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Thermodynamics of fluctuations based on time-and-space averages
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We develop nonequilibrium theory by using averages in time and space as a generalized way to upscale
thermodynamics in nonergodic systems. The approach offers a classical perspective on the energy dynamics in
fluctuating systems. The rate of entropy production is shown to be explicitly scale dependent when considered
in this context. We show that while any stationary process can be represented as having zero entropy production,
second law constraints due to the Clausius theorem are preserved due to the fact that heat and work are related
based on conservation of energy. As a demonstration, we consider the energy dynamics for the Carnot cycle
and for Maxwell’s demon. We then consider nonstationary processes, applying time-and-space averages to
characterize nonergodic effects in heterogeneous systems where energy barriers such as compositional gradients
are present. We show that the derived theory can be used to understand the origins of anomalous diffusion
phenomena in systems where Fick’s law applies at small length scales, but not at large length scales. We further
characterize fluctuations in capillary-dominated systems, which are nonstationary due to the irreversibility of
cooperative events.
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I. INTRODUCTION

The ergodic hypothesis is central to many results of statis-
tical physics. The basic premise is that a system will explore
all possible energetic microstates if considered over a suf-
ficiently long interval of time. The concept of ergodicity is
thereby linked with the mixing of information within a system
[1]. Canonical proofs of the ergodic hypothesis rely on the
equivalence of spatial, temporal, and ensemble averages in
the limit of infinite time [2,3]. Scale considerations and the
rate of mixing necessarily constrain the applicability of the
ergodic hypothesis when considering finite regions of time,
particularly for systems where mixing is slow compared to
the physical timescale of interest [4]. Many physical systems
are known to exhibit behavior that is inconsistent with the
ergodic hypothesis. Well-known examples include anomalous
diffusion in biological systems [5–7], glassy systems [8–10],
capillary phenomena and nucleation [11–16], and granular
systems where multiscale effects are present due to jamming
and force chains [17–20]. A common element for these sys-
tems is that they involve spatially heterogeneous materials
where available thermal energy is insufficient to overcome
internal energy barriers. This inhibits mixing and prevents
the system from exploring all possible microstates within the
timescale of interest.

In this paper, we demonstrate that time-and-space averag-
ing can be applied as a mechanism to mathematically mix

information at a desired scale, providing a natural path for-
ward in systems where nonergodic effects are encountered.
Multiscale fluctuation terms arise in the nonequilibrium de-
scription due to spatial and temporal deviations associated
with intensive thermodynamic variables. Our approach is
rooted in classical thermodynamics and offers a formally
distinct perspective on fluctuations as compared to statistical
theory, e.g., [21–27]. The presented methods can be a general
tool for understanding how energy dynamics translate across
length and time scales. First we consider a basic example,
demonstrating that the Carnot cycle and Maxwell’s demon
can be interpreted in terms of energy fluctuations. Then we
consider mass transport phenomena in the context where
Fick’s law applies at a small length scale but fails at larger
scales. Finally, the approach will be applied to nonequilibrium
behavior in multiphase systems, where fluctuations occur due
to capillary effects and confinement [27]. How to characterize
and interpret these fluctuations has been a longstanding prob-
lem for immiscible fluid flow in porous media, and has broad
applications to other systems [26,28–36].

II. TIME-AND-SPACE AVERAGED THERMODYNAMICS

A classical thermodynamic description is defined by con-
sidering the internal energy to depend on the entropy S as well
as other extensive physical properties of the system, Xi (e.g.,
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volume, number of particles, etc.) [37–39],

U = U (S, X1, X2, . . . , Xn). (1)

Intensive quantities are then defined according to Euler’s ho-
mogeneous function theorem,

T =
(∂U

∂S

)
Xi

, Yi =
( ∂U

∂Xi

)
S,Xj �=i

, (2)

such that

U = T S + YiXi (3)

describes the internal energy of the system at equilibrium.
In practice, measurements of thermodynamic quantities are
always averages carried out over some finite region of space
and time. The measurement timescale τm can be used to infer
the size of the region where local equilibrium conditions exist.
For example, if a thermometer is used to measure the temper-
ature, any material that is close enough to the measurement
point can be considered to be in local equilibrium with the
measured value. Diffusive mechanisms are responsible for
mixing energy within the system since it is the movement of
the molecules and their interaction with each other that creates
ergodic conditions. Given a fixed timescale τm, an associated
length scale is obtained from the Einstein relation, which
predicts the mean squared displacement (MSD) for molecular
trajectories x(t ), ∫ τm

0
x2(t )dt ∼ Dτm, (4)

where D is the diffusion coefficient. Since MSD predicts the
average distance that molecules drift within time τm, the sys-
tem is locally well mixed at that length scale. Ergodic behavior
should therefore be observed within a surrounding spherical
region with volume

V � 4π

3
(Dτm)3/2. (5)

During the elapsed time τm, molecules will explore a spatial
region with size V such that spatial, temporal, and ensemble
averages are interchangeable at this scale. Smaller V can be
chosen as long as the defined region is larger than the molec-
ular length scale. At the scale of V , the theoretical bridge
between the molecular and hydrodynamic description can be
provided by statistical theory, relying on the validity of the
ergodic hypothesis [40]. Equation (3) can then be rescaled to
treat extensive measures on a per-unit-volume basis,

U

V = T
S

V + Yi
Xi

V . (6)

As depicted in Fig. 1, we wish to develop a theory that
holds over some arbitrarily larger spatial region � (with vol-
ume V > V) and time interval � (with duration λ � τm).
While the ergodic hypothesis must hold at the scale of V , the
system may be nonergodic when considered at the larger scale
of �. Due to the potential failure of the ergodic hypothesis,
statistical mechanics is less well suited to derive relevant
hydrodynamic theory at larger scales. In this situation, it is
desirable to define averages such that the ergodic hypothesis
applies at a small scale but not at larger scales. To define

