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Rayleigh-Brillouin scattering (RBS) in gases has received considerable attention due to its applications in
LIDAR (light detection and ranging) remote sensing and gas property measurements. In most cases, the RBS
spectra in the kinetic regime are calculated based on kinetic model equations, which are difficult to be applied
to complex gas mixtures. In this work, we employ two widely used molecular simulation methods, i.e., direct
simulation Monte Carlo (DSMC) and molecular dynamics (MD), to calculate the spontaneous RBS spectra
of binary gas mixtures. We validate these two methods by comparing the simulation results for mixtures of
argon and helium with the experimental results. Then we extend the RBS calculations to gas mixtures involving
polyatomic gases. The rotational relaxation numbers specific to each species pair in DSMC are determined by
fitting the DSMC spectra to the MD spectra. Our results show that all the rotational relaxation numbers for air
composed of N2 and O2 increase with temperature in the range of 300–750 K. We further calculate the RBS
spectra for binary mixtures composed of N2 and one noble monatomic gas, and the simulation results show that
the rotational relaxation of N2 is greatly affected by the mass of the noble gas atoms. This work demonstrates
that RBS is a promising and alternative way to study the rotational relaxation process in gas mixtures.
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I. INTRODUCTION

With the rapid development of laser techniques and high-
resolution spectroscopy, Rayleigh-Brillouin scattering (RBS)
in gases has received considerable attention due to its applica-
tions in LIDAR (light detection and ranging) remote sensing
[1–3] and gas property measurements [4–9]. One of the recent
well-known applications of RBS is the measurement of global
wind profiles by the ADM-Aeolus mission of the European
Space Agency (ESA) [2,3]. Generally, there are two typical
types of RBS, i.e., spontaneous RBS and coherent RBS. The
former arises from the gas density fluctuations due to random
thermal motion of molecules [9,10], while the latter arises
from the gas density fluctuations induced by an optical dipole
force [11,12]. The spectral profile of RBS contains abundant
information on gas properties, such as temperature, sound
speed, thermal conductivity, and bulk viscosity [13,14]. These
properties can be retrieved by comparing the calculated RBS
spectra with the experimental ones [8,15,16].

According to the RBS theory, light scattering with the
characteristic wavelength L and frequency f represents the
measured fluctuations with the same wavelength and fre-
quency [13]. The shapes of the RBS spectra under different
conditions can be characterized by a dimensionless parameter
Y , which is defined as the ratio of L to the molecular mean
free path λ [4,9],

Y = L

2πλ
= 1

qλ
, (1)
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where q is the scattering wave number; i.e., q= 2π
L . For Y � 1

or Y � 1, the gas is in the hydrodynamic or the free molecular
regime, and the RBS spectra can be calculated based on the
fluctuating Navier-Stokes-Fourier equations [13,14] and the
collisionless Boltzmann-type equation [11], respectively. On
the contrary, it is challenging to determine the RBS spectra
for Y ≈ 1; that is, the molecular mean free path is com-
parable to the fluctuation wavelength, and this situation is
referred to as the kinetic regime. Theoretically, the dynam-
ics of gas molecules in this regime can be described by the
full Boltzmann equation for monatomic gases and the Wang-
Chang-Uhlenbeck (WCU) equation for polyatomic gases [6].
Owing to the great complexity of the Boltzmann-type colli-
sion integral, in most cases the RBS spectra are calculated
based on kinetic model equations.

For monatomic gases, previous research has shown that
the RBS line shape can be obtained by solving kinetic
model equations based on the linearized Boltzmann equation
[17,18]. For polyatomic gases, a variety of kinetic models
have been proposed so far based on the WCU equation
[19–21]. Among these models, the Tenti S6 model [19] is
the most prevailing and has been used to calculate the RBS
spectra of various gases [7,22,23]. This model needs three
parameters relevant to the transport properties of the gas to de-
termine the RBS spectral shape: thermal conductivity κ , shear
viscosity μs, and bulk viscosity μb. Particularly, μb is directly
related to the relaxation times τint [8,24,25] of the molecular
internal energy modes, which is hard to measure experimen-
tally, and it is a promising way to determine μb by fitting
the calculated RBS spectra to the experimental ones [22].
It should be noted that in the current RBS experiments, the
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frequency of sound at the light scattering wavelength is gen-
erally on the order of gigahertz, indicating that the timescale
of measured fluctuations (∼10−9 s) is much shorter than the
vibrational relaxation time τvib (∼10−6 s) [7,8]. Therefore, it
is reasonably assumed that RBS spectra are only dependent
on the relaxation of rotational energy, as the vibrational modes
remain “frozen” in the measured timescale.

Note that the aforementioned kinetic models are limited to
one-component gases. For monatomic gas mixtures, a previ-
ous study has reported that the RBS spectra can be obtained
from kinetic models based on linearized Boltzmann equations
[26]. Later, Bonatto and Marques [27] proposed a new model
by simplifying the Boltzmann collision operators to simple
relaxation-time terms, and they obtained the RBS spectra in
good agreement with the experimental results reported by Gu
et al. [28]. For mixtures containing molecular gases, however,
there is still a lack of effective kinetic models for calculating
RBS spectra. Recently, Wang et al. [29] proposed a gener-
alized hydrodynamic model based on the moment method,
and applied it to the calculation of the RBS spectra for binary
mixtures of SF6-He, SF6-D2, and SF6-H2. Note that this model
is only applicable to the case of a mixture with heavy and
light disparate masses [29]. In addition, this model uses a
single relaxation number, which is defined as the ratio of the
mean rotational relaxation time to the mean collision time,
as the fitting parameter. Therefore, it cannot distinguish the
rotational relaxation process specific to different species for
gas mixtures [30,31].

