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Enhanced transport of ions by tuning surface properties of the nanochannel
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Motivated by recent observations of anomalously large deviations of the conductivity currents in confined
systems from the bulk behavior, we revisit the theory of ion transport in parallel-plate channels and also discuss
how the wettability of a solid and the mobility of adsorbed surface charges impact the transport of ions. It
is shown that depending on the ratio of the electrostatic disjoining pressure to the excess osmotic pressure at
the walls two different regimes occur. In the thick channel regime this ratio is small and the channel effectively
behaves as thick, even when the diffuse layers strongly overlap. The latter is possible for highly charged channels
only. In the thin channel regime the disjoining pressure is comparable to the excess osmotic pressure at the
wall, which implies relatively weakly charged walls. We derive simple expressions for the mean conductivity
of the channel in these two regimes, highlighting the role of electrostatic and electrohydrodynamic boundary
conditions. Our theory provides a simple explanation of the high conductivity observed experimentally in
hydrophilic channels, and allows one to obtain rigorous bounds on its attainable value and scaling with salt
concentration. Our results also show that further dramatic amplification of conductivity is possible if hydrophobic
slip is involved, but only in the thick channel regime provided the walls are sufficiently highly charged and
most of the adsorbed charges are immobile. However, for weakly charged surfaces the massive conductivity
amplification due to hydrodynamic slip is impossible in both regimes. Interestingly, in this case the moderate
slip-driven contribution to conductivity can monotonously decrease with the fraction of immobile adsorbed
charges. These results provide a framework for tuning the conductivity of nanochannels by adjusting their surface
properties and bulk electrolyte concentrations.
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I. INTRODUCTION

Surface conductivity is a name given to an extra conduc-
tivity within an electrostatic diffuse layer (EDL), i.e., the
region where the surface charge is balanced by a cloud of
counter-ions, compared to its value in the bulk electrolyte
solution [1]. In colloid and interface science this phenomenon
has traditionally been considered as detrimental and studied
mostly in context of implications for corrections to classical
theories of electrokinetic mobilities [2]. However, with the
advent of nanofluidics there has been considerable interest in
an unusually high conductance of electrolyte solutions con-
fined in nanochannels, and this subject has initiated much
experimental research efforts in recent years [3]. Stein et al.
[4] studied ion transport in a hydrophilic silica channel of a
thickness from few tens of nanometers to 1 μm and found
a remarkable degree of conduction at low salt concentrations
that departs strongly from bulk behavior. These authors con-
cluded that in the dilute limit, the electrical conductances of
channels saturate at a value that is independent on the salt con-
centration. Later Schoch et al. [5] reported the measurements
in 50-nm-thick Pyrex nanoslits and found that corresponding
to a saturation plateau conductivity augments with the surface
charge density. Siria et al. [6] measured conductance of sin-
gle transmembrane boron nitride nanotubes of radius ranging
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from 15 to 40 nm and found that the conductivity plateaus
decrease with the radius. Balme et al. [7] investigated sub-10-
nm-diam hydrophobic nanopores and reported that the height
of conductance plateaus is augmented, which has been inter-
preted in terms of slippage. During the last few years several
papers have been concerned with the surface conductivity of
nanometric foam films and made some important remarks on
the similarity to solid hydrophobic nanochannels [8,9]. How-
ever, despite the rapid rise of an experimental activity many
aspects of the electrohydrodynamics of confined electrolytes
are still poorly understood theoretically or have been given
insufficient attention.

The extension of the diffuse layers is set by the nanomet-
ric Debye length, λD ∝ c−1/2

∞ , where c∞ is the concentration
of the bulk electrolyte solution. Therefore, in the case of
nanochannels, EDLs of opposite walls can occupy practi-
cally the whole channel or even strongly overlap giving rise
to physics of great complexity. Here we focus on an elec-
trolyte solution confined in a channel whose parallel walls
are separated by a distance H . Some solutions are known
for parallel-plate hydrophilic channels, where no-slip bound-
ary conditions at the walls are imposed. Levine et al. [10]
addressed themselves to the case of a constant surface elec-
trostatic potential (conducting wall) and appear to have been
the first to express a surface conductivity via the integral for
the electrostatic field energy of the EDLs. They, however,
have not performed detailed calculations for this energy. Stein
et al. [4] carried out such calculations assuming a constant
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surface charge density (insulator) and predicted the con-
ductivity plateau at low salt, i.e., where the expected bulk
conductivity nearly vanishes. There is as yet no criterion
for determining a priori whether constant charge or constant
potential may be more appropriate for a particular system,
and in some cases it is also possible that both surface charge
density and surface electrostatic potential change with the
channel thickness [11,12]. This phenomenon stems from the
dissociation and association of surface ionizable groups and
is referred to as charge regulation. It yields the self-consistent
electrostatic boundary condition that differs from the two clas-
sical ones. During last years a few authors have discussed the
conductivity of hydrophilic channels with strongly overlap-
ping EDLs taking into account the charge regulation. Secchi
et al. [13] reported that the conductivity exhibits a power-law
behavior, with an exponent close to 1/3 versus the salt concen-
tration. Biesheuvel and Bazant [14] argued that this scaling is
incorrect and derived a 1/2 power-law scaling of conductivity
with c∞. Their results, however, apply only when the potential
is uniform across the channel and surface ionization is low,
but does not describe the realistic salt concentrations. Using
a so-called co-ion exclusion approximation, Uematsu et al.
[15] later argued that both scalings are possible depending
on system parameters, but did not attempt to find a solution
in the presence of co-ions. The present paper extends and
generalizes the earlier analysis of a hydrophilic channel, even
of large surface potential and charge density, to the case of
an arbitrary salt concentration and H . Here we limit ourselves
by the classical constant surface charge and constant surface
potential electrostatic boundary conditions, which can be seen
as rigorous bounds on the attainable conductivity (and its
scaling with c∞) in the charge regulation case.

The arguments [4,10] are not complete since both electro-
osmotic and electrophoretic contributions to the conductance
could be amplified by slippage effects. Indeed, some surfaces
can be slippery [16,17], and the hydrodynamic slip length b
can be of the order of tens of nanometers and even more
[18–21]. Since the efficiency of hydrodynamic slippage is
determined by the ratio of b to the channel thickness [22],
this dramatically reduces drag and thus enhances electro-
osmotic transport of ions at the nanoscale [23–25]. Besides,
at slippery surfaces adsorbed charges could be mobile and,
therefore, responding to the external electric field as discussed
by Maduar et al. [26] and supported by ab initio simulations
for graphene surfaces [27]. This reduces the electro-osmotic
velocity [25,26], but could augment the electrophoretic con-
tribution to the channel conductance.

The quantitative understanding of impact of liquid slip-
page on the channel conductivity is still challenging. Several
theoretical papers have been concerned with the electrolyte
conductivity in the slippery channels in the assumption that
the adsorbed charges are immobile. Using a modification of
the capillary pore model (space-charge theory) Catalano et al.
[28] proposed an expression relating the conductivity to the
integral of an electrostatic potential. One of the main results
of this work is that at a given surface charge the conductivity
increases with the slip length, except for the low surface
charge situation, where no impact of a finite slip has been
found. The authors, however, failed to propose a physical
interpretation of these findings. Bocquet and Charlaix [29]

have briefly discussed the expected shift of the conductance
plateau due to a hydrodynamic slip. Applying some simple
scaling arguments these authors propose that this should be
∝ b/�GC , where �GC is the Gouy-Chapman length, which
is inversely proportional to the surface charge density [30].
However, they did not present any calculations illustrating or
verifying their theoretical result. A similar remark applies to
a paper by Mouterde and Bocquet [31] that derived scaling
expressions describing a contribution of a hydrodynamic slip
taking into account the mobility of adsorbed ions. Their re-
sults, however, apply for thick channels, H/λD � 1, only. We
are unaware of any attempt to quantify an effect of a mobility
of adsorbed charges on a slip-driven contribution in the case
of thin channels.

