration distributions. Considering a simplified but
predictive averaged velocity profile in a large aspect ratio
microfluidic channel, a semianalytical solution in the Laplace
domain is derived. It is also validated against a numerical
model solving the complete problem and the Lévêque theory.
The use of such a semianalytical model would elucidate the
mass transfer problem at the electrodes interface in regard
to transfer functions of the current density and concentration
field in the microchannel. Such a formalism would pave the
way toward improved energy conversion chips by enabling
important performance characterization tools, such as through
accurate measurements of the microchannel current density
distribution. The complete description of the model and the re-
lated assumptions are given in Sec. II, followed by the model
validation and the transfer functions discussed in Sec. III.

II. MATHEMATICAL MODELING

A. General model

The geometry of a basic laminar microfluidic electrochem-
ical chip is schemed in Fig. 1. A large width-to-height aspect
ratio channel is presented with electrodes on side walls. In
such a configuration, the velocity profile is assumed to be
laminar: quite flat in the y-direction and parabolic in the
z-direction. We consider a first-order chemical reaction of a
species at one electrode, i.e., at the anode, which creates a

FIG. 1. Schematic of a microfluidic electrochemical device with
electrodes on the side walls.

concentration gradient mainly in the y- and x-direction (as-
suming that the electrode is homogeneous). The distance
between the two electrodes is considered larger than the De-
bye length [25], ensuring the electroneutrality of the solute.
Finally, in the case of a diluted solution (which is frequent
with aqueous solutions), the Fickian diffusion can be used
to describe the transport of the species concentration in a
microchannel as

�∇ · (�vc) + �∇ · (−D �∇c) = 0, (1)

where �v is the velocity field, c is the concentration field, and
D is the mass diffusivity. In the case of nonporous, plane, and
homogeneous electrodes, the first-order reaction at its surface
is written as

−D �∇c · �y = ± j

neF
= ±kc, (2)

where j is the local current density distribution along the
electrode, ne is the number of electrons transferred in the
reaction, F is Faraday’s constant, c0 is the initial concentration
of the solution, and k is the reaction rate coefficient for the
reaction at the electrode surface [20], assumed to be constant
along the electrode surface.

Further assumptions were also made to simplify the pre-
vious equations. The chemical properties (k and D) of the
reaction are considered constant as long as the solution is
diluted. The flow rate in the microchannel was considered
large enough to ensure both a neglected diffusion in the x-
direction and a small diffusion boundary layer close to the
electrode. This condition ensures a semi-infinite channel in
the y-direction and can be validated in terms of large Peclet
number, i.e., Pe = vlc/D � 1, where lc is the channel width.
Even close to the electrodes where the velocity is small [15],
this condition should stand. However, the large Peclet number
makes the channel flow working mostly in the Taylor-Aris
regime where the parabolic velocity profile enhances the ap-
parent diffusion coefficient in the flow direction. However,
one may show that the diffusion in the x-direction (parallel
to the flow) is still negligible compared to the transverse term,
since the x-direction gradients are very weak. In this work, the
transport of charge particles or colloids via diffusiophoresis
[26] or diffusio-osmosis [27] is not considered. The chemical
reactants are assumed to be diluted homogeneous aqueous
solutions.

Thus, given the above-mentioned assumptions, one can
show that the concentration field can be described in
two dimensions (2D) as the concentration gradients are
mainly located in the y- and x-direction. In addition, the
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concentration fields should be averaged in the z-direction to
take into account the effect of the parabolic flow in the same
direction. This ends up with an average 2D concentration field
to be solved. It is also important to note that this 2D average
concentration field would be the one experimentally mea-
sured from fluorescence or spectroscopic techniques [11,13]
as they do not discriminate the signal in the z-direction. There-
fore, in the case of the 2D averaged concentration field in a
semi-infinite channel with a current density consumed at the
electrode’s interface, Eqs. (1) and (2) become

v̄x(y)
∂ c̄

∂x
= D

∂2c̄

∂y2
, (3)

−D
∂ c̄

∂y

∣∣∣∣
y=0

= −kc̄(x, y = 0), (4)

c̄(x, y −→ ∞) = c0, (5)

c̄(x = 0, y) = c0, (6)

where c̄ is the average 2D concentration field, and v̄x(y) is
the averaged velocity profile obtained from the Navier-Stokes
equation. The boundary condition c̄(x, y −→ ∞) is a direct
consequence of the semi-infinite assumption made in the case
of a large Peclet number. The initial condition c̄(x = 0, y)
indicates a uniform concentration at the channel inlet.