In order to overcome the limitations of the available model
equations, two widely used molecular simulation methods,
namely, the direct simulation Monte Carlo (DSMC) [31,32]
and the molecular dynamics (MD) [33] methods, are em-
ployed in this paper to calculate RBS spectra. By using
molecular simulation approaches, not only will the interac-
tions between molecules be more accurately described, but
the RBS calculations can be extended to more complex gas
mixtures involving polyatomic gases.

DSMC is a stochastic method which simulates the motions
and collisions of a large number of representative molecules.
It has been demonstrated that for monatomic gases the DSMC
solutions can converge to those of the Boltzmann equation
[34]. Over the past 50 years, the DSMC method has been
proved to be a powerful tool for the simulation of one-
component gas and gas mixtures, covering the whole fluid
regimes from the free molecular to the hydrodynamic limit
[32,35–37]. Recently, the method has been used to calcu-
late the RBS spectra of one-component monatomic/molecular
gases [38,39] and noble gas mixtures [40]. For molecular
gases, the Borgnakke-Larsen (BL) model [41] is popularly
employed in DSMC to describe the rotational-translational
(RT) energy exchange. The so-called rotational relaxation
number, which is directly related to the rotational relaxation
time [31], can be obtained by fitting the DSMC calculated
RBS line shapes to the experimental ones [39].

Unlike DSMC, the MD method is a deterministic simu-
lation method, as the movement of the simulation molecules
strictly follows Newton’s equations of motion [33]. More-
over, the MD method uses interatomic potentials instead
of phenomenological collision models to accurately de-
scribe the interactions between atoms and molecules [33].

FIG. 1. Schematic of the spontaneous RBS experiments. �q and f
represent the scattering wave vector and frequency in both directions
for Stokes and anti-Stokes scattering.

Therefore, the MD simulation results could be considered
as the standard if the interatomic potentials or the potential
energy surfaces (PESs) of the system are accurately prede-
termined. By comparing DSMC results with MD results, one
can determine the parameters used in the DSMC phenomeno-
logical models, and even make further improvements to the
models [36,42,43]. Up to now, the MD method has only been
used to study the RBS of pure Ar and CO2 in the kinetic
regime [44].

In this work we employ DSMC and MD methods to calcu-
late the spontaneous RBS spectra of binary gas mixtures. Our
aim is to break through the limitations of the existing kinetic
models for RBS calculation, and at the same time to provide
an alternative way to study the rotational relaxation process
in multicomponent gases. As a benchmark test, the MD and
DSMC results are first compared to the experimental results
[28] for mixtures of Ar and He without any fitting parameters.
Then we extend our calculations to mixtures involving molec-
ular gases, which have not been studied very much before.
Using an appropriate pair selection algorithm in DSMC [30],
we extract the rotational relaxation numbers specific to each
species pair by fitting the RBS spectra obtained by DSMC
with the ones determined by MD. Specifically, we calculate
the RBS spectra of air composed of N2 and O2 for tempera-
tures up to 750 K, and the variation of the rotational relaxation
numbers against the temperature is determined. Meanwhile,
we calculate the RBS spectra of binary mixtures composed of
N2 and one noble monatomic gas, and the effect of noble gas
atoms on the rotational relaxation of N2 is further discussed.

The remainder of this paper is organized as follows: In
Sec. II, we introduce the basic theory of spontaneous RBS. In
Sec. III, we first introduce the general calculation procedure
for RBS spectra, then we present the simulation details of
DSMC and MD methods. In Sec. IV, the calculation results
of Ar-He gas mixtures are first presented; then we extend our
research to more complex gas mixtures, i.e., the air and the
nitrogen-noble gas mixtures. Conclusions are drawn in Sec. V.

II. SPONTANEOUS RAYLEIGH-BRILLOUIN SCATTERING

Figure 1 shows the schematic diagram of the spontaneous
RBS experiments. The incident light with wave vector �ki and
frequency fi is scattered by the gas medium, and the scattered
light with wave vector �ks and frequency fs is received by
the detector. For RBS calculations, we mainly focus on the
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characteristic wave vector �q and frequency f of the scattering
process, whose magnitude can be calculated as [14,45]

| �q| = q = ∣∣�ki − �ks

∣∣, (2)

| f | = | fi − fs|, (3)

where q is the scattering wave number. Since in RBS experi-
ments we have |�ki| ≈ |�ks| [14,45], q can be expressed as [14]

q = 2
∣∣�ki

∣∣ sin

(
θ

2

)
= 4π n̂

λin
sin

(
θ

2

)
, (4)

where λin = 2π n̂
|ki| is the incident wavelength, n̂ is the refractive

index, and θ is the scattering angle.
Spontaneous RBS arises from the isotropic part of the local

dielectric constant fluctuation δε(�r, t ) [9]. Assuming that the
gas medium is in equilibrium without any macroscopic veloc-
ity, the RBS spectral distribution can be expressed as [14]

S(�q, f ) =
∫ +∞

−∞
〈δε∗(�q, 0)δε(�q, t )〉e−i(2π f )t dt, (5)

where δε(�q, t ) is the spatial Fourier transform of δε(�r, t )
with respect to �q; 〈δε∗(�q, 0)δε(�q, t )〉 denotes the time auto-
correlation function of δε(�q, t ). For a gas mixture containing
s components, the δε(�r, t ) is related to the spontaneous
fluctuations of partial number densities δni(�r, t ) via the
Clausius-Mossotti relation [27,40,46]:

δε(�r, t ) =
s∑

i=1

α̂iδni(�r, t ), (6)

where α̂i denotes the atomic or molecular polarizability of the
ith species. Substituting Eq. (6) into Eq. (5) yields