Our paper is arranged as follows. In Sec. II we define
our system and summarize electrostatic relationships. Here
we also introduce the notions of regimes of a thick and thin
channel. Section III discusses an electrohydrodynamics of a
nanochannel with the focus on its conductivity. This provides
insight into the convective and migration contributions to
a channel conductivity, and also into the slip-driven contri-
bution. In Sec. IV we focus attention on the conductivity
of “no-slip” hydrophilic channels depending on electrostatic
boundary conditions. Namely, equations for conductivity in
thick and thin channel regimes are derived compared with
numerical results. A special attention is given to the am-
plification of the channel conductivity compared to a bulk
value in different situations. Our treatment provides a general
framework for interpreting experimental results and provides
rigorous bounds on the conductivity for any hydrophilic chan-
nel. Hydrophobic slippery channels are analyzed in detail in
Sec. V. We ascertain a dependence of slip-driven contribution
on the fraction of immobile adsorbed charges at the walls that
is valid for an arbitrary value of H , and find that it generally
has a minimum, which locus depends on the value of b/�GC .
For large b/�GC a slip-driven contribution to the conductivity
is maximized when all adsorbed ions are immobile, and can
exceed the conductivity of a hydrophilic channel in a few
tens of times. We conclude in Sec. VI. Appendix A contains
calculations of the mean square derivative of the electrostatic
potential and of the mean osmotic pressure. The derivation of
a general equation that determines the conductivity is given in
Appendix B.

II. SUMMARY OF ELECTROSTATIC RELATIONSHIPS

A. Electrostatic model and length scales

We consider an aqueous electrolyte solution of a dynamic
viscosity η and permittivity ε in a symmetric channel subject
to an electric field E in the negative x direction as sketched in
Fig. 1. The axis z is defined normal to the surfaces of potential
�s and charge density σ located at z = ±H/2. Without loss
of generality, the surface charges are taken as cations (σ is
positive). For a symmetric planar channel of thickness H , it is
enough to consider z = H/2 because of the z ↔ −z symme-
try. The channel is in contact with a bulk reservoir of a 1:1 salt
solution of concentration c∞. Ions obey a Boltzmann distribu-
tion, c±(z) = c∞ exp(∓φ(z)), where φ(z) = e�(z)/(kBT ) is
the dimensionless electrostatic potential, e is the elementary
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FIG. 1. Schematic representation of the system that is coupled
with a bulk electrolyte reservoir characterized by the Debye length
λD. The planar walls are located at z = ±H/2 and separated by
distance H . Their surface charge is created by adsorbed ions and is
neutralized by the diffuse ions in the gap. Anions and cations are
denoted with dark and white circles. The distribution of an electro-
static potential φ(z) (top) is nonuniform and is qualitatively different
for thick (left) and thin (right) nanochannels. An applied electric
field E induces an electro-osmotic velocity of a solvent, V (z), and a
current of density, j(z) (bottom), which depend on the hydrodynamic
slip length b and on the fraction of immobile adsorbed ions, μ. The
averaged conductivity of the nanochannel is related to its averaged
current density J via Ohm’s law

positive charge, kB is the Boltzmann constant, T is the temper-
ature of the system, and the upper (lower) sign corresponds to
the positive (negative) ions. The Debye screening length of an
electrolyte solution, λD = (8π�Bc∞)−1/2, is defined as usual
with the Bjerrum length, �B = e2

εkBT , where ε is the permittivity
of the fluid. Note that �B of water is equal to about 0.7 nm for
room temperature. The Debye length defines an electrostatic
length scale and is the measure of the thickness of the EDL.
We recall that a useful formula for a 1:1 electrolyte is [32]

λD [nm] = 0.305 [nm]√
c∞ [mol/L]

, (1)

so that upon increasing c∞ from 10−7 (in pure water, where
the ionic strength is due to the dissociating H+ and OH− ions)
to 10−1 mol/L the screening length is reduced from ≈1 μm
down to ≈1 nm.

We stress that since our discussion will be restricted to a
mean-field description of the electrostatic problem and also
a continuum electrohydrodynamics, we neglect correlations
and various nonidealities, such as hydrated ion volume effects
[33], dielectric mismatch [34], dispersion forces between ions
[35], ion specificity [36], and thermal noise [37], which would
be important for nanochannels of a few nanometers or in
molecular-scale confinement. Therefore, our results apply for
channels ranging from ten to several hundreds of nanome-
ters, but in our calculations we will use only a channel of
H = 100 nm.

The positively charged walls attract the counter-ions (an-
ions) and repels the co-ions (cations). In the electrolyte
solution the ions are mobile and adjust their position accord-
ing to the local potential they feel. The electrostatic potential

FIG. 2. Electrostatic potential computed for a CP channel of
H = 100 nm and φs = 5. From top to bottom, H/λD 	 0.1, 1,
and 10.

satisfies the nonlinear Poisson-Boltzmann equation

φ′′ = λ−2
D sinh φ, (2)

where ′ denotes d/dz. We also note that, as any approxi-
mation, the Poisson-Boltzmann formalism has its limits of
validity, but it always describes very accurately the ionic
distributions for monovalent ions in this typical concentration
range [30].

To integrate Eq. (2) we impose two electrostatic boundary
conditions. The first condition always reflects the symmetry
of the channel, φ′|z=0 = 0. The second condition is applied at
the walls and can be either that of a constant surface potential
(conductors),

φ|z=H/2 = φs, (3)

or of a constant surface charge density (insulators),

φ′|z=H/2 = 2

�GC
, (4)

where �GC = e
2πσ�B

is the Gouy-Chapman length. These situ-
ations are referred below to as CP and CC cases.

There are a few reports of indirect surface potential mea-
surements of CP (metal) surfaces. Connor and Horn [38]
tested the Poisson-Boltzmann equation directly and concluded
that it gives a very accurate description of the distribution of
ions in electrolyte adjacent to a CP (metal) surface up to �s 	
300 mV (φs 	 12). The latter experiments (with adsorbed
mobile monolayers) produced a satisfying endorsement of
Eq. (2) up to φs 	 20 [39]. Several studies deduced the
values of surface charge density from electrokinetic measure-
ments. Yaroshchuk et al. [40] reported σ 	 16–25 mC/m2

for nanoporous track-etched membranes. The results of Stein
et al. [4] correspond to σ 	 50 mC/m2, which is close to
values obtained for nanometric foam films [8]. Balme et al.
[7] have interpreted their data for hydrophobic nanochannels
using σ 	 5–10 mC/m2, which is equivalent to the range of
�GC from 10 down to 5 nm. In our study we will mostly use
for a typical (high) surface charge density σ 	 25 mC/m2,
which gives �GC 	 2 nm, but weakly charged surfaces can, of
course, give much larger �GC .

Figure 2 shows the φ profiles in the CP channel of H =
100 nm calculated numerically using φs = 2 and several λD.
In all cases the potential is nonuniform throughout the chan-
nel, and the potential φm at the midplane (z = 0), where the
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electric field vanishes, is smaller than φs, but the form of the
curves differs significantly depending on λD. When H/λD 	
10, the midplane potential practically vanishes, but it is very
close to φs for H/λD 	 0.1, indicating a strong overlap of
EDLs.

Generally, the solution of Eq. (2) can be obtained only nu-
merically, but for a flat-parallel channel some exact analytical
results in the closed form can be obtained. First integration of
Eq. (2) from the midplane position to an arbitrary z gives [30]

λ2
D(φ′)2 = 2[cosh φ − cosh φm], (5)

which together with Eq. (4) yields a relation between the
surface charge and surface and midplane potentials:

2λ2
D

�2
GC

= cosh φs − cosh φm=2 sinh

(
φs + φm

2

)

× sinh

(
φs − φm

2

)
. (6)

Further insight can be gained by recalling that local os-
motic pressure of an electrolyte solution is P = kBT c, where
c(z) = c+(z) + c−(z) is the total concentration of ions at given
z. This clarifies that cosh φ represents a dimensionless lo-
cal osmotic pressure, p = P/2c∞kBT , which takes its largest
value of cosh φs at z = H/2. Since p(∞) = 1, cosh φs − 1 is
an excess osmotic pressure at the wall with respect to the bulk
electrolyte solution. The function cosh φ takes its minimum
at cosh φm. Note that the function 
(H ) = cosh φm − 1 rep-
resents an electrostatic (dimensionless) disjoining pressure,
which quantifies a wall repulsion that emerges when electro-
static diffuse layers overlap [41].

B. Thick channel regime

If the channel is thick, H/λD � 1, the potential φ(z) de-
cays from φs down to φm = 0 and 
 = 0 as seen in Fig. 2.
In other words, EDLs do not overlap and there is a bulk
electrolyte solution at the midplane. In this regime Eq. (6)
reduces to

φs = 2arsinh

(
λD

�GC

)
(7)

that relates the surface potential with the charge density and
is exact at any λD/�GC . While Eq. (7) is identical to the
Grahame equation derived for a single wall [32], the boundary
conditions are different. In the present case they are dictated
by symmetry, whereas in the single-wall problem both φ and
φ′ vanish as z → ∞.