FIG. 1. The length scale for ergodicity can be estimated based
on

√
Dτm, the mean distance for diffusion over timescale τm. We

consider heterogeneous systems where the ergodic hypothesis holds
at the scale of V , but not at the larger scale of �.

larger-scale measures, we apply the time-and-space averaging
operator,

〈
f
〉 ≡ 1

λV

∫
�

∫
�

f dV dt . (7)

We note that this convention does not define an ensemble av-
erage, but instead represents an explicit average over a region
in time and space. The integral is therefore constructed to in-
clude the actual dynamics of the system, such that insights into
the system behavior can be inferred based on conservation of
energy with minimal assumptions. Averages are defined such
that extensive quantities retain the same physical meaning
across scales,

U ≡ 〈
U

〉
, S ≡ 〈

S
〉
, X i ≡ 〈

Xi
〉
. (8)

The intensive quantities are then defined as a weighted aver-
age with the conjugated extensive quantity from Eq. (8),

T ≡
〈
T S

〉〈
S
〉 , Y i ≡

〈
XiYi

〉〈
Xi

〉 . (9)

These definitions ensure that the representation of the system
energy is scale consistent, e.g., the product of entropy and
temperature corresponds to the thermal energy [41]. Since
entropy is additive, the temperature should be defined as the
average thermal energy per unit of entropy. The averaged form
is thus consistent with Eq. (3),

U = T S + X iY i. (10)

Nonequilibrium behavior can be considered by averaging
the differential form of Eq. (3),

∂U

∂t
=

〈
T

∂S

∂t

〉
+

〈
Yi

∂Xi

∂t

〉
= T

∂S

∂t
+

〈
(T − T )

∂S

∂t

〉
+Y i

∂X i

∂t
+

〈
(Yi − Y i )

∂Xi

∂t

〉
. (11)

We now define multiscale deviation terms as

T ′ ≡ T − T , Y ′
i ≡ Yi − Y i. (12)
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FIG. 2. Carnot cycle as a fluctuation: time averaging around the entire cycle results in constant average values of the entropy S and
temperature T ; volume V and pressure p. For any cyclic process, a stationary time series will be obtained for all thermodynamic quantities.
Using a time average, the energy dynamics can be embedded within fluctuation terms that capture the net energy contribution over the cycle.

Using the definitions from Eqs. (8) and (9), we can show that〈
T ′ ∂S

∂t

〉
= −

〈
S
∂T ′

∂t

〉
,

〈
Y ′

i

∂Xi

∂t

〉
= −

〈
Xi

∂Y ′
i

∂t

〉
, (13)

which can be substituted into Eq. (11) and rearranged to obtain
an entropy inequality,

∂S

∂t
= 1

T

[∂U

∂t
− Y i

∂X i

∂t
+

〈
S
∂T ′

∂t

〉
+

〈
Xi

∂Y ′
i

∂t

〉
︸ ︷︷ ︸
fluctuation terms

]
� 0. (14)

The result is easily recognizable as the fundamental relation
of nonequilibrium thermodynamics (e.g., [42]), but with ad-
ditional terms associated with fluctuations. The fluctuations
contribute to the energy dynamics whenever intensive vari-
ables deviate nonlinearly from their average values within the
spatial region � and time interval �.

III. THE CARNOT CYCLE AS A FLUCTUATION

Spatial averages have been explored extensively in the
context of classical nonequilibrium thermodynamics [41]. Ex-
tending this approach to also include time averages provides
a way to smooth the temporal dynamics of the system. To
illustrate how this works, we consider the familiar example
of the Carnot cycle, as depicted in Fig. 2. The cycle begins at
time t0 and completes at time t f , repeating in periodic fashion.
The time average does not depend on the region of time �

as long as the duration λ is an integer multiple of the period
t f − t0. We choose λ = t f − t0 so that 1/λ corresponds to the
cycle frequency. For the Carnot cycle, the thermodynamic

state is described by U (S,V ). The nonequilibrium behavior
is described in an average form according to Eq. (14),

∂U

∂t
− T

∂S

∂t
+ p

∂V

∂t
+

〈
S
∂T ′

∂t

〉
−

〈
V

∂ p′

∂t

〉
= 0, (15)

where U , S, V , T , and p are time-and-space average values
for the complete cycle. Since the associated time series is
stationary, these are each constant when the time averaging
interval is an integer multiple of λ = t f − t0. This means that

∂U

∂t
= 0,

∂S

∂t
= 0,

∂V

∂t
= 0. (16)

In other words, S, V , T , and p are the average values around
which the system is fluctuating, as shown in Figs. 2(a)–2(f).
The energy dynamics are fully described by the relationship
between the fluctuations,〈

V
∂ p′

∂t

〉
=

〈
S
∂T ′

∂t

〉
. (17)

We now separately consider each fluctuation. First, the pres-
sure fluctuation is identical to the rate of pressure volume
work W (with the sign convention chosen to obtain positive
external work), 〈

V
∂ p′

∂t

〉
= −

〈
p
∂V

∂t

〉
=

〈∂W

∂t

〉
. (18)

This is a consequence of the fact that the averages p and
V are each constant. The pressure fluctuation therefore di-
rectly corresponds to the power output. Next, we treat the
temperature fluctuation. For the Carnot cycle, all temperature
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changes occur during isentropic conditions. Using the additive
property for the time integral, it is straightforward to show that〈

S
∂T ′

∂t

〉
=

〈
S
∂T

∂t

〉

= 1

λ

( ∫ t2

t1

Sa
∂T

∂t
dt +

∫ t f

t3

Sb
∂T

∂t
dt

)

= 1

λ
(Sb − Sa)(Th − Tc). (19)