S(�q, f ) =
s∑

i=1

s∑
j=1

α̂iα̂ jδni
∗(�q, f )δn j (�q, f ), (7)

where δni(�q, f ) denotes the space-time Fourier transform of
δni(�r, t ) with respect to (�q, f ). For one-component gases,
Eq. (7) can be simplified to

S(�q, f ) = α̂2|δn(�q, f )|2. (8)

As mentioned in Sec. I, the RBS line shapes can be char-
acterized by a dimensionless parameter Y [see Eq. (1)]. It
can be seen from Fig. 2, for a large Y value, that the central
Rayleigh peak and two Brillouin peaks are clearly separated.
The Rayleigh peak arises from the scattering of light from en-
tropy fluctuations, while the Brillouin peaks represent the light
scattering from sound waves [9,13]. As Y becomes smaller, the
collective effect of the gas becomes weaker, and the Brillouin
peaks associated with the sound waves are difficult to detect
from the RBS. For Y � 1, the gas is in the limit of free
molecular flow; the shape of the RBS spectrum is a Gaussian
curve corresponding to the Maxwellian velocity distribution
of the molecules [4,9,47].

FIG. 2. RBS spectra of argon gas corresponding to different
Y values. The spectra are obtained using the DSMC method (see
Sec. III A). Y is increased by changing pressure P from 0.5 to 3
bars, while the other parameters are fixed (λin = 403 nm, θ = 40◦,
T = 300 K).

III. SIMULATION METHODS

In this paper, we employ both DSMC and MD methods for
RBS calculations. The general calculation procedure is shown
in Fig. 3. The gas in equilibrium without any macroscopic
velocity is simulated. To prevent acoustic standing waves
[10,44], periodic boundary conditions are assumed in all three
directions.

Due to the isotropic nature of density fluctuations, it is
efficient to sample them only in one dimension [33,39].
Specifically, for all the simulations in this work, the length
in the y direction is chosen as the scattering wavelength L,
while the lengths of the other two directions are arbitrary, to
control the total number of simulated particles. To obtain the
density fluctuations of each species i at different space and
time points, i.e., δni(y, t ), the computational domain is divided
into 64 bins in the y direction, and the instantaneous density
fluctuations are obtained at 1024 discrete time points for each
space bin. Then the fast Fourier transform (FFT) is applied to
the space-time data of δni(y, t ) to determine the RBS spectra
S(�q, f ), as presented in Eq. (7).

For the sake of comparison, the time sampling of δni(y, t )
should be elaborately controlled to make the frequencies of
the calculated spectra close to those reported in experiments
[22,28]. Specifically, the sampling time interval is smaller
than 0.132 ns to ensure that the half-frequency range of the
spectrum is larger than 3.78 Ghz, and the total sampling time
is longer than 20 ns to ensure that the frequency resolution of
the spectrum is less than 0.05 Ghz.

In order to reduce the signal-to-noise ratio of the RBS
spectra, a large number of independent runs is performed and
the ensemble average is used. The number of independent runs
is about 9000 for DSMC simulations and 5000 for MD sim-
ulations, for a compromise between the calculation accuracy
and simulation cost.
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FIG. 3. Schematic of the RBS calculation procedure. The simulation domain is displayed in the x-y plane.

The basic molecular properties for both DSMC and MD
simulations are listed in Table I. Other simulation details for
DSMC and MD methods are introduced in the following.

A. Direct simulation Monte Carlo method

In DSMC, each calculation time step implements two
sequential processes, i.e., molecular movements and inter-
molecular collisions. While the molecular movements are
performed deterministically according to molecular instan-
taneous velocities, the intermolecular collisions are treated
stochastically using phenomenological models including elas-
tic and inelastic collisions [31,32].

In this work, the variable soft sphere (VSS) molecular
model [49] is used for the modeling of elastic collisions. Three
parameters, dref , ω, and α, need to be specified for a collision
pair using the VSS model. Specifically, dref is the reference
collision diameter at a reference temperature (Tref ), which
can be directly related to the total collision cross section. ω

represents the dependence of the collision diameter d on the
kinetic energy of the collision pair, and α represents the scat-
tering angle distribution of the collision. With predetermined
values of these three parameters, the VSS model is capable of
reproducing the experimental values of diffusion coefficient
D and shear viscosity μs [31,32]. The data of VSS parameters
for like-species pairs (i-i) are extracted from Ref. [32], and
they are presented in Table II.

For gas mixtures, the VSS parameters for unlike-species
pairs (i-j) are shown in Table III. The dref,i- j is assumed to be

TABLE I. Basic molecular properties for the simulations.

Molecule Mass (amu) Average polarizability (10−40 C m2 V−1)a

He 4.0 0.227
Ne 20.2 0.439
Ar 39.9 1.82
Kr 83.8 2.94
Xe 131.3 4.50
N2 28.0 1.94
O2 32.0 1.75

aThe polarizabilities of He, Ar, and Kr are obtained from Ref. [28].
Others are obtained from Ref. [48].

equal to the mean value of dref,i-i and dref, j- j [32]. The ωi- j is
also assumed as the mean value of ωi-i and ω j- j [32], except
for the ωHe-Ar, which is directly extracted from Ref. [32]. For
the determination of αi- j , αHe-Ar, αN2-O2 , and αN2-Ar are directly
extracted from Ref. [32], while the others are calculated as
[32]

αi− j = 8(5 − 2ωi- j )nDref,i- jπ (dref,i- j )
2

3(2πkBTref/mr )0.5 − 1, (9)

where Dref,i- j is the reference diffusion coefficient at Tref =
273.15 K, kB is the Boltzmann constant, and mr is the reduced
mass. n is the total number density of the mixture, which is
calculated by P/kBTref under standard conditions.