Note that Eq. (7) suggests that λD/�GC represents an effec-
tive surface charge density. For small surface charge and/or
high electrolyte concentration λD/�GC is small, yielding φs 	
2 ln(1 + λD/�GC ) 	 2λD/�GC , which corresponds to the lin-
earized limit of the Poisson-Boltzmann equation (2). For high
surface charge and/or low salt λD/�GC is large, and φs 	
2 ln(2λD/�GC ), i.e., the surface potential grows weakly log-
arithmically with the effective surface charge.

It follows from Eq. (6) that large (λD/�GC )2 implies that
cosh φs � cosh φm. In this case Eq. (6) can be rearranged as

2λ2
D

�2
GC

= 2 sinh2 φs

2

(
1 − 


cosh φs − 1

)
	 2 sinh2 φs

2
, (8)

FIG. 3. Surface potential as a function λD/�GC calculated numer-
ically using H/λD 	 0.1, 1, and 10 (from top to bottom). Solid and
open circles show calculations from Eqs. (7) and (19).

indicating that Eq. (7) should remain a sensible approxima-
tion. Thus, to use the Grahame equation it is not necessary
to make assumptions about a limit of a thick channel since
it also represents the rigorous asymptotic result for a nonthick
channel, provided the disjoining pressure is much smaller than
an excess osmotic pressure at the surfaces. Note that in this
situation Eq. (5) reduces to

λ2
D(φ′)2 	 2[cosh φ − 1], (9)

which is equivalent to

λDφ′ 	 2 sinh

(
φ

2

)
. (10)

The last equations are again identical to the single-wall re-
sults, although EDLs do overlap. By these reasons below we
refer to the channel of 
 � cosh φs − 1 as quasithick, and in-
troduce the notion of a thick channel regime, which integrates
both truly thick and quasithick channels. As a side note, it
has also been shown for other systems that nonthick highly
charged films show the electrostatic and electro-osmotic prop-
erties of thick ones [42].

By setting the same values of H/λD as in Fig. 2 and varying
�GC from 1 nm to 10 μm it is possible to compute the curves
for φs as a function λD/�GC plotted in Fig. 3. When H/λD 	
10, on increasing λD/�GC the surface potential shows a weak
nonlinear growth. Calculations from Eq. (7) coincide with
the numerical results, confirming that the single-wall Gra-
hame equation holds for a thick channel too. When H/λD 	 1
the Grahame equation underestimates φs at small and mod-
erate λD/�GC , but becomes a reasonable approximation if
λD/�GC � 5 by confirming our above consideration. As seen
in Fig. 2, at H/λD 	 1 the EDLs strongly overlap implying
that 
 is significant, but the channel behaves effectively as
thick. At first sight this result is counterintuitive, but for this
specific numerical example 
/(cosh φs − 1) 	 0.1, so that
according to Eq. (8) this channel is indeed quasithick. How-
ever, in the case of the channel of H/λD 	 0.1 in the given
range of λD/�GC the surface potential generally significantly
exceeds the predictions of Eq. (7), and a thick channel regime
is not fulfilled unless λD/�GC � 50 (not shown). For H = 100
nm and λD 	 1 μm this corresponds to �GC � 20 nm. In other
words, even in pure water this channel is effectively thick if its
surface charge density is above σ 	 2.5 mC/m2. We return to
the thin channel regime in Sec. II C.
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We now define a new electrostatic length scale as

�Du = λ2
D

�GC
= (8π�GC�Bc∞)−1 = σ

4ec∞
. (11)

A simple physical meaning of �Du is that the layer of
thickness 4�Du of the bulk solution contains an integrated
charge of negatively charged counter-ions (per unit area) equal
to −σ . Earlier Bocquet and Charlaix [29] suggested that a
length ∝ λ2

D/�GC should characterize the channel scale below
which surface conductivity dominates over the bulk one. They
termed this length the Dukhin length by analogy to the Dukhin
number usually used in colloid science. By this reason we also
refer to our �Du as the Dukhin length. Later we will see that
the conductivity of a confined electrolyte indeed depends on
�Du, but let us stress that �Du emerges naturally in our analysis
of electrostatics.

Using �Du/�GC = (λD/�GC )2 Eq. (8) may be reexpressed
as

sinh
φs

2
=

√
�Du

�GC
, cosh

φs

2
=

√
1 + �Du

�GC
. (12)

These equations are valid for thick channels with any value
of �Du/�GC , and also justified for quasithick channels, i.e., for
channels of an arbitrary thickness, provided �Du/�GC � 1.

Since Eq. (11) is equivalent to λD/�GC = �Du/λD, for sur-
faces of λD/�GC = 1, λD = �GC = �Du. In the thick channel
limit λD � H , but �GC can be smaller or larger than the
channel thickness. When λD/�GC > 1,

�GC < λD < �Du, (13)

but �Du can be smaller or larger than H . Note that �Du
H =

λD
H

λD
�GC

which increases with a ratio of an effective surface
charge to effective (electrostatic) thickness can be extremely
large. Say, the values of λD = 50 nm and �GC = 2 nm give
�Du = 1.25 μm, which is larger than any conceivable Debye
length. In this case for a channel of H = 100 nm we obtain
�Du/H 	 12.5.

We now denote the average value of any function f as

f = 2

H

∫ H/2

0
f dz, (14)

and in Appendix A we derive expressions for the mean square
derivative of the electrostatic potential (φ′)2, which is the mea-
sure of the electrostatic field energy (per unit area), and for the
mean osmotic pressure cosh φ in a thick channel regime

(φ′)2 = 8

HλD

(√
1 + �Du

�GC
− 1

)
, (15)

cosh φ = 1 + 4λD

H

(√
1 + �Du

�GC
− 1

)
. (16)

C. Thin channel regime

We now turn to the thin channel limit, H/λD � 1, where
the EDLs strongly overlap (see Fig. 2). If we make the addi-
tional assumption that λD/�GC is small enough, the disjoining
pressure 
 becomes very close to the excess osmotic pressure
at the wall. We will term this situation as a thin channel

regime, which is a more narrow notion compared to a thin
channel limit. It is well seen in Fig. 3 that in the thin channel
regime φs rises much more rapidly (and nonlinearly) with
λD/�GC than prescribed by the Graham equation, and that
φs becomes quite large despite λD/�GC � 1 (weakly charged
surfaces). We remark that for λD/�GC < 1 the electrostatic
lengths are organized in the order

�Du < λD < �GC, (17)

i.e., in a thin channel regime �Du is the smallest electrostatic
length of the problem, but H can be smaller or larger than �Du.

Silkina et al. [25] have recently shown that in this regime
the distribution of a potential in the channel is

φ(z) 	 φs + sinh φs

2λ2
D

(
z2 − H2

4

)
, (18)

leading to

sinh φs 	 4�Du

H
, cosh φs 	

√
1 +

(
4�Du

H

)2

. (19)

The surface potential calculated from Eqs. (19) is included
in Fig. 3 (shown by the open circles) and we see that the fits
are quite good both for truly thin, H/λD � 1, and quasithin,
H/λD 	 1, channels. Therefore, the condition of a thin chan-
nel regime can be relaxed to H/λD � 1 and λD/�GC � 1.

It follows from Eqs. (18) and (19) that the potential at the
midplane of a thin channel is given by

φm 	 φs − H

2�GC
, (20)

where H/�GC is much smaller than φs.
In the thick channel regime the impact of 
 can safely be

neglected as demonstrated in Sec. II B, but for a regime of a
thin channel Eqs. (6) and (19) give


 	
√

1 +
(

4�Du

H

)2

− 1 − 2�Du

�GC
. (21)

The last equation shows that the electrostatic disjoining pres-
sure is equal to the excess osmotic pressure at the wall with
a leading (small) correction term 2�Du/�GC . When H is the
smallest length scale in the system, 
 	 4�Du/H .

Finally, in the thin channel regime (φ′)2 and cosh φ can be
approximated by (see Appendix A for a derivation)

(φ′)2 	 4

3�2
GC

(22)

and

cosh φ 	
√

1 +
(

4�Du

H

)2

− 4�Du

3�GC
. (23)

D. Constant charge versus constant potential

Finally, we stress that the derived above equations can be
used both for CC and CP cases.

For a CC channel �GC is fixed, and does not depend on the
concentration of salt and on the channel thickness. Therefore,
�Du ∝ c−1

∞ irrespective of H . Naturally, the same scaling law
holds for �Du/H and �Du/�GC . It follows from Eq. (21) that if
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TABLE I. The Dukhin and Gouy-Chapman lengths and useful
ratios expressed via the surface potentials.