Inserting these into Eq. (15) and using the fact that the heat
added to the system is given by Qh = Th(Sb − Sa), we obtain〈∂W

∂t

〉
= 1

λ

Qh(Th − Tc)

Th
. (20)

This is identical to the standard result for the efficiency
of a Carnot engine, but is formulated as an expression for
the power output based on the cycle frequency λ. This
demonstrates that in a time averaged formulation, any energy
dynamics that occur faster than the duration for the time
averaging window will be recast as fluctuations. Since the
integral defined by Eq. (7) explicitly accounts for the path of
the system, the energy dynamics are fully captured by the ho-
mogenized representation. With respect to the second law of
thermodynamics, a critical insight from this exercise is that the
interpretation of the entropy is scale dependent since the rate
of entropy production depends explicitly on the timescale at
which a process is considered. This will be particularly impor-
tant in heterogeneous systems where there are crossover times
due to the scaling behavior for dominant physical processes.
For any stationary process, the rate of entropy production will
be zero if the dynamics are considered over a sufficiently long
timescale. We note that this does not contradict the Clausius
theorem since the relationship between the rate of heat added
and the rate of work is unchanged based on the time average.
In other words, a scale-consistent representation of the energy
dynamics is recovered.

IV. FLUCTUATIONS OF MAXWELL’S DEMON

To further illustrate the role of fluctuations, we consider
the actions of Maxwell’s demon based on the two-chamber
system shown in Fig. 3 [43,44]. The demon operates a gate,
selectively allowing fast-moving molecules to move from the
cold chamber to the hot chamber. In apparent violation of
thermodynamic intuition, the associated transfer of kinetic en-
ergy increases the temperature of the hot chamber. Maxwell’s
demon can be considered in the context of nonergodic behav-
ior, as the demon controls the mixing of information between
the two chambers. The demon defines locally nonstationary
behavior by applying molecular scale rules that prevent a
forward process from reaching equilibrium with the corre-
sponding reverse process. However, this does not mean the
process is irreversible; it only means that the equilibrium
has been delayed. We will show that if a conservative de-
mon is disabled, the system will return to its original state.
Fluctuations are an appropriate tool for understanding the
energy dynamics in such a system. Furthermore, the system
is spatially heterogeneous and the chambers can be denoted
as subregions of the system, �h and �c. Based on these

FIG. 3. “Maxwell’s demon” considers a thought experiment in
which a demon selectively permits the migration of hot molecules
from one chamber to the other. Due to the heat flux carried by
the transmitted molecules, the temperature of the hot chamber in-
creases, leading to a thermal gradient between the chambers. The
demon’s actions are constrained by a symmetry law relating thermal
fluctuations.

definitions, a discrete aspect is introduced into the system
representation since the crossing of molecules from one sub-
region to the other occurs as discrete events. Time averaging
smooths the effect of these crossings such that the action of
the demon can be modeled as being continuous with respect
to time.

For an ideal monatomic gas, the entropy is given by the
Sackur-Tetrode equation [45–47],

S(U,V, N ) = kBN

[
5

2
+ ln

V

N
+ 3

2
ln

U

N
+ 3

2
ln

2πm

h2

]
, (21)

where m is the particle mass and h is Planck’s constant. The
expression for entropy as a state function is sufficient to de-
termine the form U (S,V, N ). The intensive quantities can be
determined directly from their thermodynamic definitions,

T ≡
(

∂U

∂S

)
N,V

= 2U

3kBN
,

p ≡ −
(

∂U

∂V

)
N,S

= kBNT

V
,

μ ≡
(

∂U

∂N

)
S,V

= −kBT
(

ln
V

N
+ 3

2

U

N
+ 3

2
ln

2πm

h2

)
. (22)

Noting that U = 3
2 kBNT for an ideal gas, it is easy to show

that these forms are consistent with Eq. (2) in the particu-
lar form U = T S − pV + μN . To treat the demon, we must
subdivide the system based on thermodynamics within each
chamber. This is accomplished by subsetting the system into
regions based on the indicator function ϒi,

ϒi(x) =
{

1 if x ∈ �i

0 otherwise, (23)

for i ∈ {h, c}. Consistent with Eqs. (8) and (9), separate tem-
perature, entropy, pressure, chemical potential, and number of
molecules are obtained for each chamber. For extensive prop-
erties, fields are constructed based on the subset operation,

Si

V ≡ Sϒi

V ,
Ni

V ≡ Nϒi

V , Vi = Vϒi, (24)
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where V has been included explicitly in the definitions to
account for the fact that the reference volume used to define
fields should not be infinitely small (i.e., should exceed the
molecular length scale). Averages are then defined as time-
and-space averages,

Si ≡ 〈
Si

〉
, T i ≡

〈
T Si

〉〈
Si

〉 ,

V i ≡ 〈
Vi

〉
, pi ≡

〈
pVi

〉〈
Vi

〉 ,

Ni ≡ 〈
Ni

〉
, μi ≡

〈
μNi

〉〈
Ni

〉 . (25)

For simplicity, we consider the case where the volume for
each chamber is constant, with Vc = Vh. These definitions
ensure that the entropy is additive,

S = Sc + Sh, (26)

and that the total thermal energy is conserved based on the
definition of the temperature,

T S = T cSc + T hSh. (27)

For the number of molecules and chemical potential,

μN = μcNc + μhNh. (28)

It is clear that generic thermodynamic quantities can be de-
fined by subsetting a heterogeneous system into regions. The
result of the subsetting operation is functionally equivalent to
an alternative specification of the extensive variables,

U = U (Sh, Sc,Vh,Vc, Nh, Nc). (29)

However, since the set operation defined from ϒi introduces
a discrete element into the system representation, apparent
discontinuities can result when considering energy exchanges
between the entities. Averaging in time removes these discon-
tinuities to ensure a smooth representation for the dynamics
within subregions. As an example, even though the Hamil-
tonian for the molecular system is continuous, the molecular
crossing shown in Fig. 3 is a discrete event. Combining the
subset operation with a time average leads to a corresponding
fluctuation theorem because any energy gained by the hot
chamber is directly lost by the cold chamber. The fluctuation
terms impose a symmetry constraint on the demon’s action on
the basis that the demon must conserve mass and energy.