To clarify scalings and simplify the analysis, the govern-
ing equations for reactant transport are made dimensionless
by defining the Damköhler number as Da = klc/D, the di-
mensionless concentration as c̃ = c̄/c0, and the dimensionless
positions as ỹ = y/lc and x̃ = x/xe, where xe = v∗l2

c /D is the
channel scaling length and v∗ is the effective average inlet
velocity defined in the next section. Therefore, the previous
set of equations is rewritten as

f (ỹ)
∂ c̃

∂ x̃
= ∂2c̃

∂ ỹ2
, (7)

∂ c̃

∂ ỹ

∣∣∣∣
ỹ=0

= Dac̃(x̃, ỹ = 0), (8)

c̃(x̃, ỹ −→ ∞) = 1, (9)

c̃(x̃ = 0, ỹ) = 1, (10)

where the function f (ỹ) describes the evolution of the aver-
age velocity profile. It is obtained from the resolution of the
Navier-Stoke equations.

B. Velocity profile

Under the assumption of laminar and fully developed flow,
the Navier-Stokes equations in a microchannel are reduced to
the following Poisson equation [28]:

1

γ

∂2vx

∂ ỹ2
+ ∂2vx

∂ z̃2
= �ph2

ηL
, (11)

where �p/L is the linear pressure gradient, η is the fluid
viscosity, γ = lc/h is the width-height aspect ratio of the
channel, and z̃ = z/h is the dimensionless channel height.
Using the no-slip conditions on each wall, this equation can

be solved in terms of Fourier series as [29,30]

vx(ỹ, z̃) = �ph2

12ηL

∞∑
n,odd

48

(πn)3

[
1 − cosh[(2ỹ − 1) nπ

2 γ ]

cosh( nπ
2 γ )

]

× sin (nπ z̃). (12)

The velocity profile averaged in the z-direction, defined as
v̄x(ỹ) = ∫ 1

0 vx(ỹ, z̃)dz̃, leads to

v̄x(ỹ) = �ph2

12ηL

[
1 −

∞∑
n,odd

96

(nπ )4

cosh[(2ỹ − 1) nπ
2 γ ]

cosh( nπ
2 γ )

]
. (13)

Since the pressure drop is usually unknown, the term �ph2

12ηL can

be replaced by v∗ = v[1 − 2(πγ )−1]−1 ≈ v(1 − 0.63/γ )−1,
where v is the average velocity in the microchannel com-
puted simply from the flow rate as v = qv/(hlc). The term
1 − 2(πγ )−1 in v∗ stems from the integration

∫ 1
0 v̄xdỹ in the

case of a large aspect ratio, i.e., γ > 2 (see Ref. [31] for the
details of the calculation).

Thus, keeping the case in which the aspect ratio is large
enough (in practice γ > 2), a good approximation of the
velocity profile can be found using only the first order of
Eq. (12),

v̄x(ỹ) ≈ v∗
[

1 − 96

π4

cosh[(2ỹ − 1)π
2 γ ]

cosh( π
2 γ )

]
. (14)

Following the assumption of a large Peclet number made in
Sec. II A, the diffusion boundary layer, δD, is kept close to the
electrode interface, allowing consideration of a semi-infinite
channel. In these conditions, only the negative exponential
of the hyperbolic cosine function can be used to describe
the velocity profile. Finally, an approximation considering
96/π4 ≈ 1 leads to the following equation that describes the
average flow profile in a semi-infinite microchannel:

v̄x(ỹ) ≈ v∗[1 − exp (−πγ ỹ)]. (15)

In practice, this equation is valid as long as the diffusion
boundary layer thickness is small, i.e., δ(x̃)D � lc/4, and in
a microchannel with a large aspect ratio (γ > 2). It can also
be noted that Eq. (15) verifies the correct average velocity, v,
in the channel as 2

∫ 1/2
0 exp(−πγ ỹ)dỹ = 2(πγ )−1 ≈ 0.63/γ .