Thick channel regime Thin channel regime

�Du = λD sinh φs
2 �Du 	 H sinh φs

4

�GC = λD

sinh φs
2

�GC 	 4λ2
D

H sinh φs

�Du
�GC

= sinh2 φs
2

�Du
�GC

	 (
H
λD

)2 sinh2 φs
16

�Du
H = λD

H sinh φs
2

�Du
H 	 sinh φs

4

�Du/H � 1, in the thin channel regime the disjoining pressure
is inversely proportional to the thickness and salt concentra-
tion, 
 ∝ (c∞H )−1.

In the CP channel φs is fixed and, depending on the regime,
expressions for �Du follow directly from Eqs. (12) or (19).
Standard manipulations yield the expressions for �Du and �GC

of a CP channel, which are summarized in Table I. Also
included are the useful ratios of the lengths that appeared in
the above analysis. An important difference of CP channels is
that the expressions for �Du and �GC are different in thick and
thin channel regimes.

For the regime of a thick CP channel �Du ∝ c−1/2
∞ . The

same scaling law is valid for �GC , �Du/H , and �GC/H , but
�Du/�GC = (λD/�GC )2 is an independent on c∞ constant set
solely by φs. We recall that in this regime 
 can safely be
excluded from the analysis, even when it is not small.

In the regime of a thin CP channel �Du does not depend
on salt, and �Du/H is a constant that reflects solely the sur-
face potential. We also stress that �GC ∝ c−1

∞ , and, therefore,
�Du/�GC ∝ c∞. The disjoining pressure is given by


 	 cosh φs − 1 −
( H

λD

)2 sinh2 φs

8
, (24)

i.e., 
 tends to a constant value expected when H → 0 with
a correction ∝ c∞H2. Note that Eq. (24) is identical to that
derived by Markovich et al. [43] for the CP case.

III. GENERAL CONSIDERATIONS

The system is subject to a tangential electric field E (V/m)
that induces an electro-osmotic flow of velocity V (z) (m/s that
satisfies Stokes’ equations with an electrostatic body force:

v′′ = φ′′, (25)

where v(z) = 4πη�B

eE V (z) is the dimensionless fluid velocity.
The fluid velocity at z = H/2 satisfies [25,26]

v|z=H/2 = b

(
−φ′|z=H/2 + 2(1 − μ)

�GC

)
= −2μb

�GC
, (26)

where to obtain the second relation we used Eq. (4). The
parameter μ in Eq. (26) is the fraction of immobile surface
charges that can vary from zero for fully mobile charges
to 1 in the case when all adsorbed ions are fixed. Equation
(26) implies that v(H/2) ∝ −μbσ . In particular, we see that
the velocity at the wall reaches its maximal possible value,
v(H/2) = −b/�GC , when surface ions are immobile. We also
see that, if surface ions are fully mobile, v(H/2) vanishes
even when hydrodynamic slip length b is large, so that an

electro-osmotic flow near such surfaces would be identical to
that near (no-slip) hydrophilic walls.

The second hydrodynamic boundary condition is implied
by symmetry:

v′|z=0 = 0. (27)

Performing the integration in Eq. (25) with prescribed
boundary conditions (26) and (27) yields [25]

v(z) = φ(z) − φs − 2μb

�GC
. (28)

This equation contains both φs and �GC . Therefore, to employ
it for a particular (CC or CP) case, it is necessary to involve
the relation between φs and �GC . We recall that, depending on
the regime, this relation is given by either Eq. (7) or Eq. (19).
Alternatively, one can solve the problem for the CC case and
then transform the result to the CP case by using the relation
between φs and �GC or expressions given in Table I.

An applied electric field also induces an electric current
in the channel. The local current density j(z) is, of course,
not uniform and depends on z. It is convenient to introduce
an averaged density J = j (A/m2). The averaged channel
conductivity K (S/m) is then related to J by K = J/E (Ohm’s
law) and includes two contributions, namely, a convective
contribution due to an electro-osmotic flow of a solvent (of
a velocity v) and a migration contribution caused by an elec-
trophoretic motion of ions with respect to the solvent. To
calculate J we assume a weak field, so that in steady state
φ(z) is independent of the fluid flow. Note that in experiment
one measures a conductance, G (S). For a flat-parallel channel
G = K wH

L , L is the length of the channel and w is its width,
so that the cross-sectional area is given by wH .

The local current density of thermal ions in a confined
electrolyte is j+ + j−, where j± = ±ec±(V ± miE ). The first
term is associated with the convective contribution, i.e., with
the transport of ions by an electro-osmotic flow of velocity
v given by Eq. (28). The second term represents a migra-
tion contribution caused by the (electrophoretic) movement of
ions with respect to the solvent. The migration term depends
on the mobility of ions, mi, that can be expressed as mi =
e/(6πηRi ). To make the analysis as transparent as possible,
we assume that the radii of positive and negative ions are equal
to R, so that they are of the same mobility. In our calculations
below we will use R = 0.3 nm. Clearly, in many situations the
difference in ion size should be taken into account in order
to obtain quantitative predictions. However, one can expect
that the main physical picture will remain the same, and we
leave the study of this case for a future work. Now, by adding
the contribution of adsorbed ions, jσ , to conductivity we can
formulate the expression for a mean current density as

J = j+ + j− + 2 jσ
H

. (29)

The detailed derivations of the expressions of these contribu-
tions are given in Appendix B. There to calculate jσ we make
an additional assumption that the mobility of adsorbed surface
charges is the same as that for diffuse ions in electrolyte
solution. This is, of course, the largest possible mobility at
surfaces that would allow us to maximize the effect of mobile
adsorbed ions on the total conductivity, but note that such
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FIG. 4. Current density J vs electric field E computed for
channels of H = 100 nm by imposing different electrostatic and
electrohydrodynamic boundary conditions. The solid line shows nu-
merical results for a hydrophobic CP channel obtained using φs = 4,
μ = 0.5, b = 100 nm, and c∞ = 1 × 10−3 mol/L. Alternate lines
are computed for hydrophilic CC channels of �GC = 1 nm using
c∞ = 1 × 10−3 mol/L (dashed) and c∞ = 5 × 10−6 mol/L (dash
dotted). Solid and open circles are calculations from Eqs. (35) and
(38), correspondingly. Squares show predictions of Eq. (46).

a situation is more than realistic. As discussed by Lyklema
and Minor [2] the lateral mobilities of monovalent ions in the
adsorbed layer are not much lower than those in bulk and are
very often of the same order of magnitude.

Figure 4 shows a typical current-voltage response (J-E )
of several nanochannels of the same thickness, but different
surface properties, computed for two concentrations of salt,
c∞ = 1 × 10−3 and 5 × 10−6 mol/L. The calculations for the
CC channel are made using �GC = 1 nm and with no slippage
at the surfaces. The slope of the J-E straight line is invoked to
find the conductivity K that depends on c∞, and our numerical
examples show that K is larger for c∞ = 1 × 10−3 mol/L.
The CC data are compared with another numerical calculation
using c∞ = 10−3 mol/L, but made for a CP channel of φs = 4
in which a slip length of 100 nm and μ = 0.5 are incorporated.
The computed data show larger K than in the case of the
“no-slip” CC channel, indicating that K depends not solely
on the salt concentration, but also on the surface properties
reflected by electrostatic and electrohydrodynamic boundary
conditions. To explain these results a quantitative theory of the
channel conductivity is required. The theory must be able to
account for electrostatic and wetting properties of the surfaces
and provide a realistic description of the bulk configuration.
We develop a suitable theory and return later to the fit of the
curves shown in Fig. 4.

It is convenient to divide the mean conductivity of the
channel into a “no-slip” conductivity K0 expected for hy-
drophilic channels, and slip-driven contribution �K :

K = K0 + �K. (30)

A derivation of a general equation that determines K is
given in Appendix B and yields the following expressions for
the conductivity of an electrolyte solution in the bulk,

K∞ = e2

24π2η�BRλ2
D

= e2c∞
3πηR , (31)

and inside the hydrophilic channel of an arbitrary thickness,

K0 = K∞
[

3λ2
DR(φ′)2

2�B
+ cosh φ

]
. (32)

The first and second terms are associated with the convective
and migration contributions, correspondingly. Equation (32)
is identical to the Levine et al. [10] integral formula, but here
K0 is related to the mean values of (φ′)2 and cosh φ. To deter-
mine K0 given by Eq. (32) we have to substitute the relevant
expressions for (φ′)2 and cosh φ, which have different forms
in the regimes of thick and thin channels as discussed in Secs.
II B and II C. In Sec. IV we will see that this variety of possible
situations gives rise to a rich diversity in the conductivity
regimes of even canonical hydrophilic channels.