Since the system is closed, the total number of particles is
conserved,

∂Nh

∂t
= −∂Nc

∂t
. (30)

Subdivision of the system into hot and cold compartments
leads to the following fluctuation constraint based on conser-
vation of energy:

∂S

∂t
= 1

T

∑
i

[〈
Si

∂Ti
′

∂t

〉
−

〈
Vi

∂ pi
′

∂t

〉
+

〈
Ni

∂μ′
i

∂t

〉]

+
(μh − μc

T

)∂Nc

∂t
, (31)

where T ′
i = Ti − T , μ′

i = μi − μ, and p′
i = pi − p on �i with

i ∈ {c, h}.
It has been argued from an information theory perspective

that the demon must be able to perform measurements in
order to function as described by Maxwell [48]. For example,
the demon would need to know the temperature of the hot
chamber so that it could determine which molecules should
pass through the gate. However, a simple thought experiment
demonstrates that a demon can generate gradients without
relying on any nonlocal information or altering the energy
for any molecules that it comes into contact with. Consider a
demon that is tuned to operate at some particular temperature
Td . The demon will allow any molecule with speed greater
than one standard deviation above the mean for the Maxwell
distribution of speeds to pass from the cold chamber to the hot
chamber, i.e., molecules with speed,

vd �
√

3kBTd

m
. (32)

The statistics for the crossings can be determined from the
Maxwell distribution. If the demon operates at temperatures
in the vicinity of Td , it can drive the formation of a gradient
without any knowledge of the system state. The demon only
needs to measure the molecular speed, which may be done
locally and reversibly without retaining any memory of the
measurement. Of course, this action cannot be performed
without a constraint: molecules with sufficient speed must hit
the portion of the wall where the demon gate is located since
the demon cannot impose any forces to attract particles toward
its location. The probability for fast molecules to hit the de-
mon gate depends on Tc based on the Maxwell distribution of
speeds and also on the area of the gate relative to the area of
the partition between the two chambers. As Tc decreases, so
too will the rate at which sufficiently energetic molecules hit
the gate. With the demon’s behavior defined statistically based
on Eq. (32), we can calculate the rate for mass exchange. The
number of particles moving from the cold chamber to the hot
chamber is

∂Nch

∂t
= NcAg

Vc

∫ ∞

vd

√
m

2πkBTc
se−ms2/2kBTc ds

= −NcAg

Vc

√
kBTc

2πm
e−mv2

d /2kBTc , (33)

where Ag is the area of the gate between the chambers. Simi-
larly, the rate of energy exchange is

∂Uch

∂t
= NcAg

Vc

∫ ∞

vd

√
m

2πkBTc

ms3

2
e−ms2/2kBTc ds

= − mNcAg

Vc

√
2π

(
kBTc

m

)3/2(
1 + mv2

d

2kBTc

)
e−mv2

d /2kBTc . (34)

We consider a two-way valve so that a steady state can be
achieved based on the redistribution of slower molecules to
the cold chamber. A simple way to achieve this is to allow
any molecule that hits the gate to travel back to the cold
chamber. This clearly requires no measurement and meets
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FIG. 4. Fluctuations due to operation of a conservative Maxwell’s demon: the demon is activated at t = 0 second and deactivated at time
t = 1.0 second to obtain a stationary time series. Fluctuations to the intensive properties are observed based on the redistribution of mass and
energy within the system.

the constraints used previously. The statistics for the particles
gained by the cold chamber are given by

∂Nhc

∂t
= NhAg

Vh

√
kBTh

2πm
, (35)

∂Uhc

∂t
= mNhAg√

2πVh

(
kBTh

m

)3/2

. (36)

Since the rules used to define this behavior do not require
nonlocal information, the demon will be able to spatially seg-
regate particles based on conservation of energy and without
violating physical laws. Fast particles will accumulate in the
hot chamber and slow particles will accumulate in the cold
chamber. The primary mechanism needed to achieve this is to
prevent slow molecules from entering the hot chamber. The
role played by the demon is therefore to delay equilibrium
by preventing energy from partitioning itself equally between
the two chambers. Compared to the initial state, the forward
process (particles move from hot to cold) cannot reach an
equilibrium with the reverse process (particles move from
cold to hot). This produces a nonstationary process. However,
since no energy is removed or added, stationary behavior can
be restored by simply disabling the demon.

We now treat the fluctuations that are created due to op-
eration of the hypothetical demon. Based on Eqs. (33) and
(36), the total mass and energy exchange between chambers
is defined for each time step δt ,

δNc =
[

NhAg

Vh

√
kBTh

2πm
− NcAg

Vc

√
kBTc

2πm
e−mv2

d /2kBTc

]
δt,

δUc = mAg√
2πVh

[
Nh

(
kBTh

m

)3/2

−Nc

(
kBTc

m

)3/2(
1 + mv2

d

2kBTc

)
e−mv2

d /2kBTc

]
δt . (37)

The energy and particle number are updated so that conserva-
tion is strictly obeyed,

Nc(t + δt ) ← Nc(t ) + δNc,

Nh(t + δt ) ← Nh(t ) − δNc,

Uc(t + δt ) ← Uc(t ) + δUc,

Uh(t + δt ) ← Uh(t ) − δUc. (38)