Once the VSS model parameters are determined, we can
calculate the mean collision rate of species i for gas mixtures
in equilibrium [32],

νi =
s∑

j=1

vi- j =
s∑

j=1

[2
√

π (dref,i- j )
2n j (T /Tref )1−ωi- j

× (2kBTref/mr )0.5], (10)

where vi- j is the mean collision rate between species i and
species j, and n j denotes the partial number density of species
j. Then the mean collision rate for the mixture can be defined
as [32]

ν =
s∑

i=1

ni

n
νi, (11)

TABLE II. VSS parameters for like-species pairs [32] (Tref =
273.15 K).

Species type (i) dref,i-i (Å) ωi-i αi-i

He 2.30 0.66 1.26
Ne 2.72 0.66 1.31
Ar 4.11 0.81 1.40
Kr 4.70 0.8 1.32
Xe 5.65 0.85 1.44
N2 4.11 0.74 1.36
O2 4.01 0.77 1.40
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TABLE III. VSS parameters for unlike-species pairs (Tref =
273.15 K).

Species pair (i-j) dref,i- j (Å) ωi- j αi- j

He-Ar 3.205 0.725a 1.64a

N2-O2 4.06 0.755 1.38a

N2-Ne 3.415 0.70 1.48b

N2-Ar 4.11 0.775 1.33a

N2-Kr 4.405 0.77 1.46b

N2-Xe 4.88 0.795 1.58b

aReference [32].
bThe αN2-Ne, αN2-Kr, and αN2-Xe are calculated from the diffusion
coefficient: Dref,N2-Ne = 0.2895 × 10−4 m/s, Dref,N2-Kr = 0.1341 ×
10−4 m/s, and Dref, N2-Xe = 0.1108 × 10−4 m/s [50].

and the mean collision time τ for the mixture is defined as
the reciprocal of ν. The mean free path λi for each species i,
as well as the overall mean free path λ of the mixture can be
calculated as [32]

λi =
{

s∑
j=1

[
π (dref,i- j )

2n j (Tref/T )ωi− j−0.5

(
1+ mi

mj

)0.5
]}−1

,

(12)

λ =
s∑

i=1

ni

n
λi, (13)

where mi, mj are the molecular mass for species i and j.
Following Eq. (1), we can define the dimensionless parameter
Yi for each species i as

Yi = L

2πλi
, (14)

and Ym for the mixture can be obtained by substituting Eq. (13)
into Eq. (1).

For mixtures including molecular gases such as N2 and
O2, the modeling of inelastic collisions must be accounted
for. Note that the temperature in all simulations of this work
is below 800 K, so the vibrational energy excitation can be
neglected [51] and only rotational-translational (RT) energy
exchange is taken into account. At the macroscopic level,
the RT energy exchange is popularly described via the Jeans
equation [30,31]:

dTrot,i(t )

dt
=

s∑
j=1

Ttr,i(t ) − Trot,i(t )

τrot,i- j
=

s∑
j=1

Ttr,i(t ) − Trot,i(t )

τi- jZi- j
,

(15)
where Ttr,i(t ), Trot,i(t ) are the instantaneous translational and
rotational temperatures of the species i; τrot,i- j is the rotational
relaxation time and can be further expressed as τi- jZi- j , where
τi- j , Zi- j are the mean collision time and the rotational re-
laxation number of species i due to collisions with species
j. Based on Eq. (15), we can further define a total rotational
relaxation time τrot,i for each species i in a gas mixture:

1

τrot,i
= 1

τiZi,total
=

s∑
j=1

1

τi- jZi- j
, (16)

TABLE IV. Lennard-Jones potential parameters of the noble gas
atoms [52].

Atom εi j/kB (K) σi j (Å)

He 10.22 2.576
Ne 35.7 2.789
Ar 124 3.418
Kr 190 3.610
Xe 229 4.055

where τi = 1
νi

is the mean collision time for species i in a gas
mixture; Zi,total denotes the total rotational relaxation number
of species i.

For DSMC simulations of molecular gas mixtures, the BL
model [41] is employed in this work to distribute the post-
collision energy between translational and rotational modes
of each selected pair for inelastic collisions, to match the
Jeans equation [Eq. (15)] at the macroscopic level. Besides,
the pair selection method proposed by Haas et al. [30] is used
to determine the inelastic collision probability Pi- j , which is
directly related to the rotational relaxation number Zi- j as [30]

Zi- j =
[

Pi- j (1 − 0.5Pj-i )
d̂T,i- j

d̂T,i- j + d̂r,i

]−1

, (17)

where d̂T,i- j = 5-2ωi- j is the translational degrees of freedom
of the colliding species pair i− j, and d̂r,i is the rotational
degrees of freedom of species i. Therefore, determining each
probability Pi- j in DSMC is equivalent to determining each
rotational relaxation number Zi- j in Eq. (15). In the following
we use Zi- j for simplicity.

All the DSMC simulations are performed in the freely dis-
tributed code SPARTA [37]. To ensure the simulation accuracy,
the calculation time step is equal to 0.1τ , and the cell length in
the y direction is smaller than 1

3λ. For calculations involving
molecular gases, all of the Zi- j are assumed to be constant,
and they are determined by fitting the RBS spectra obtained
by DSMC with the ones determined by MD.