The slip-driven contribution �K is of the same form for a
channel of any thickness and is given by (see Appendix B)

�K = K∞ 4�Du

H

(
3μ2b

�GC

R
�B

+ 1 − μ

)
. (33)

The first term is associated with an additional convective
conductivity due to a hydrodynamic slip. The proportional to
(1 − μ) term represents a migration contribution of mobile
adsorbed ions. Recently Mouterde and Bocquet [31] derived
an equivalent expression for the slip-induced surface con-
ductivity by assuming H � λD. Our analysis clarifies that
Eq. (33) constitutes a rigorous result for �K of a channel
of any H . This allows us to make contact with the semian-
alytical calculations of Catalano et al. [28] mentioned above
(in Sec. I). Equation (33) provides an explanation of their re-
sults that corresponds to μ = 1. Indeed, when μ → 1, only a
convective contribution plays a role. For very weakly charged
surfaces, i.e., at b/�GC → 0, this convective term becomes
negligibly small leading to �K → 0. Thus, in this limit we
recover a “no-slip” solution that has been found before numer-
ically [28]. When b/�GC is finite the function �K is positive
definite for any μ (from zero to 1).

Differentiating Eq. (33) twice with respect to μ we con-
clude that d2(�K )/dμ2 is always positive, and �K takes its
minimum value of

�K = K∞ 4�Du

H

(
1 − �GC�B

9bR

)
(34)

at μ = �GC/b × �B/6R. This implies that if we keep b/�GC

fixed, but increases μ, �K reduces until it reaches its mini-
mum defined by Eq. (34). On increasing μ further �K should
demonstrate a fast parabolic growth. Note that for b/�GC <

�B/6R the minimum of �K occurs outside of the possible
range of μ. In this situation the value of �K reduces with
μ and takes its smallest possible value at μ = 1. We will
return to the importance of �K and the physics underlying
its behavior in Sec. V.

IV. HYDROPHILIC CHANNELS

In the thick channel regime (φ′)2 and cosh φ are defined by
Eqs. (15) and (16). The conductivity of a hydrophilic channel
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in this regime is then given by

K0 	 K∞
[

1 + 4λD

H

(√
1 + �Du

�GC
− 1

)(
1 + 3R

�B

)]
. (35)

The second term in Eq. (35) represents the surface conduc-
tivity that vanishes in the limits of H → ∞ (a single wall)
or �Du/�GC → 0 (uncharged surfaces). Note that Eq. (15)
by Mouterde and Bocquet [31] for the surface conductivity
(given without a derivation for the limit of H/λD � 1) can be
rearranged to the second term of Eq. (35). We stress that for a
truly thick channel Eq. (35) becomes exact and is applicable
for any �Du/�GC , but it should also constitute a very good
approximation for highly charged nonthick channels.

For weakly charged surfaces (small �Du/�GC) and H/λD �
1, Eq. (35) reduces to

K0 	 K∞
[

1 + 2λD�Du

H�GC

(
1 + 3R

�B

)]
(36)

that suggests that the surface conductivity constitutes a small
correction to the bulk one and, therefore, can safely be ne-
glected.

If �Du/�GC is large, i.e., when a thick channel regime also
includes the quasithick channels as discussed in Sec. II B,
Eq. (35) can be simplified to give

K0 	 K∞
[

1 + 4�Du

H

(
1 + 3R

�B

)]
, (37)

which is valid for any �Du/H . Estimating the orders of mag-
nitude we conclude that the surface conductivity dominates
when 4�Du/H � 1. We recall that the bulk electrolyte layer of
thickness 4�Du contains an integrated charge of counter-ions
(per unit area), which is exactly equal to the surface charge
density taken with the opposite sign. Thus this result is not
surprising, although it could not be predicted a priori. How-
ever, to safely neglect the bulk contribution to K0 we should
require �Du/H � 1. In other words, we might argue that when
�Du exceeds H , a sensible approximation for K0 should be

K0 	 K∞ 4�Du

H

(
1 + 3R

�B

)
. (38)

Thus, even moderate �Du/H greatly enhances the surface con-
ductivity of a hydrophilic channel if and only if λD/�GC is
large. Clearly, large �Du/H should lead to a huge amplification
of K0.

In the thin channel regime, which implies that walls are
necessarily relatively weakly charged (see Sec. II C), (φ′)2 and
cosh φ are given by Eqs. (22) and (23). Substituting them to
Eq. (32) we derive

K0 	 K∞

⎡
⎣

√
1 +

(
4�Du

H

)2

− 4�Du

3�GC

(
1 − 3R

2�B
,

)⎤
⎦, (39)

where the first term is of the leading order. Clearly, the signif-
icant deviations from the bulk conductivity are expected only
when �Du/H � 1. In this case Eq. (39) reduces to

K0 	 K∞ 4�Du

H

[
1 − H

3�GC

(
1 − 3R

2�B

)]
	 K∞ 4�Du

H
. (40)

FIG. 5. K0 as a function of c∞ computed for CC channels of
H = 100 nm (solid curves) using �GC = 2 and 300 nm (from top
to bottom). The dotted line shows K∞ calculated from Eq. (31).
Solid circles show predictions of Eq. (35), and open circles show
calculations from Eq. (38). Solid squares are obtained from Eq. (39).
The big triangles mark the points of �Du/H = 1.

Thus, when H becomes the smallest length scale of the prob-
lem, the conductivity is bounded by the value of the disjoining
pressure and can be enhanced by nearly 
 times compared to
the bulk case. Already at this point one can conclude that for a
very thin CC channel the conductivity amplification, K0/K∞,
can be very large for few-nanometer channels. This follows
from the fact that the electrostatic disjoining pressure scales
as 
 ∝ (c∞H )−1, i.e., diverges at H → 0. However, for a
vanishing thickness the disjoining pressure in the CP channel
tends to a constant value as follows from Eq. (24); so does
K0/K∞.

If for a channel of H = 100 nm we keep �GC fixed, on
varying c∞ it is possible to obtain the conductivity curves dis-
played in Fig. 5. For this specimen as examples we use �GC =
2 nm (σ 	 18 mC/m2) and 300 nm (σ 	 0.12 mC/m2). In
both cases K0 remains constant at sufficiently small concen-
trations. For larger c∞ the K0 curves converge to the bulk
conductivity calculated from Eq. (31) and increase linearly
with c∞. The big triangles correspond to �Du/H = 1 and we
see that they provide a good sense of the transition from the
saturation (plateau) regions to the bulk branch of the con-
ductivity curves. The plateau occurs when �Du/H � 1. For
an upper curve of �GC = 2 nm, λD/�GC is large, indicating a
thick channel regime even when EDLs strongly overlap. The
theoretical curve calculated from Eq. (35) is also included
in Fig. 5. We see that the fits are quite good for all c∞.
The plateau branch, where �Du/H � 1, is reasonably well
described by a more elegant theoretical result, Eq. (38). The
nature of the plateau is apparent now. The accuracy of Eq. (38)
implies that K0 ∝ K∞�Du which does not depend on c∞ for a
CC channel. We remark that for a conductivity plateau the
conductance G ∝ K0H does not depend on H . This is exactly
what has been observed by Stein et al. [4]. These authors
also found experimentally that the height of the conductivity
plateau increases with surface charge density. Our theoretical
results agree well with this conclusion too. Indeed, the curve
of �GC = 300 nm is located much lower than that for a highly
charged channel. For very dilute solutions, �Du/H � 1, this
curve corresponds to a thin channel regime, and the plateau
is well described by Eq. (40), but for larger c∞ the condition
of a thick channel regime is fulfilled and Eq. (36) becomes
valid.
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FIG. 6. The data sets of Fig. 5 reproduced, and plotted as K0/K∞

vs c∞.

To examine the significance of the surface conductivity
contribution (with respect to the bulk one) more closely, the
data sets from Fig. 5 are reproduced in Fig. 6, but plotted
as K0/K∞ vs c∞. On reducing c∞ (increasing λD and �Du)
the relative contribution of the surface conductivity weakly
increases until �Du/H 	 1. On decreasing c∞ further K0/K∞
grows linearly in this log-log plot indicating that K0/K∞ ∝
c−1
∞ . The surface conductivity can become very large (a few

orders of magnitude larger than K∞), for highly charged qu-
asithick channels, but even for an extremely weakly charged
wall one can obtain an order of magnitude enhancement pro-
vided that an electrolyte solution is very dilute, i.e., in the thin
channel regime.