C. Analytical solution

To solve the mass transfer between electrodes, Eqs. (7) and
(15) are combined as

[1 − exp (−πγ ỹ)]
∂ c̃

∂ x̃
= ∂2c̃

∂ ỹ2
. (16)

The semianalytical solution to Eq. (16) is obtained using
the Laplace transform performed on the x̃ variable. It is de-
fined as

ĉ( p̃, ỹ) =
∫ +∞

0
[c̃(x̃, ỹ) − 1]e−p̃x̃dx̃, (17)

where p̃ is the dimensionless complex Laplace parameter. It is
linked to the complex Laplace parameter, p, as p̃ = pv∗l2

c /D.
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Using the transformation (17) in Eqs. (16) and (8) leads to the
following set of equations:

1

α2

d2ĉ

dŷ2
= (1 − e−2ŷ)ĉ, (18)

dĉ

dŷ

∣∣∣∣
ŷ=0

= 2 Da

πγ

(
ĉ(p, ŷ = 0) + 1

p̃

)
, (19)

ĉ( p̃, ŷ −→ ∞) = 0, (20)

where α2 = 4 p̃(πγ )−2 and ŷ = πγ ỹ/2 = πy/(2h). The pre-
vious system of equations has a solution in terms of the Bessel
function of the first kind and of order α, Jα , as

ĉ( p̃, ŷ) = Jα (αe−ŷ)
p̃3/2

2 Da [Jα+1(α) − Jα−1(α)] − p̃Jα (α)
. (21)

In the case of very fast kinetics, Da −→ ∞, so the concentra-
tion at the electrodes surface drops to zero, i.e., c̃(x̃, ỹ = 0) =
0, and solution (21) is reduced to

ĉ( p̃, ŷ) = −Jα (αe−ŷ)

p̃Jα (α)
. (22)

Finally, using a numerical inverse Laplace transform [32], the
average 2D concentration field c̃(x̃, ỹ) can be computed from
Eqs. (21) or (22).

III. RESULTS AND DISCUSSION

A. Validation of the assumptions

Before the results of the present semianalytical model are
discussed, the assumptions made in the previous section are
thoroughly validated against the full numerical computation
of the concentration and velocity fields. First, the exact solu-
tion of the cross section of the velocity field [see Eq. (12)]
is presented in Fig. 2(a) with dimensionless coordinates and
an aspect ratio γ = 3. It shows a parabolic profile in the
z-direction (in particular located at the middle of the channel).
The gradients in the y-direction are, however, mostly located
close to the wall (or electrode). In contrast, these gradients
remain quite flat at the middle of the channel.

To illustrate the previous observation, the exact average
velocity profile in the y-direction was computed and presented
in Fig. 2(b) for the same aspect ratio. The comparison with
the simplified velocity profile [Eq. (15)] is also shown, and an
excellent agreement can be observed. As expected, Eq. (15) is
valid as long as the aspect ratio is larger than 2. This result
is confirmed by computing the relative error between the
averaged exact and simplified velocity profiles between ỹ = 0
and 0.5, for a range of aspect ratios, γ . This result is shown in
Fig. 2(c), and a relative error lower than 1% is obtained when
γ > 2.5 (see the dashed lines). At γ = 2, the relative error is
about 3%, which can still be considered acceptable.

Following the same methodology, the present semianalyti-
cal model was compared to the exact solution of the complete
problem. This exact solution was computed from the average
2D concentration fields [Eq. (3) with the associated bound-
ary conditions and the exact velocity profile, Eq. (12)]. It is
solved numerically using a finite-difference scheme and the
Runge-Kutta algorithm. A no-flux boundary condition on the
concentration field was used at the opposite wall (ỹ = 1) in

FIG. 2. Velocity field and profile for γ = 3. (a) Solution of the
2D fully developed velocity field in a microchannel. (b) Averages of
the exact and simplified velocity profiles. (c) Relative error between
the exact and the simplified expression of the velocity profile for a
range of aspect ratios, γ .

the numerical solution. The analytical solution was computed
using a numerical inverse Laplace transform based on the
Stehfest algorithm [32]. All the calculations were done using
an aspect ratio of 3.

The results comparing the numerical and semianalytical
solution are summarized in Fig. 3 for a range of the y-position
in the channel. In Fig. 3(a), slow kinetics were chosen at the
electrode interface, i.e., Da = 1. The dimensionless concentra-
tion profiles along the channel are observed to decrease along
the channel position x̃ due to the chemical consumption at
the electrode interface. In addition, the concentration is lower
close to the electrode (ỹ = 0) and increases in the middle of
the channel, i.e., ỹ = 0.5. This effect is due to the diffusion
of the species [11]. Overall, an excellent agreement between
the numerical and semianalytical model is found as long as
x̃ < 0.2. At higher x̃ values, the semi-infinite assumption is
no longer valid, because the boundary diffusion layer becomes
too large. In practice, for given microchannel dimensions and
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FIG. 3. Concentration profiles along the channel for a range of
y-positions. (a) Slow kinetics, i.e., Da = 1. (b) Fast kinetics, i.e.,
c(x, y = 0) = 0.