The system is closed by assuming that Eqs. (21) and (22)
hold separately within each subregion. The initial condition
sets equilibrium conditions in each chamber with 1 mol of
helium atoms equally divided between the two chambers
at Td = 298 K. The demon is activated at t = 0 with δt =
0.00025 sec. The demon operates until t = 1.0 second, ulti-
mately reaching a steady state. The difference in pressures is
accounted for by the differential momentum transfer that re-
sults from the demons operation according to Eqs. (33)–(38).
Once the steady state is achieved, the demon is disabled and
the system returns exactly to its initial state and producing
a stationary time series (see the Supplemental Material for
the complete implementation [49]). For the results shown in
Fig. 4, the system is explicitly ergodic by construction since
the Maxwell distribution has been assumed (meaning equipar-
tition of energy is strictly observed within each chamber). At
this fast timescale, entropy production occurs based on the
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redistribution of mass and energy between the two chambers
[see Fig. 4(a)]. We note that molecular rules do not necessarily
need to satisfy positive entropy production since entropy is a
statistical concept that does not apply at the deterministic scale
of an individual molecule. However, since no heat is added to
the two-chamber system, the Clausius theorem remains valid.
Unlike the Carnot engine, the demon does not require added
heat or work to generate the fluctuation. The demon is simply
delaying the equilibrium of the system. Since no energy has
been removed from the system, it can be treated as a reversible
process when considered over longer time intervals.

If the timescale for averaging is small, fluctuations to in-
tensive properties will be zero based on the fact that the rate
of change is locally linear over short timescales. Fluctua-
tion terms contribute when considering behavior over long
timescales. At the end of the cycle, the entropy and particle
number return exactly to their original value, meaning that

∂S

∂t
= 0,

∂Nc

∂t
= 0. (39)

In other words, zero entropy production is observed when
the system is considered over the longer timescale. Inserting
Eq. (39) into Eq. (31) leads to fluctuation criterion at long
times, 〈

Si
∂Ti

′

∂t

〉
−

〈
Vi

∂ pi
′

∂t

〉
+

〈
Ni

∂μ′
i

∂t

〉
= 0. (40)

This result simply means that thermal fluctuations must obey
conservation of energy, consistent with the results established
from the perspective of microscopic reversibility [50,51]. The
result is a simple fluctuation theorem that is distinct from
approaches proposed by other treatments [52–57]. A basic
challenge presented by Eq. (40) is that the fluctuation criterion
depends on the total entropy since this is needed to compute

〈Si
∂T ′

i
∂t 〉. While the Sackur-Tetrode equation provides an ade-

quate approximation for an ideal gas, the situation for thermal
fluctuations is not easily generalized. The demon illustrates
two important features of systems where multiscale fluctu-
ations are important. First, it defines an energy barrier that
prevents mixing between the hot and cold chambers. Second,
the problem is associated with gradients in an intensive ther-
modynamic property. We now demonstrate the importance of
these terms in capillary-dominated systems, where gradients
in composition and chemical potential lead to length scale
heterogeneity.

V. MASS DIFFUSION

The advantages of time-and-space averaging are particu-
larly intriguing for spatially heterogeneous systems. In this
section, we consider the application to mass diffusion, which
is a common source of spatial heterogeneity. Compositional
gradients are a key feature in these systems and these het-
erogeneities cause fluctuations when the system is stimulated.
In such cases, the fluctuation terms can be directly linked to
classical microscopic nonequilibrium thermodynamics using
phenomenological equations established based on the theory
of Onsager [58]. Phenomenological equations provide the ba-
sis to establish the rates at which particular processes occur,
linking the temporal, spatial, and energy scales. Fick’s law

can be directly recovered at length scales that are accessible
based on molecular dynamics simulations [59]. In the context
of Onsager, phenomenological equations are derived based
on a local near-equilibrium assumption. The associated re-
ciprocal relations can be derived based on an assumption of
microscopic reversibility. These conditions are presumed to
hold at the scale of V since this scale is defined based on the
local diffusion coefficient. The relevant linear phenomenolog-
ical equation is Fick’s law, which is assumed to describe the
nonequilibrium behavior at the small scale of V ,

∂ρk

∂t
− ∇ · (Dk · ∇μk ) = 0, (41)

where Dk is the mass diffusion tensor, ρk is the density, and μk

is chemical potential. Fick’s law asserts that there is a locally
linear nonequilibrium response to compositional gradients.
However, we note that in a heterogeneous system, linear re-
sponse theory will fail at larger scales due to nonlinearity in
the composition, diffusion coefficient, and chemical potential.
Such nonlinearities will inevitably lead to anomalous dif-
fusion phenomena, and associated nonequilibrium behaviors
can be understood in terms of multiscale fluctuations.

The standard nonequilibrium treatment for mass diffusion
is obtained by considering the internal energy to be described
by U (S, Nk ), with Nk being the number of molecules of com-
ponent k. For a closed system, Eq. (14) can be written as

∂S

∂t
= 1

T

[〈
S
∂T ′

∂t

〉
− μk

∂Nk

∂t
+

〈
Nk

∂μ′
k

∂t

〉]
� 0. (42)

In an isothermal system, the temperature fluctuation is zero.
The remaining terms can be directly interpreted based on
Fick’s law,

μk
∂Nk

∂t
−

〈
Nk

∂μ′
k

∂t

〉
= μk

∂Nk

∂t
−

〈
Nk

∂ (μk − μk )

∂t

〉
= μk

∂Nk

∂t
+ Nk

∂μk

∂t
−

〈
Nk

∂μk

∂t

〉

= ∂ (μkNk )

∂t
− ∂

〈
μkNk

〉
∂t

+
〈
μk

∂Nk

∂t

〉
.