If we keep φs fixed and vary c∞, we move to the situation
shown in Fig. 7. For this numerical example we use φs = 5
(�s 	 125 mV) and 2 (�s 	 50 mV). Note that for a channel
of φs = 5 the thick channel regime is expected when c∞ �
10−5 mol/L. At smaller concentrations this channel falls to
the intermediate regime (between thick and thin), and even
at c∞ = 10−6 mol/L the value of 
/(cosh φs − 1) 	 0.6 is
still not large enough to justify thin channel approximations.
The value of �Du/H = 1 corresponds to c∞ 	 3.4 × 10−4

mol/L, i.e., this is located at the branch of the curve, where
the thick channel regime is valid. The channel of φs = 2 is
thin when c∞ � 2 × 10−6 mol/L which results in constant
�Du/H 	 0.91 on the whole branch of a thin channel regime
(see Sec. II D). Since �Du can only decrease with salt, but
never increases, this implies that with this value of φs the

FIG. 7. K0 as a function of c∞ computed for CP channels of H =
100 nm (solid curves) using φs = 5 and 2 (from top to bottom). The
dotted line shows K∞ calculated from Eq. (31). Solid circles show
predictions of Eq. (35); open circles show calculations from Eq. (38).
Solid squares are obtained from Eq. (39). The big triangles mark the
points of �Du/H = 1.

FIG. 8. The data sets of Fig. 7 reproduced and plotted as K0/K∞

vs c∞.

value of �Du/H = 1 is never reached. In other words, the
surface conductivity of this channel never exceeds the bulk
one significantly. Finally, we note that when φs = 2, the thick
channel regime occurs at c∞ � 10−4 mol/L. Figure 7 shows
that both for φs = 5 and 2 the conductivity of a hydrophilic
channel, K0, strictly monotonously increases with c∞, and
the saturation plateau never occurs. The deviations from the
bulk conductivity are larger for a larger φs, and for φs = 5 are
discernible even for concentrated solutions, but at φs = 2 the
conductivity curve converges to K∞ already when c∞ 	 10−2

mol/L. Also included in Fig. 7 are the theoretical calculations
from Eqs. (35), (38), and (39), where we have substituted �Du

and �GC by the relevant expressions from Table I. We see that
these approximations fit quite well the appropriate branches
of the conductivity curves.

To demonstrate the salt dependence and magnitude of the
conductivity enhancement in the CP case, in Fig. 8 the nu-
merical and theoretical data are reproduced from Fig. 7, but
plotted for K0/K∞. At low salt we observe a saturation of
K0/K∞ for a curve of φs = 2. This is an indication of a
thin channel regime and the height of this plateau is roughly
equal to sinh φs 	 3.6, i.e., the conductivity of this chan-
nel is only a few times higher than the bulk one (which is
extremely small at low salt). It follows from Eq. (39) that
the amplification of K0 cannot exceed cosh φs, and for salt
concentrations beyond a thin channel regime the ratio K0/K∞
slowly decays to unity. The low salt plateau is not observed if
φs = 5 since, as discussed above, the thin film regime is not
reached. However, even assuming it could, K0/K∞ would be
below cosh(5) 	 74, i.e., this channel cannot provide even a
two-order-of-magnitude conductivity enhancement. We also
remark that the point of �Du/H = 1 approximately corre-
sponds to an order-of-magnitude enhancement of K0 in Fig. 8,
by confirming that when �Du exceeds the channel thickness
the surface conductivity dominates over the bulk.

The scaling of K0 with salt, especially at low concentra-
tions, is of interest. In the CC channel K0 ∝ c0

∞ (see Fig. 5
and its description in the text). As clarified in Sec. II D, in
the CP case and a thick channel regime �Du ∝ c−1/2

∞ , but for a
thin channel regime �Du does not depend on salt. Correspond-
ingly, in extremely dilute solutions K0 ∝ √

c∞ and K0 ∝ c∞
as follows from Eqs. (38) and (40). This implies that any
charge regulation model should inevitably lead to a power-
law scaling of K0 (with salt concentration) with an exponent
confined between zero and 1 if the thin channel regime is
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FIG. 9. Conductivity amplification due to hydrophobicity, K/K0,
calculated for the channel of H = 100 nm using b = 100 nm and
μ = 1, and fixed φs = 4 (solid curve) or fixed �GC = 2 nm (dashed
curve). Solid circles are obtained using Eqs. (33) and (35). Open
circles are calculations from Eq. (42). The big triangles mark the
points of �Du/H = 1.

reached, or between zero and 1/2 in the thick channel regime.
We note that both a 1/2 power law derived by Biesheuvel and
Bazant [14] and a 1/3 power law scaling published by Secchi
et al. [13] fall in between these attainable bounds; i.e., both
exponents are within a permitted range and not forbidden.

V. HYDROPHOBIC CHANNELS

In the case of hydrophobic channels the conductivity can
be obtained from Eq. (30), i.e., by summing up K0 and �K .
More precisely, �K defined by Eq. (33) should be added to
Eq. (32) in the thick channel regime, or to Eq. (39) in the thin
channel regime.

A limiting case of special interest is that of μ = 1. It fol-
lows from Eq. (33) that if all adsorbed charges are immobile,
only a convection contribution is superimposed with K0:

�K = K∞ 12�Du

H

b

�GC

R
�B

. (41)

Equation (41) indicates that this contribution is proportional
to �Du/H and scales with b/�GC . This suggests that K can
be significantly amplified by hydrodynamic slippage provided
�Du/H is not too small and surfaces are highly charged.

This case is illustrated in Fig. 9, where K/K0 = 1 +
�K/K0 for the CC and CP channels is plotted as a function of
c∞. The calculations are made using �GC = 2 nm and φs = 4
(�s 	 100 mV). These values provide the regime of the thick
channel in the chosen range of c∞. We set b = 100 nm that
provides constant b/�GC = 50 in the CC case. In the CP case
the ratio b/�GC increases with c∞ (see Table I) and with our
value of φs can be approximated as b/�GC 	 3.62b/λD.

For the CC channel �K does not depend on salt and K/K0

takes its maximal (constant, i.e., independent on c∞) values
when �Du/H � 1. Dividing Eq. (41) by Eq. (38) we obtain for
the plateau branch

K

K0
	 1 + b

�GC

3R
�B + 3R , (42)

which gives ≈28 for our parameters. Note that K/K0 given
by Eq. (42) does not depend on the channel thickness H .
The theoretical calculations provide a good estimate of the
K/K0 plateau magnitude, and the enhancement compared to a

hydrophilic channel is very large, a few tens of times! Using
scaling arguments Bocquet and Charlaix [29] concluded that
when a saturation plateau of K0 occurs, �K/K0 ∝ b/�GC .
Thus, our theoretical [Eq. (42)] and numerical results gen-
erally confirm this scaling. At larger concentrations, where
�Du/H < 1, K/K0 decreases with salt. When K0 	 K∞, the
ratio of Eqs. (41) and (31) gives K/K0 ∝ c−1

∞ . We remark and
stress that in the intermediate (between the plateau and bulk)
region the value of K/K0 is quite large. Therefore, a hydrody-
namic slip can provide a significant conductivity enhancement
even when �Du/H is quite small.

By contrast, for a CP channel the value of K/K0 increases
with salt as seen in Fig. 9. That it should be so is immediately
evident if we recall that �GC ∝ λD and �Du/�GC is constant
(see Sec. II D and Table I). The latter implies that �K defined
by Eq. (41) increases linearly with c∞ (since it is linear in
K∞). At low salt �Du/H is large and Eq. (42) is valid. It
follows that K/K0 ∝ b

λD
sinh φs

2 ∝ c1/2
∞ . Since λD is large in

dilute solutions the conductivity enhancement compared to K0

is moderate, even for large slip length of 100 nm taken here.
At high salt, where �Du/H is small and K0 	 K∞ it should
saturate to

K

K0
	 1 + 12b

H

R
�B

sinh2 φs

2
, (43)

which does not depend on c∞ and is set by φs and b/H , so it
can be very large for slippery nanochannels of a high surface
potential. With our parameters the saturation is not reached,
but yet the trend is well seen in Fig. 9. A key remark is that
the amplification of K compared to a bulk conductivity K∞ is
solely due to a hydrodynamic slip, but not due to enhanced
conductivity in the EDL regions, which are too thin in this
case to affect K .