B. Molecular dynamics method

The MD method uses interatomic potentials instead of
phenomenological models to describe the interatomic interac-
tions. Once the PESs of the system are determined, the RBS
spectra calculated by MD can be compared to the experiments
without any fitting parameters. In this work, the Lennard-
Jones (LJ) potential [52] is used to describe the interactions
between atoms,

u(ri j ) =
{

4εi j

[(
σi j

ri j

)12
−

(
σi j

ri j

)6]
, ri j � rcutoff

0, ri j > rcutoff

, (18)

where ri j is the distance between two interacting atoms i and
j, εi j is the potential well depth, σi j denotes the distance at
which the potential u(ri j ) is zero, and rcutoff is the potential
cutoff distance. The LJ potential parameters for different no-
ble gas atoms are shown in Table IV [52].

For molecular gases such as N2 and O2, they are
modeled as rigid rotors with no vibrational excitation.
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TABLE V. Two-site Lennard-Jones potential parameters of the
molecular gas atoms.

Atom εi j/kB (K) σi j (Å)

N 47.2a 3.17a

O 48.0b 3.006b

aReference [42].
bReference [53].

The interatomic bond lengths are fixed as their equi-
librium bond lengths, that is, 1.097 Å [42] and 1.208
Å [53] for N2 and O2, respectively. To calculate inter-
molecular interaction, Eq. (18) is also used [42,53] be-
tween atom i of molecule 1 and atom j of molecule 2.
The potential parameters for N2 and O2 are shown in
Table V [42,53].

For gas mixtures, the widely used Lorentz–Berthelot
combining rules are employed to describe the cross
interactions [36]:

εab = √
εaaεbb, (19)

σab = σaa + σbb

2
. (20)

For all the simulations, the rcutoff is set to be 12 Å.
The MD simulations are performed in the freely distributed

code LAMMPS [54]. All the cases are run in a microcanonical
(NVE) ensemble, where the total energy, density, and volume
of the system remain constant. The simulation time step is set
as 5 fs if not specifically indicated.

IV. RESULTS AND DISCUSSIONS

In this section, we calculate the RBS spectra of differ-
ent kinds of gas mixtures following the methods proposed
in Sec. III. After the original calculated RBS spectra are
obtained, they are convoluted with the instrument function
provided in Refs. [22,28]. For the sake of comparison between
the calculated RBS spectra in this work and the experimental
spectra in the literature, they are normalized to ensure the
integral of the spectrum over the entire frequency range is
equal to 1. The relative residuals between MD spectra and
experimental spectra are estimated as

R̃expt−MD( fi ) = Sexpt ( fi ) − SMD( fi )

max(SMD)
, (21)

where fi represents the discrete frequency point, Sexpt and SMD

represent the RBS spectra of experiments and MD calcula-
tions, and max(SMD) denotes the maximum value of the MD
result. Similarly, the relative residuals between DSMC spectra
and MD spectra can be calculated as

R̃DSMC-MD( fi ) = SDSMC( fi ) − SMD( fi )

max(SMD)
, (22)

where SDSMC denotes the RBS spectrum calculated by the
DSMC method.

TABLE VI. The simulation conditions for Ar-He mixtures. All
the simulations are performed at T = 297 K and L = 284.96 nm.

PAr (bar) PHe (bar) YAr YHe Ym

2 — 1.62 — 1.62
1 3 4.29 1.14 1.39
2 2 3.94 1.25 1.90
3 1 3.59 1.36 2.54

A. Argon-helium gas mixtures

In this subsection, we calculate the RBS spectra for mix-
tures of Ar and He, which have been studied by Gu et al. [28]
using kinetic model equations and Bruno et al. [40] using the
DSMC method. In the present work, we study them using
the MD method; therefore, we first validate the use of the
MD method by comparing its results with those obtained by
experiments [28]. Then, we calculate the RBS spectra using
the DSMC method under the same conditions. By comparing
DSMC and MD results, we can verify the consistency of these
two methods. It is worth noting that, since the mixtures do not
contain polyatomic molecules, there is no need to adjust any
parameters in the DSMC simulations.

The simulation conditions are shown in Table VI, which
correspond to the experimental conditions of Gu et al. [28].
We calculate three mixture conditions by changing the par-
tial pressure Pi of each component while keeping the total
pressure of the mixture constant. Besides, the RBS spectrum
of Ar at PAr = 2 bars is calculated for the follow-up dis-
cussions. All the simulations are performed at T = 297 K
and L = 284.96 nm. Following Eqs. (1) and (14), we obtain
the dimensionless parameters YAr, YHe, and Ym for different
conditions, which are also presented in Table VI.

For both DSMC and MD simulations, the average number
of simulated molecules in each space bin is more than 25
for each species. Besides, for MD simulations including He
atoms, as the weight of the He atom is much lighter than other
types of molecules (see Table I), the time step is reduced to 2
fs to ensure the simulation accuracy. The instrument function
provided in Ref. [28] is used for the convolution process.

Figure 4 shows the comparison of MD calculated spectra
and experimental spectra under the conditions presented in
Table VI. It can be seen that the RBS spectra calculated
by MD agree well with the experimental spectra under all
conditions. In most cases, the relative residuals between MD
spectra and experimental spectra are below 3%, except for
the case of PAr = 2 bars and PHe = 2 bars, where the max-
imum residual is around 5%. We further compare the MD
calculated spectrum with that calculated by the kinetic model
equations [28]. As shown in Fig. 4(g), the relative residuals
between the MD spectrum and the kinetic model spectrum are
much smaller, indicating that there might be non-negligible
errors in the experiments. The aforementioned comparisons
demonstrate that as long as the PESs of the gas mixtures are
correctly provided, the RBS spectrum determined by MD can
be regarded as a standard, and it can be further used to evaluate
the accuracy of the DSMC results.

Figure 5 shows the RBS spectra obtained by DSMC and
MD methods under the same conditions given in Table VI.