The first two terms cancel based on the fact that μkNk =
〈μkNk〉 according to the definition given in Eq. (9). Now
assuming that Fick’s law holds at the microscopic scale with
ρk = Nk/V , we arrive at

1

V
〈
μk

∂Nk

∂t

〉
=

〈
μk∇ · (Dk · ∇μk )

〉
. (43)

By inserting this into Eq. (42), it is evident that the dissipation
is entirely determined from the contribution of the spatial
gradients. In other words, the length scale associated with
gradients is fundamentally linked with the timescale for en-
ergy dissipation based on the phenomenological coefficient.
Furthermore, assuming Fick’s law at the microscopic scale
does not imply it will hold at larger scales. To see this, we
can formally average the right-hand side of Eq. (43),

〈μk∇ · (Dk · ∇μk )〉 = μk∇ · (Dk · ∇μk )+μk∇ · (Dk · ∇〈μ′
k〉)

+μk〈∇ · (D′
k · ∇μk )〉

+ 〈μ′
k∇ · (Dk · ∇μk )〉.
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Scale invariance for Fick’s law will therefore be obtained if
the following conditions are satisfied:〈∇μ′

k

〉 = 0, (44)

〈∇ · (D′
k · ∇μk )〉 = 0, (45)

〈μ′
k∇ · (Dk · ∇μk )〉 = 0, (46)

where the deviation for the diffusion tensor is D′
k = Dk − Dk.

In ideal systems, the chemical potential is directly related to
the density,

μ = μ0 + RT ln(ρ/ρ0), (47)

with μ0 and ρ0 being constant reference values. Ideal con-
ditions imply that Eq. (44) must hold due to the definition
of ρk . Equation (45) will hold if Dk is independent of space
and time since this would mean that D′

k = 0. Finally, Eq. (46)
suggests that the existence of gradients in Dk or μk that
have a length scale smaller than � will cause Fick’s law to
fail at the averaged scale, as will transient changes to these
gradients that occur faster than the averaging timescale �.
At the intuitive level, these criteria require that the diffusion
coefficient, composition, and chemical potential should vary
only linearly over � and �. For such cases, the fluctuation
terms disappear and Fick’s law will hold in the larger-scale
system. However, in real systems, non-Fickian behavior is
quite common [60–62]. Diffusive and dispersive processes
within a complex microstructure give rise to the development
of heterogeneous structures, including fractals, based on local
instabilities and material heterogeneity [63]. The implication
is that Eqs. (44) and (45) do not hold under typical conditions
since mass transport routinely leads to transient spatial hetero-
geneity for the composition, chemical potential, and diffusion
coefficient.

VI. CAPILLARY FLUCTUATIONS

In heterogeneous systems, it is common for chemical po-
tential gradients to exist at multiple length scales. Multiphase
systems arise due to the dependence of μ on composition, e.g.,
in the Cahn-Hilliard equations,

μ = φ3 − φ − γ∇2φ. (48)

The order parameter φ = ρ − (ρ∗
l + ρ∗

g )/2, where the equi-
librium densities for the liquid and gas are ρ∗

l and ρ∗
g . The

parameter γ determines the width of the interface separating
the two pure phase regions. It is entirely possible to de-
scribe multiphase systems using Eq. (48) in combination with
Eq. (42). As a matter of convenience, we can also describe the
thermodynamics of the system by considering Eq. (2) in the
form

U = U (S,Vw,Vn, Awn), (49)

where Vw and Vn are the volume of the droplet and the sur-
rounding fluid and Awn is the interfacial area between the
fluids. The associated intensive variables are the pressures
pw and pn and the interfacial tension γwn. Averaging in time
and space, we assume (1) isothermal conditions, (2) constant
interfacial tension, (3) the volume of each fluid is constant,

and (4) compositional effects are negligible. Subject to these
restrictions, Eq. (14) simplifies to

∂S

∂t
= − 1

T

[〈
Vw

∂ p′
w

∂t

〉
+

〈
Vn

∂ p′
n

∂t

〉
+ γ wn

∂Awn

∂t

]
� 0. (50)

Dissipative effects are understood by considering the fluctua-
tion of the fluid pressures that are induced by the spontaneous
change in surface energy.

The coalescence of two fluid droplets represents one of the
simplest examples of topological change in fluid mechanics.
The topological event induces an apparent singularity fol-
lowed by a cascade of energy dissipation governed by distinct
scaling regimes as the system establishes a new equilibrium.
At equilibrium, the fluid pressures and interface curvature are
related based on the Young-Laplace equation,

pn − pw = γwn

(
1

R1
+ 1

R2

)
, (51)

where R1 and R2 are the principal curvatures along the
interface between fluids. Detailed studies of the droplet
coalescence mechanism show that the flow behavior and
associated geometric evolution are coupled on a very fast
timescale [64–71]. At the molecular level, coalescence is ini-
tiated based on thermal effects [72]. Hydrodynamic effects
become dominant after approximately 30 picoseconds, based
on the formation of a bridge that joins the droplets. The
ensuing dynamics can be separated into two distinct regimes
[70]. At early times, viscous effects dominate and the growth
of the bridge radius scales as

r

rc
∼ t

τc
, (52)

where τc is the crossover time and rc is the associated length
scale. At late times, inertial effects dominate and the growth
of the bridge radius scales as

r

rc
∼

√
t

τc
. (53)

Analogous results have been obtained for droplet snap-off
[36]. The rate of entropy production will be a nonlinear func-
tion of time based on the crossover between the two regimes.
The nonequilibrium response is therefore nonlinear. Averag-
ing in time and space can be applied to homogenize these
nonlinear dynamics so that they can be treated explicitly as
energy fluctuations.