a specific species, one can compute the minimum average
velocity to ensure that the diffusion in a semi-infinite channel
follows

v >
LD(1 − 0.63/γ )

0.2l2
c

. (23)

In Fig. 3(b), similar results are presented in the case of
fast kinetics at the electrode interface (modeled by a zero
concentration at ỹ = 0). In such a case, the concentration
drops significantly faster in the microchannel, as expected.
An excellent agreement between the numerical model and the
semianalytical model [Eq. (22)] is also observed, and the same
limit in terms of velocity can be drawn to ensure the semi-
infinite assumption. Thus, all the results presented in Fig. 3
validated and fixed the limit of the assumptions that were
made to derive the semianalytical solution of the mass transfer
in large aspect ratio microfluidic electrochemical chips with
electrodes on side walls.

B. Comparison with Lévêque’s theory

Moving forward with validation of the present model, and
in particular concerning the assumption of negligible diffusion
in the x-direction close to the electrode interface, a compari-
son with Lévêque’s theory is presented. In his work, Lévêque
[16] obtained an approximation for the diffusion boundary
layer in viscous shear flow at a no-slip surface. He obtained an
exact solution widely used in theories of heat and mass trans-
fer by forced convection and electrodialysis, and his model
was widely validated experimentally with the case of heat
transfer [19], but also with the case of mass transfer [15].

Lévêque showed that the velocity profile can be linearized
as v̄x(ỹ) ≈ πγ ỹv∗, which is obtained by expanding Eq. (15)
into a Taylor series and only retaining up to the linear term.
This linearization can be done when the Peclet number is
quite large (i.e., Pe > 1000), which means that δD is very thin.
This assumption leads to the following equation governing the
mass transfer at the electrode interface:

πγ ỹ
∂ c̃

∂ x̃
= ∂2c̃

∂ ỹ2
. (24)

FIG. 4. Comparison and validation of the model with Lévêque’s
theory. The vertical dashed line represents the validity limit of
Lévêque’s theory in the case of γ = 3.

Using a constant concentration profile at the electrode inter-
face [c(x̃, ỹ = 0) = 0], Eq. (24) can be solved in terms of an
incomplete 	 function [18] as

c̃Lev(x̃, ỹ) = 	

(
πγ

9

ỹ3

x̃
;

1

3

)
, (25)

where 	(a; b) is the incomplete 	 function. This equation is
valid in practice when the boundary diffusion layer is no larger
than δ̃max

D (x̃) ∼ (3πγ )−1.
In Fig. 4, a comparison between Lévêque’s theory and

the present semianalytical model for an aspect ratio of 3 is
presented. The concentration profiles were computed in the
y-direction for a range of channel positions. A good agreement
between the model and Lévêque’s theory is observed as long
as the dimensionless diffusion boundary layer is kept lower
than 0.04, which corresponds roughly to the maximum bound-
ary layer δ̃max

D indicated for γ = 3. An important consequence
of this validation is that the assumption of negligible diffusion
in the x-direction close to the electrode is valid as Lévêque’s
theory and the diffuse behavior experimentally observed is
reproduced closely.

C. Evolution of the diffusion boundary layer thickness

An interesting parameter of mass transfer in the mi-
crochannel is the diffusion rate. In many applications, this
rate needs to be carefully controlled to enhance or reduce the
mixing between products. A good indicator of the diffusion
rate is the evolution of the 99% diffusive boundary layer
thickness along the channel [defined as the thickness where
c̃(ỹ) < 0.99]. In the absence of walls (or electrodes), it is
known that this diffusive layer increases as the square root
along the channel position, i.e., δ̃D(x̃) ∝ x̃1/2 [14]. This corre-
sponds to the case where the exponential term from Eq. (15)
vanishes at a large y distance away from the wall. In contrast,
the low velocity close to the walls (or electrodes) was found to
lower the diffusion rate in the y-direction [15], and a one-third
power law is usually expected, i.e., δ̃D(x̃) ∝ x̃1/3.

035110-5



STÉPHANE CHEVALIER PHYSICAL REVIEW E 104, 035110 (2021)

FIG. 5. Evolution of the 99% diffusion boundary layer thickness
along the channel position.