035109-6



MOLECULAR SIMULATION OF RAYLEIGH-BRILLOUIN … PHYSICAL REVIEW E 104, 035109 (2021)

FIG. 4. Panels (a–d) show the comparison of MD calculated RBS spectra (blue solid line) with those measured from the experiments [28]
(green square) under conditions presented in Table VI, and panels (e–h) show the corresponding residuals (solid line). Panel (c) also displays
the RBS spectrum calculated by kinetic model equations [28] (red dotted line), and the residuals between kinetic model and MD results (dashed
line) are shown in panel (g).

It can be seen that the RBS spectra calculated by DSMC
agree well with those calculated by the MD method. We also
calculate the relative residuals between spectra calculated by
the two methods, which are less than 1% for all the conditions.
This indicates that our DSMC and MD simulations can predict
almost the same properties of Ar-He gas mixtures.

It is interesting to compare the RBS line shapes in
Figs. 5(a) and 5(c), where the pressure of Ar remains constant
but the pressure of He is different. It is shown that although the
mass and polarizability of He atoms are much lower than those

FIG. 5. Comparison of DSMC (line) and MD (square) spectra
under conditions given in Table VI.

of Ar atoms (see Table I), their existence can still change the
shape of the RBS spectrum to a large extent. This conclusion
is similar to those reported by Refs. [28,40]. In addition, it can
be seen from Figs. 5(b)–5(d) that the RBS spectra have more
obvious Brillouin peaks as PAr increases. The reason for this
is that increasing PAr is equivalent to increasing Ym, as shown
in Table VI.

B. Air

We then extend our MD and DSMC calculations to air. It
is worth noting that the previous studies using the Tenti S6
model considered air as a single-component gas with effective
gas parameters [16,22,47]. In the present study, air is instead
assumed to be a mixture of N2 (78.85%) and O2 (21.15%).

The simulation conditions are shown in Table VII, which
can be divided into three groups. The first group corresponds

TABLE VII. The simulation conditions of N2, O2, and air. All
the simulations are performed at P = 3 bars.

Condition group Gas T (K) L (nm) Ym

N2 297.3 285 2.44
Group 1 O2 297.6 285 2.31

air 296.8 283.7 2.41

N2 500 532 2.39
Group 2 O2 500 532 2.23

air 500 532 2.36

N2 750 884.6 2.40
Group 3 O2 750 884.6 2.22

air 750 884.6 2.36
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FIG. 6. Panels (a–c) show the comparison of MD calculated RBS spectra (line) with those measured from the experiments [22] (square)
for the first group of conditions presented in Table VII, and panels (d–f) show the corresponding residuals.

to the experimental conditions of Gu and Ubachs [22], and
the other groups have the simulated temperatures higher than
the experimental temperature range. For comparison, we also
calculate RBS spectra of pure N2 and O2 under the same
temperature conditions besides air. Since the mean free path
of the gas increases with increasing temperature, we choose a
longer L at a higher temperature to keep the Ym value around
2.33 (±0.11). All the simulations are performed at P = 3 bars.
The instrument function provided in Ref. [22] is employed for
the convolution process.

To verify the accuracy of MD calculations, we first com-
pare the MD spectra to the experimental spectra under the
first group of conditions (see Table VII). As can be seen from
Fig. 6, the RBS spectra of N2, O2, and air calculated by MD
are in good agreement with those obtained from experiments.
In all the cases, the maximum residual between MD and
experimental spectra is around 3%. The comparisons validate
the applicability of MD potential parameters given in Table V.

For DSMC simulations, there are four rotational relaxation
numbers that need to be accounted for, that is, ZN2-N2 , ZO2-O2 ,
ZN2-O2 , and ZO2-N2 . Specifically, ZN2-N2 and ZO2-O2 correspond
to the rotational relaxation numbers of the like-species pairs,
while ZN2-O2 is the rotational relaxation number of N2 due to
collisions with O2, and ZO2-N2 is the rotational relaxation num-
ber of O2 due to collisions with N2. Using the inelastic pair
selection method [30] introduced in Sec. III A, these four re-
laxation numbers can be set separately in DSMC simulations,
and their specific values are determined by fitting the RBS
spectra obtained by DSMC to the MD results. The relative
error between DSMC and MD spectra can be evaluated using
the normalized root-mean-square deviation (Drms) defined as

Drms =
√

1
N

∑N
i=1 [SDSMC( fi ) − SMD( fi )]

2

max(SMD)
, (23)

FIG. 7. Comparison of DSMC and MD spectra for N2 at (a) T = 297.3 K, (b) T = 500 K, and (c) T = 750 K. The DSMC spectra
correspond to the best fitting values of ZN2-N2 .
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FIG. 8. Comparison of DSMC and MD spectra for O2 at (a) T = 297.6 K, (b) T = 500 K, and (c) T = 750 K. The DSMC spectra
correspond to the best fitting values of ZO2-O2 .

where N is the number of discrete frequency points. Therefore,
the best fitting between DSMC and MD spectra is found at the
lowest Drms value.

Due to the complexity of determining four rotational relax-
ation numbers simultaneously, we first determine the values of
ZN2-N2 and ZO2-O2 by fitting the DSMC spectra of N2 and O2 to
the corresponding MD results. After the values of ZN2-N2 and
ZO2-O2 are extracted, they can be directly used in the DSMC
simulations of air. The results in Figs. 7 and 8 show that
the DSMC spectra agree well with MD spectra under all the
conditions. We also calculate the relative residuals between
spectra calculated by the two methods, which are less than
1.3% for all the conditions.