We now illustrate the influence of a hydrodynamic slip on
conductivity in the case of μ = 1. It follows from Eq. (33)
that when all adsorbed charges are mobile, only a migration
slip-driven contribution at the walls remains:

�K = K∞ 4�Du

H
. (44)

Note that although it takes its origin in a hydrodynamic slip,
the slip length b does not appear as a parameter in Eq. (44).
In this case of μ = 0 it follows from Eqs. (38) and (44)
that for the branch of a (CC) conductivity plateau �K/K0 	
�B/(�B + 3R). With the same parameters as in Fig. 9 this
gives K/K0 	 1.44; i.e., when all absorbed ions are mobile,
the amplification becomes very small and can be neglected.
If we keep c∞ = 10−4 mol/L fixed (at this concentration
�Du exceeds H as seen in Fig. 9) but increase μ (decrease
the fraction of mobile surface charges), we obtain a situation
shown in Fig. 10. On increasing μ, K/K0 computed for a CC
channel (of b/�GC = 50) has a weakly pronounced minimum
at μ 	 0.01, which is practically not discernible in the scale
of Fig. 10, and then quickly increases taking the largest value
at μ = 1. In this situation, i.e., when all adsorbed charges are
immobile, K exceeds K0 in several tens of times. For the CP
channel the trend is the same, but the minimum is slightly
shifted (to μ 	 0.03) and the enhancement is much smaller.
As a result, one order of magnitude amplification of K is
reached only when μ = 1. That the CP channel with φs = 4 at
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FIG. 10. K/K0 computed at fixed c∞ = 10−4 mol/L for the same
hydrophobic CC (dashed curve) and CP (solid curve) channels as in
Fig. 9, but for a case where only a fraction of μ adsorbed at the walls
charges is immobile. The circles are calculations from Eqs. (33) and
(35).

given c∞ = 10−4 mol/L should provide a smaller K/K0 than
the CC channel of �B = 2 nm is simply a consequence of the
reduction of b/�GC to ≈12 at a given c∞. Also included in
Fig. 10 are theoretical calculations, which are well consistent
with the numerical data.

The results appropriate to Fig. 10 refer to large b/�GC . If
we keep the same c∞ = 10−4 mol/L fixed, but reduce b/�GC ,
the picture can become different, as it is seen in Fig. 11. Here
we limit ourselves by the CC case only, and make numerical
calculations using �GC = 5 nm and two values of b, namely,
10 and 1 nm. For an upper curve of b/�GC = 2 the minimum
is shifted towards larger μ compared to an example displayed
in Fig. 10 and occurs at μ 	 0.19. The value of K/K0 remains
largest at μ = 1, but is quite small by exceeding the value at
μ = 0 only in ≈1.5 times. When b/�GC = 0.2 (a lower curve)
no minimum of K/K0 exists in the range of μ from zero to
1. In this circumstance, K/K0 monotonously decreases with
μ. That it should be so follows from general considerations.
When μ = 0, the fluid velocity at the wall associated with
diffuse ions is fully compensated by that associated with
mobile adsorbed ions. As a result, a slip-driven convective
contribution to the conductivity disappears, but the migra-
tion contribution is maximized and is given by Eq. (44). On
increasing μ the migration term in the brackets of Eq. (33)
reduces from 1 down to zero, but the convective contribu-

FIG. 11. The same as in Fig. 10, but computed for a case where
�GC = 5 nm is larger and b = 10 (solid curve) and 1 nm (dash-dotted
curve) is much smaller so that K/K0 exhibits a minimum shifted
towards a larger μ or has no minimum. The circles are calculated
from Eqs. (33) and (35).

tion increases from zero to its largest value. It follows from
Eq. (33) that for b/�GC < �B/3R 	 0.78 an extra convective
conductivity due to slippage at μ = 1 is even smaller than
the migration contribution at μ = 0. These results provide
new physical insight into an impact of mobile adsorbed ions
into the channel conductivity, but certainly at low b/�GC a
significant enhancement of conductivity is simply not pos-
sible. It becomes now evident that a dramatic conductivity
enhancement due to slippage can be achieved only provided
b/�GC � 1.

It follows from the above results that the largest conduc-
tivity amplification compared to K∞ should be expected in
a thick channel regime when �Du/�GC � 1. In this situation
Eq. (37) becomes accurate for a hydrophilic channel. One can
then derive a compact equation for the total conductivity of an
electrolyte solution confined in a hydrophobic channel:

K 	 K∞
[

1 + 4�Du

H

(
3R
�B

(
1 + μ2b

�GC

)
+ 2 − μ)

)]
. (45)

If the surface conductivity dominates significantly over the
bulk one, the last equation reduces to

K 	 K∞ 4�Du

H

[
3R
�B

(
1 + μ2b

�GC

)
+ 2 − μ

]
, (46)

which is easy to use. The form of Eq. (46) suggests that the
surface conductivity is linear in �Du/H , and is also defined
by b/�GC and μ. The contribution of the surface conductivity
also grows with 3R/�B, which is not small (≈1.25 with our
parameters), but this ratio characterizes an electrolyte solution
and does not depend on the surface properties.

The examples described so far correspond to the thick
channel regime, but using Eqs. (30), (33), and (40) it is easy
to find that the conductivity in the thin channel regime at
�Du/H � 1 is also given by Eq. (46). Then for CC and CP
channels we obtain

K

K0
	 2 + 3R

�B

bμ2

λD

λD

�GC
− μ 	 2 + 3R

4�B

bHμ2

λ2
D

sinh φs − μ.

(47)
Since this regime implies that λD/�GC � 1 and H � λD, we
conclude that large K/K0 is possible only if b/λD � 1. This
condition is unlikely to be realized in dilute solutions. To
give an idea on possible conductivity enhancement, for the
plateau branch of the lower curve (of �GC = 300 nm) in Fig. 5,
assuming b = 100 nm we evaluate K/K0 	 1.2 at μ = 1 and
K/K0 	 2 when μ = 0. Thus, the hydrodynamic slip does not
practically affect the conductivity in the thin channel regime.

Finally we return to “experimental” J-E curves shown
in Fig. 4. The “hydrophilic” CC curves are well fitted by
Eqs. (35) and (38), confirming the accuracy of our theory.
The calculations from Eq. (46) are compared with numerical
results for a hydrophobic CP channel. It is seen that they
provides a reasonable fit to the data although here �Du/H is
smaller than 1. We thus conclude that Eq. (46) could be a
sensible approximation even outside of the range of its formal
applicability.
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VI. CONCLUDING REMARKS

We have presented a general theory that incorporates a
hydrodynamic slip and a mobility of adsorbed charges to
describe the superenhanced conductivity of an electrolyte
solution confined in nanochannels. Numerical solutions are
presented and fully validate our analysis. These results are
relevant for recent experiments on a conductivity in nanoslits
and nanotubes, which currently have become an area of very
active research. Our theory provides a direct physical expla-
nation of experimental and numerical results, and also makes
specific predictions for a conductivity amplification caused by
the variation of various surface properties.

Our results suggest that the electrostatic disjoining pressure

 is an important quantity, which determines two different
regimes for the conductivity of a confined electrolyte solution.
When 
 is much smaller than an excess osmotic pressure at
the walls, which often happens in the case of highly charged
surfaces even if EDLs strongly overlap, the channel effec-
tively behaves as thick. When 
 is comparable with an excess
osmotic pressure at the walls, which is possible only when
EDLs strongly overlap if and only if surfaces are relatively
weakly charged, another limiting case that we referred to as a
thin channel regime occurs. Our model leads to a number of
asymptotic approximations, which are both simple and very
accurate, and provides considerable insight into conductivities
in the thick and thin channel regimes.

In the thick channel regime and hydrophilic walls we pre-
dict a significant deviation from the bulk conductivity when
H � �Du, where an electrostatic length �Du is defined by
Eq. (11). Since �Du can be much larger than any conceivable
Debye length, the large surface conductivity does not imply
that EDLs necessarily overlap. That a conductance plateau
can be obtained without EDL overlap has been first reported
by Schoch et al. [5]. Our theory confirms this experimental
result and points out that for “no-slip” CC channels the plateau
emerges when �Du/H � 1. In the case of CP channels such
values of �Du/H normally indicate that there is at least an
order-of-magnitude conductivity enhancement, but the latter
is always limited by cosh φs. For the thin channel regime with
no slip at the walls we argue that the conductivity is amplified
in 
 times provided H is the smallest length in the system.
Consequently, a large conductivity enhancement is possible
for weakly charged CC channels, but not in the CP situation,
where 
 tends to a constant value as H → 0. In the latter case
the surface conductivity exceeds that in the bulk, but remains
very low. The results obtained for CC and CP cases represent
as rigorous bounds on the attainable conductivity of any hy-
drophilic channels. This allowed us to specify a possible range
of exponents of a power-law scaling of conductivity with c∞,
which remains a subject of hot debate [13,14].