The sequence depicted in Fig. 5 shows the effect of the
coalescence event on the fluid pressure field as simulated by a
lattice Boltzmann model [73]. Results demonstrate that sim-
ulation accurately recovers the predicted scaling behavior. In
Fig. 5, the pressure field p∗

i = piR f /γwn is normalized relative
to the final droplet radius, R f = 80 voxels. Nonequilibrium
effects develop in response to the near instantaneous curvature
disruption along the interface at the point where the droplets
first touch. The associated pressure shock drives the ensuing
dynamics. The behavior is nonergodic because capillary en-
ergy barriers inhibit the thermal mixing between the droplets
prior to the event. Rapid mixing occurs after coalescence,
once the energy barrier separating the two droplets has been
destroyed.
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FIG. 5. Droplet coalescence leads to fluctuations in the pressure
field (color) due to the rapid change in capillary forces. Scaling for
the coalescence event is limited by viscous forces during the initial
bridge formation, and is dominated by inertial forces at late times.

Thermal fluctuations due to molecular effects are usually
assumed to be stationary with respect to time as a consequence
of the time reversibility of the Hamiltonian at the molecular
level [22]. Capillary fluctuations are distinct from thermal
fluctuations due to the fact that they are inherently cooperative
in nature, and are linked to both reversible and irreversible
energy transfer. Symmetry breaking is a consequence of the
structural rearrangement associated with the transition to a
new local minimum energy configuration. For a closed sys-
tem, the dissipated energy is easily calculated from the initial
and final configurations since at equilibrium the droplets are
spherical,


S = 1

T

(
Vw
pw + Vn
pn − γwn
Awn

)
. (54)

The radius for the initial and final droplets can be computed
analytically based on the volume, making use of the Young-
Laplace equation to determine the equilibrium fluid pressures.

The rate of energy change associated with capillary fluc-
tuations is shown in Fig. 6. The timescale is normalized by
the crossover time τc, which can be considered as defining
the intrinsic timescale for coalescence. In our analysis, the
full system is used as the domain for spatial averaging and
the time interval is � = 0.108τc. Since this timescale is faster
than the nonlinear dynamics, the frequency for the fluctuations
is directly visible in Fig. 6(a). The energy scale is normalized
based on the interfacial tension and the capillary length scale,
which is accomplished by dividing the energy associated with
the capillary fluctuations’ final surface energy 4πγwnR2

f . The
scales in Fig. 6 are therefore nondimensional. From Eq. (50),
it is clear that the changes in surface energy are driving the
fluctuations. Immediately after coalescence, interfaces per-
form local work against the fluid pressure due to unbalanced
capillary forces. The pressure fluctuation terms are understood
as resulting from local gradients in the pressure field that are
generated due to the curvature discontinuity. These gradients
are clearly visible in Fig. 5. Since the initial and final droplet
states have different capillary pressure, the pressure fluctua-
tion is not stationary over the event. Nevertheless, a degree of
symmetry is clear based on the mirroring effect between the
pressure fluctuation in one fluid and the other. This suggests
that the choice to represent the system in a discrete way
introduces asymmetry into the system description. The Gibb’s
dividing surface subdivides the system into distinct subregions
for each fluid, each with its own pressure. While topologi-
cal changes such as droplet coalescence are fundamentally
discrete events when considered from the perspective of set
theory, set construction is a choice imposed on the system,
as opposed to an underlying property of the physical system
itself. Set operations are the basis for separately defining pw

and pn. Detailed balance is not evident when the fluids are
considered separately since irreversible energy exchanges oc-
cur between the fluids due to the cooperative rearrangement
of the interface. For this reason, symmetry is a property of the
global system and not a property of the subregions.

FIG. 6. Pressure fluctuation due to the coalescence of two fluid droplets. (a) Rate of energy change associated with pressure fluctuation
relative to the final surface energy during droplet coalescence event. (b) Noise spectrum associated with capillary fluctuations can be predicted
by log10 SP ∼ αF p.
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FIG. 7. Capillary fluctuations during displacement in porous media are linked with spontaneous pore-scale events that occur due to
capillary forces within the solid microstructure. Haines jumps occur spontaneously during immiscible displacement as the system “jumps”
from (a) one energy minimum to (b) the subsequent quasistatic configuration; (c) fluid pressure fluctuations arise due to these dynamics; and
(d) scaling behavior for the power spectrum is independent of the time averaging interval.

Pressure fluctuations are multiscale rate effects that arise
due to spatial heterogeneity. The length scale associated with
the heterogeneity is the driving factor that determines the
spectral properties. Due to length scale effects, the noise sig-
nature associated with capillary fluctuations is distinct from
pink noise, where the relationship between the spectral density
SP and frequency F is SP ∼ 1/F [74–76]. For the data shown
in Fig. 6, the time and energy scales are nondimensionalized,
as described previously. A simple power law is insufficient to
describe noise due to capillary fluctuations. Instead, we find
that the scaling relationship is a stretched exponential,

log10 SP ∼ αF p. (55)

The coefficients α and p are associated with the rate of decay
in the spectral density as the frequency increases. SP decays
rapidly with F for frequencies that are faster than a typical
event. This can be considered as a transition between two
distinct scaling regimes. At the length and time scale for the
coalescence event, the behavior is superdiffusive based on the
fact that cooperative capillary forces move mass faster than
the local diffusion rate. Ultimately, the capillary forces that
drive these events originate due to gradients in the composi-
tion at smaller scales. At smaller length scales, subdiffusive
behavior is obtained based on the strong antidiffusion asso-
ciated with the interface region. The crossover between these
distinct scaling regimes leads to a corresponding transition in
the fluctuation spectrum. For droplet coalescence, α = −15

and p = 1/2 match well with the simulated fluctuation spec-
trum.