To validate the ZN2-N2 and ZO2-O2 determined by the afore-
mentioned calculations, in Fig. 9 we compare them to the
ones obtained with the Parker model [55,56]. In addition, in
Fig. 9(a) we also compare our ZN2-N2 results to those obtained
by Valentini et al. [42] using MD simulations. Based on the
Jeans equation [Eq. (15)] for the case of one-component gas,
we achieve the comparison of different methods following the
rules below [31]:

ZDSMCτDSMC = Zothersτ others, (24)

where ZDSMC and τDSMC are the rotational relaxation number
and the mean collision time defined in our DSMC simulations,
while Zothers and τ others are the ones defined in other methods.
In Fig. 9, the relaxation numbers obtained by different meth-
ods are compared under the same definition of τ as [55,56]

τ = πμs

4P
. (25)

As can be seen from Fig. 9(a), the ZN2-N2 values we deter-
mine lie among the ones obtained by other methods. As can
be seen from Fig. 9(b), at a lower temperature of 297.6 K,
the ZO2-O2 we obtain is closer to the one obtained by Lordi
and Mates [56], while at higher temperatures, the results we
get are closer to the ones obtained by Parker [55]. In general,
the results show that, by fitting the DSMC spectra to the MD
spectra, one can obtain the rotational relaxation numbers of
one-component gases which are close to the previous studies.

After ZN2-N2 and ZO2-O2 are well determined, we then cal-
culate the RBS spectra of air under the same temperature
conditions. For the determination of ZN2-O2 and ZO2-N2 , based
on the similarity between N2 and O2 molecules, in this paper

FIG. 9. The equilibrium rotational relaxation numbers ZN2-N2 (a) and ZO2-O2 (b) obtained from RBS calculations.
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FIG. 10. Comparison of DSMC and MD spectra for air at (a) T = 296.8 K, (b) T = 500 K, and (c) T = 750 K.

we assume they have the same value as

ZN2-O2 = ZO2-N2 = 1
2

(
ZO2-O2 + ZN2-N2

)
, (26)

and this assumption will be validated by comparing the
DSMC spectra of air to the ones calculated by the MD
method.

As shown in Fig. 10, the DSMC spectra are in good agree-
ment with the MD spectra under all the simulation conditions.
At T = 296.8 K, the maximum residual between DSMC and
MD spectra is around 0.5%, while at a higher temperature,
this value increases to around 1%. The results show that it is
quite reasonable to use Eq. (26) to approximate both ZN2-O2

and ZO2-N2 in the DSMC simulations of air. The ZN2-N2 , ZO2-O2 ,
ZN2-O2 , and ZO2-N2 we obtained are shown in Fig. 11(a), which
indicates that all the rotational relaxation numbers increase
as the temperature rises. The obtained rotational relaxation
numbers can be used for the DSMC simulations of air under
the near-equilibrium conditions.

Based on the extracted rotational relaxation numbers, the
bulk viscosities μb of N2, O2, and air can be further estimated.
For N2 and O2, the μb can be calculated as [24,57,58]

μb = PR

cv
2

cv,intτrot = 4

25
Pτrot, (27)

where R is the specific gas constant, cv,int = d̂r
2 R = R is the

isochoric internal specific heat, cv = 3+d̂r
2 R = 5

2 R is the total
isochoric specific heat, and τrot=Zτ is the rotational relaxation
time. For air, Eq. (27) can also be used, but τrot now denotes
the overall relaxation time for the mixture, which can be
expressed as [57,58]

τrot =
s∑

i=1

xi(cv,int,i/cv,int )τrot,i, (28)

where xi denotes the mole fraction of the species i, and cv,int,i

denotes the isochoric internal specific heat of the species i.
τrot,i can be further calculated by the fitted rotational relax-
ation numbers [see Eq. (16)]. Finally, the results of μb that we
obtained are shown in Fig. 11(b).

C. Nitrogen-noble gas mixtures

In this subsection, we further extend our research to the bi-
nary gas mixtures composed of N2 and one noble monatomic
gas. For this type of gas mixtures, previous studies using
theoretical analysis [59], classical trajectory (CT) calculations
[60], and acoustical absorption measurements [60,61] mainly
focus on how the rotational energy relaxation of N2 is affected

FIG. 11. (a) The ZN2-N2 , ZO2-O2 , ZN2-O2 , and ZO2-N2 obtained from the RBS calculations. (b) The μb of N2, O2, and air calculated from the
rotational relaxation numbers.
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TABLE VIII. The simulation conditions of N2−x mixtures. All
the simulations are performed at T = 297.3 K and L = 284.96 nm.

N2−x PN2 (bar) Px (bar) YN2 Yx Ym

N2-Ne 3 3 4.28 2.64 3.27
N2-Ar 2 1 2.37 2.59 2.44
N2-Kr 2 1 2.39 3.69 2.70
N2-Xe 3 1.5 3.77 8.05 4.58

by noble gas atoms with different masses. Here we propose to
study this effect through RBS calculations.

The simulation conditions are shown in Table VIII. For
convenience of discussion, we use N2−x to represent the mix-
ture of N2 and a kind of noble gas x. The scattering wavelength
L we choose for all the simulations is equal to 284.96 nm. All
the simulations are performed at T = 297.3 K, under which
ZN2-N2 has been determined by RBS calculations for N2 [see
Fig. 7(a)]. Therefore, for all the DSMC calculations, we set
the value of ZN2-N2 equal to 5.6, while the values of ZN2-x

are determined by fitting the DSMC calculated spectra to the
corresponding MD results.

To reduce the difficulty of determining ZN2-x, we choose
the appropriate simulated pressure for each condition to en-
sure that the Brillouin peaks in the RBS spectra can be
clearly distinguished. Additionally, the partial pressure of
each component is set to ensure that there are enough col-
lisions between N2 and x molecules, so that the influence
of ZN2-x on the RBS spectrum is significant. The instrument
function provided in Ref. [22] is employed for the convolution
process.