In Fig. 5, the 99% diffusive boundary layer thickness is
presented. It was computed from Eq. (22) for a microchannel
with an aspect ratio of 7 to strengthen the effect, but the
following conclusions can be applied to any aspect ratio. In
the logarithmic scale, the slopes of the diffusion boundary
layer close to the electrode and at the middle of the channel
were estimated using linear regression on the first and last
x̃ positions, respectively. As expected, the 1

2 and 1
3 slopes

are obtained, confirming the good behavior of the proposed
model. Furthermore, although Lévêque’s theory was only able
to predict the 1

3 slope close to the electrode, the model pre-
sented in this study bridges the gap between the diffusion from
the electrode toward the middle of the channel. Therefore, it
can be used to describe the mass transfer phenomenon at any
position in the channel as long as the flow velocity is large
enough to ensure semi-infinite diffusion.

D. Transfer function of the mass diffusion in a microchannel

One direct application of these works is the use of Eqs. (21)
and (22) as transfer functions to measure the concentration or
current density at the electrode interface. Such a formalism is
very well adapted to perform experimental measurements of
concentration fields, or to compute the effect of a boundary
condition on the concentration fields at a particular position
in the microchannel without the use of any numerical partial
differential equation solvers.

Thus, the concentration distribution along the electrode
using this formalism can be written in terms of a convolution
product as

c̃(x̃, ỹ) = 1 + [c̃0(x̃) − 1] ⊗ Hc(x̃, ỹ), (26)

where ⊗ indicates a convolution product, and Hc is the im-
pulse transfer function for a Dirac concentration profile, i.e.,
c̃(x̃, ỹ) = δ(x̃), where δ(x) is the Dirac distribution. In the
Laplace domain, Hc is defined as

Ĥc( p̃, ỹ) = Jα (αe−πγ ỹ/2)

Jα (α)
. (27)

Thus using an inverse numerical Laplace algorithm (such
as Stehfest [32]), one can compute Hc = L−1{Ĥc} and use
it to deconvolute the concentration field, which enables the
measurement of the concentration profile at the electrode in-
terface.

More interestingly, the same process can be done to com-
pute the current density distribution along the electrode,

c̃(x̃, ỹ) = 1 + j̃(x̃) ⊗ H j (x̃, ỹ), (28)

where j̃(x̃) = j(x̃)lc/(neFDc0) is the dimensionless current
density distribution along the electrode, and H j is the impulse
transfer function based on the distribution of the Dirac con-
centration flux, i.e., dc̃/dỹ|ỹ=0 = δ(x). In the Laplace domain,
this transfer function is defined as

Ĥ j ( p̃, ỹ) = 2Jα (αe−πγ ỹ/2)√
p̃[Jα+1(α) − Jα−1(α)]

. (29)

Thus, using Eqs. (26) or (28) and the associated transfer func-
tion, one can measure the electrode chemical concentration
distribution, c̃0(x̃), or the current density distribution, j̃(x̃),
along the channel from c̃(x̃, ỹ) (valid if the aspect ratio is
large, i.e., γ > 2). Such an approach used in combination
with spectroscopic measurements (infrared, Raman, etc.) to
measure the concentration field opens a new method for char-
acterization of the electrode current density distribution in
microfluidic electrochemical chips.

The only drawback to the proposed application is the need
to know the mass diffusivity of the chemical in the microchan-
nel. This problem can be solved using analytical methods such
as those developed by Salmon et al. [11] or Baroud et al. [9].
In their works, they imaged the diffusion of two chemicals in
the middle of the channel where classical analytical solutions
exist. Thus, by combining all these methods, the complete
mass transfer problem in microfluidic electrochemical chips
can be thoroughly characterized to quantitatively assess their
performance and eventually design improvements.

IV. CONCLUSION

The mass transfer at the electrode interface in a microflu-
idic channel was studied in the case of a large width-to-height
aspect ratio. With this condition, it was possible to write a
semianalytical model in the Laplace domain to model the 2D
average concentration distribution. All the assumptions made
to derive such a model were carefully validated using both the
complete numerical solution of the problem and the analytical
theory developed by Lévêque. In particular, it was shown that
the present semianalytical model is valid as long as the aspect
ratio is larger than 2 and in the case of a large Peclet number
to ensure the semi-infinite assumption.

The main outcome of this work is the semianalytical ex-
pressions of the 2D average concentration fields [Eqs. (21)
and (22)], which enable a thorough description of the mass
transfer close to the electrode (power law of 1

3 ) and in the
middle of the channel (power law of 1

2 ). The concentration
fields computed in this study correspond to the measurements
performed in a microchannel using imaging spectroscopic
techniques (infrared or Raman) or fluorescence techniques.
Thus, the combination of the present model, written in terms
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of a transfer function, would enable the measurement of the
concentration distribution or the current density distribution
along the electrode interface. These results are of prime im-
portance for performance characterization that will lead to
design improvements of the next generation of microfluidic
electrochemical chips.
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