The scaling relationship given by Eq. (55) also holds
for immiscible displacement in porous media. Cooperative
events occur routinely as fluids migrate through a complex
microstructure under the influence of capillary forces [26].
Experimental data demonstrate that the timescale for these
events is directly linked to the frequency for fluctuations in the
pressure signal [77]. The results shown in Fig. 7 were obtained
using synchrotron microtomography imaging. For complete
experimental details, the reader is referred to Berg et al. [28].
The system was initially saturated with brine, and oil was
injected into the sample at a rate of 0.35 μL/minute. Pressure
transducer measurements were collected at an interval 
t =
0.32 sec. The absolute permeability for the Berea sandstone
was κ = 0.7 μm2. The initial and final states for a pore-scale
event known as a Haines jump are shown in Figs. 7(a) and
7(b). Haines jumps are spontaneous events that occur when
the fluid meniscus passes through narrow pore throats within
the solid microstructure, where the capillary pressure is high.
As fluid spontaneously flows into the adjacent pore body, the
capillary pressure drops rapidly, causing a fluctuation in the
signal. The timescale for pore-scale events is controlled by
the solid microstructure, which means that the statistics for the
associated noise signal are linked to length scale heterogeneity
within the system. In spite of this considerable complexity, the
scaling behavior is predicted from Eq. (55) with identical co-
efficients to the droplet coalescence. In the spectral analysis, a
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nondimensional timescale for the experiments can be defined
as

t∗ = γwnt

μ
√

κ
, (56)

where μ = 0.89 mN s/m2 and γwn = 25 mN/m. Since the
permeability is related to the microscopic length scale, a
nondimensional energy scale can be defined by normalizing
based on γwnκ . Averaging over a longer time interval reduces
the amplitude of the fluctuations, but does not change α and p.
Both droplet coalescence and Haines jump events are exam-
ples of critical phenomena. The length scale for an individual
Haines jump is controlled by the solid microstructure, and a
single event may cause fluids to invade multiple pores very
rapidly, as shown in Figs. 7(a) and 7(b). The timescale for
pressure fluctuations is therefore determined based on the dis-
tribution of length scales for the solid microstructure, which
is typically very heterogeneous. It should be expected that
the distribution of fluids will exert a strong influence on the
fluctuation spectrum, as the probability for fluid coalescence
events depends on how mass is distributed within the solid mi-
crostructure. Further study is needed to understand if universal
coefficients can be established in heterogeneous systems. As
in droplet coalescence, the pressure fluctuations are nonsta-
tionary. For the data shown in Fig. 7, the net contribution
from the fluctuations is 7.84% of the total pressure-volume
work when considered over � = 512 seconds. In this sit-
uation, fluctuation terms must be included explicitly in the
nonequilibrium thermodynamics since these terms are needed
to state the conservation of energy for the system.

VII. SUMMARY AND CONCLUSIONS

We derive nonequilibrium thermodynamic expressions us-
ing time-and-space averaging, showing that fluctuations occur
due to nonlinear dynamics associated with the intensive
variables. Considering a particular timescale of interest, the
approach is constructed to treat systems that are ergodic at
small length scales but nonergodic at larger scales. Time-
and-space averages are formulated by directly integrating the
energy dynamics, meaning that the actual system evolution is
captured within the averaged representation. The approach is
scale consistent based on the fact that thermodynamic quan-
tities retain their physical meaning, and the form of the Euler
equation will be independent of the length and time scales.
Fluctuations are linked with subscale gradients in systems
that exhibit multiscale heterogeneity. When stimulated, these
systems have a tendency to relax toward equilibrium at macro-
scopically slow timescales that are determined based on the
length scale associated with the gradients. We illustrate how
anomalous diffusion can arise in a system where Fick’s law
applies at some small length scale, but fails at larger scales
due to spatial heterogeneity. Explicit conditions for scale in-
variance are obtained.

Averages in time demonstrate that the rate of entropy pro-
duction is scale dependent, e.g., due to crossover times that
are frequently encountered when considering the dynamic re-
sponse of heterogeneous systems. For any stationary process,
the time average of the rate of entropy production is zero
since net changes to any thermodynamic state function imply
that a system is nonstationary. Averaging does not alter the
interpretation for the Clausius theorem since averages are con-
structed based on the conservation of energy. The treatment
of stationary processes is thereby simplified since dissipation
is expressed in terms of the rate of work and heat exchange,
which are linked to fluctuations based on the internal energy
dynamics of the system. We consider basic applications to
the Carnot cycle and to Maxwell’s demon to illustrate how
thermodynamic cycles can be understood in the context of
fluctuations.

More generally, fluctuations describe the internal energy
dynamics of thermodynamic systems away from equilibrium.
Since fluctuations must conserve energy, symmetry laws can
be derived relating fluctuations within heterogeneous systems.
These statements govern the possible energy transfers that can
occur within nonequilibrium systems. In contrast with thermal
fluctuations, multiscale fluctuations are linked with cooper-
ative events and therefore may not obey detailed balance.
Nonstationary fluctuations occur when there are net energy
transfers within a system. We consider droplet coalescence as
a clear example of a nonequilibrium system where multiple
crossover times are present. In contrast with a thermody-
namic cycle, droplet coalescence is nonstationary based on
the fact that entropy production occurs. Considering coales-
cence along with immiscible displacement in porous media,
we show that capillary fluctuations can be predicted by a sim-
ple scaling law, log10 SP ∼ αF p, with α = −15 and p = 1/2
matching the fluctuation spectrum in both cases. Multiscale
fluctuations are extensible to other systems where gradients
in composition, chemical potential, and other intensive vari-
ables are operative at a scale that is smaller than the scale of
interest. Classes of nonergodic behavior that are defined by
macroscopically slow physics are particularly relevant. The
formulation is based on classical thermodynamic theory and
defines fluctuations in terms of standard quantities that are
straightforward to measure in a practical setting.
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