Figures 12 and 13 show the RBS spectra calculated by
DSMC and MD under the four simulation conditions shown
in Table VIII. It can be seen that decreasing the value of ZN2-x

increases the intensity of the Brillouin peaks, which is similar
to the case of one-component gas [39]. For N2-Ne and N2-Ar
mixtures, by fitting the DSMC spectra to the MD spectra
we can obtain ZN2-Ne = 17.5(±2.0) and ZN2-Ar = 7.1 (±1.4).
As can be seen from Fig. 12, the DSMC spectra agree well
with MD spectra, and the maximum residual between them is
around 0.5%.

For N2-Kr and N2-Xe gas mixtures, the relative errors
between DSMC and MD spectra are increased compared to
those of N2-Ne and N2-Ar mixtures, as shown in Fig. 13, and
these errors cannot be eliminated by only adjusting ZN2-x in
DSMC simulations. It indicates that accurate DSMC calcu-
lations of N2-Kr and N2-Xe gas mixtures may require more
complex molecular interaction models, and this is beyond the
scope of this work. Here we determine a relatively optimal
ZN2-x at a low Drms value between MD and DSMC spectra.
The determined values of ZN2-Kr and ZN2-Xe are 7.7 (±1.1) and
15.9 (±2.1), respectively, and the maximum residual between
DSMC and MD spectra is around 1%.

Based on the aforementioned RBS calculations, the effect
of the noble gas atoms on the rotational relaxation process of
N2 is studied. Figure 14 shows that as mx/mN2 increases, the
ZN2-x decreases first and then increases. The minimum value
of ZN2-x is 7.1 for ZN2-Ar, corresponding to mx/mN2 of 1.43.
This phenomenon can be qualitatively explained as follows:
The ZN2-x represents the average number of collisions required
for a N2 molecule to reach rotational energy equilibrium due
to collisions with species x atoms. When the gas temperature

FIG. 12. Comparison of DSMC and MD spectra for the N2-Ne (a) and N2-Ar (b) gas mixtures. Panels (c,d) show the corresponding
residuals for the best fitting values of ZN2-x .
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FIG. 13. Comparison of DSMC and MD spectra for the N2-Kr (a) and N2-Xe (b) gas mixtures. Panels (c,d) show the corresponding
residuals for the best fitting values of ZN2-x .

stays constant, the average thermal motion momentum of an
atom increases as its mass increases, resulting in a greater
impact on the movement of N2 molecules and hence causing
them to reach rotational energy equilibrium with a smaller
number of collisions. Therefore, ZN2-x initially decreases as
the mx increases. However, as mx exceeds a certain value, the
atom’s momentum is so large that one collision is more likely
to make one N2 molecule jump from one nonequilibrium state
to another, instead of reaching equilibrium state. In this case,
N2 molecules conversely need more collisions to reach the
rotational energy equilibrium, corresponding to a larger ZN2-x.
It is worth noting that this phenomenon was also reported

FIG. 14. The changes of ZN2-x , ZN2−N2 , and ZN2,total against the
mass ratio between species x and N2. The error bars of the obtained
ZN2-x are also displayed.

by Kistemaker and Vries [60] using acoustical absorption
measurements and CT calculations, although their results gave
a smaller mx/mN2 value for the minimum value of ZN2-x.

According to Eq. (16), we further obtain the total rotational
relaxation number ZN2,total for N2 in mixtures as

ZN2,total =
[
τN2

(
1

τN2-N2 ZN2-N2

+ 1

τN2-xZN2-x

)]−1

, (29)

where τN2 is the mean collision time of N2 in the N2−x
mixture. As can be seen from Fig. 14, the values of ZN2,total

are obviously larger than those of the ZN2-N2 , which means
that the presence of the noble gas atoms slows down the total
rotational relaxation rate of N2, compared to one-component
N2 gas.

V. CONCLUSION

In this work, we employ two widely used molecular simu-
lation methods, i.e., DSMC and MD, to study the spontaneous
RBS in binary gas mixtures. The two methods are first val-
idated by comparing the calculated spectra of Ar-He gas
mixtures to the corresponding experimental results. Then, we
successfully extend our calculations to mixtures involving
molecular gases. By considering MD calculated spectra as
standards, we extract the rotational relaxation numbers Zi- j

specific to each species pair i-j by fitting the DSMC spectra
to MD spectra.

Our calculation results show that, for a mixture of N2

and O2, the four rotational relaxation numbers, i.e., ZN2-N2 ,
ZO2-O2 , ZN2-O2 , and ZO2-N2 , increase with temperature in the
range of 300–750 K, and the values of ZN2-O2 and ZO2-N2 can
be assumed to be equal to the average of ZN2-N2 and ZO2-O2 .
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We further calculate the RBS spectra for binary gas mixtures
composed of N2 and one noble monatomic gas x (Ne, Ar, Kr,
Xe) at T = 297.3 K. The calculation results show that as the
atomic mass of species x increases, the ZN2-x first decreases
and then increases, and it reaches the minimum value of 7.1
for the case of the N2-Ar mixture. Besides, the total rotational
relaxation number ZN2,total is obviously greater than ZN2-N2 ,
which means that the presence of the noble gas atoms will
slow down the rotational relaxation of N2, compared to the
case of one-component N2 gas.

Our results demonstrate that the molecular simulation ap-
proaches can obtain the RBS spectra of complex gas mixtures

with high accuracy. Meanwhile, the calculation of RBS spec-
tra can provide a promising and alternative way to study the
rotational relaxation process in gas mixtures.
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