The channel conductivity can be further amplified by inter-
facial slippage, and we have presented a theory of a slip-driven
contribution. The latter incorporates a constant hydrodynamic
slip length of the surfaces and a finite mobility of adsorbed
ions, and is valid for channels of any thickness. Our work clar-
ifies the nature of the conductivity enhancement and makes a
connection with the early studies [28,29,31]. We show that
a massive amplification of the conductivity due to hydro-
dynamic slippage is possible, but only in the thick channel
regime and for large b/�GC . In this situation the ratio of

conductivity of a slippery channel to that of an equivalent
hydrophilic channel takes its minimum value at some (very
small) fraction of immobile adsorbed charges μ and then
quickly (nonlinearly) increases with μ. The largest, a few
tens of times, conductivity enhancement over the “no-slip”
case then occurs when all adsorbed charges are immobile.
Our work clarifies that the nature of such a nonmonotonous
dependence of the slip-driven contribution to a conductiv-
ity on the fraction of immobile adsorbed charges reflects a
competition between migration and convective terms in the
superimposed slip correction given by Eq. (33). However, for
small b/�GC or for a thin channel regime we do not expect
a discernible conductivity enhancement due to slip since an
extra convective conductivity is dramatically suppressed.

Our results can be immediately applied for parallel-plate
nanochannels. Cylinders should constitute a more realistic
model for artificial nanotubes and real porous materials and
our calculations are in progress for these. Preliminary results
suggest some important quantitative difference between cylin-
ders and slits, but the qualitative features of the conductivity
curves are the same.

The dependence of conductivity on static and dynamic
surface properties, such as surface charge and potential, frac-
tion of mobile surface charges, and slip length, opens new
strategies to tune the ion transport in nanochannels via a
modifications of their walls. This has been already used by
Karnik et al. [44,45] to develop a nanofluidic transistor and
to affect the conductance of nanochannels by their surface
modification. Our results show that due to a rich physics
of the phenomenon there could be many other possibilities
to employ the surface properties to control the conductiv-
ity. Clearly, more experiments and theoretical analysis are
required. It would be of some interest to explore the con-
ductivity in the conical hydrophobic channels to gain insights
into the novel physical mechanism controlling current recti-
fication in a geometric diode [46,47]. Our model can also be
extended to calculate and optimize the streaming conductivity
in hydrophobic nanofluidic channels, which is important for
improvement of the energy conversion [48]. Another fruit-
ful direction would be diffusio-osmotic energy conversion
[6], which remains poorly understood even for hydrophilic
channels. Some researchers see this as a promising renew-
able energy source [49]. Other authors, however, argue that
the salinity gradient generated in full-scale nanoporous mem-
branes is not viable for power generation [50]. To shed more
light on the prospect of harvesting salinity gradient energy,
more theoretical studies are necessary, and it would be timely
to include the combined effect of slippage and surface charge
mobility into consideration.
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APPENDIX A: DERIVATION OF EQUATIONS FOR (φ′ )2

AND cosh φ

In this Appendix we calculate the mean square derivative
of the electrostatic potential, and the mean osmotic pressure
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in the thick and thin channel regimes. It follows from Eq. (5)
that they are always related as

(φ′)2 = 2

λ2
D

[cosh φ − 
 − 1]. (A1)

1. Thick channel regime

Substituting Eq. (10) into Eq. (14) we obtain

(φ′)2 = 8

Hλ2
D

∫ H/2

0
sinh2

(
φ

2

)
dz. (A2)

Then making a change of variables and performing the inte-
gration, we find

(φ′)2 = 4

HλD

∫ φs

0
sinh

(
φ

2

)
dφ = 8

HλD

(
cosh

φ

2
− 1

)
.

(A3)

Making use of Eq. (12), the last equation can be transformed
to Eq. (15).

It follows from Eqs. (9) and (10) that

cosh φ = 1 + λ2
D(φ′)2

2
= 1 + 2 sinh2

(
φ

2

)
, (A4)

and after a change of variables it is straightforward to show
that

cosh φ = 1 + 2λD

H

∫ φs

0
sinh

(
φ

2

)
dφ. (A5)

Performing the integration and substituting Eq. (12) we obtain
Eq. (16). It is easy to verify that Eqs. (15) and (16) satisfy
Eq. (A1) when 
 can be neglected.

2. Thin channel regime

It follows from Eq. (18) that in a thin channel

(φ′)2 = z2 sinh2 φs

λ4
D

. (A6)

Therefore,

(φ′)2 = 2 sinh2 φs

Hλ4
D

∫ H/2

0
z2dz = H2 sinh2 φs

12λ4
D

. (A7)

Using Eq. (19) one can then obtain Eq. (22).
Making use of the integration by parts formula we can

express cosh φ as

cosh φ = cosh φs − 2

H

∫ H/2

0
z(cosh φ)′dz. (A8)

Substituting Eq. (A6) into Eq. (5) one can obtain

cosh φ 	 cosh φm + sinh2 φs

2λ2
D

z2, (A9)

from which

(cosh φ)′ 	 sinh2 φs

λ2
D

z, (A10)

which can be substituted into Eq. (A8). Integrating and using
Eq. (19) one obtains Eq. (23).

Substituting Eqs. (22) and (23) into Eq. (A1), we verified
the correctness of our calculations.

FIG. 12. Local current density calculated numerically for the
same φs and H/λD as in Fig. 2 using μ = 1 and b = 0.

APPENDIX B: DERIVATION OF GENERAL EXPRESSIONS
FOR CONDUCTIVITY

The local current density j divided by 2ec∞Ve, where
Ve = e

4πη�B
, computed with no slip at the walls for the same

nanochannels as in Fig. 2 is shown in Fig. 12. It can be seen
that j is nonuniform and reflects the form of φ. In this Ap-
pendix we calculate J in order to derive general expressions
for K0 and �K that are valid for any electrostatic channel
thickness H/λD.

The local current densities of diffuse ions in Eq. (29) can
be reexpressed as

j+ = 2eVeEc∞
H

∫ H/2

0
e−φ

[
v + mi

Ve

]
dz, (B1)

j− = −2eVeEc∞
H

∫ H/2

0
eφ

[
v − mi

Ve

]
dz, (B2)

where v is given by Eq. (28).
The convective contribution, j+ + j−, to the current den-

sity in a hydrophilic channel is then

4eVeEc∞
H

[
φs

∫ H/2

0
sinh φdz −

∫ H/2

0
φ sinh φdz

]

= eVeE

4π�B
(φ′)2. (B3)

Here we used that sinh φ is related to φ′′ by the Poisson-
Boltzmann equation (2), performing then integration by parts.

The migration term for a “no-slip” channel reads

−2eVeEc∞miE

H

∫ H/2

0
(e−φ + eφ )dz = eVeE

6πλ2
DR

cosh φ.

(B4)
Summing up Eqs. (B3) and (B4), we obtain the conductiv-

ity of a hydrophobic channel:

K0 = eVeE

4π�B
(φ′)2 + eVeE

6πλ2
DR

cosh φ. (B5)

For uncharged walls the electro-osmotic flow is not generated
[φs = 0, (φ′)2 = 0, and cosh φ = 1]. This immediately gives
us the conductivity of the bulk electrolyte solution, Eq. (31),
which is proportional to the salt concentration. Equation (B5)
can then be transformed to Eq. (32).

The value of K0 depends on c∞, but is not specific to a wet-
ting situation. For a slippery surface an additional contribution
�K to conductivity is generally expected.
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If μb = 0, the last term in Eq. (28) should inevitably lead
to an extra convective conductivity. Performing calculations
similar to above we find

−4eVeEc∞μb

H�GC

∫ H/2

0
(e−φ − eφ )dz = eVeE

π�BH

2μb

�2
GC

. (B6)

Finally, the adsorbed cations located at z = 0 react to the
electric field by producing an extra conductivity. For a single
wall it can be expressed as

jσ = (1 − μ)e

2π�GC�B

(
V |z=H/2 + eE

6πηR

)
. (B7)

Then the last term in Eq. (29) is then given by

2 jσ
H

= (1 − μ)e

Hπ�GC�B

(
− eE

4πη�B

2μb

�GC
+ eE

6πηR

)
. (B8)

The last equation can be transformed to

2 jσ
H

= − eVeE

π�BH

2μb

�2
GC

+ eVeE

π�BH

2μ2b

�2
GC

+ 2eVeE (1 − μ)

3πH�GCR
,

(B9)

and summing up Eqs. (B6) and (B9) we find

�K = 2eVe

3RπH�GC

[
3Rμ2b

�B�GC
+ 1 − μ

]
, (B10)

which leads to Eq. (33).
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