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Geometry of catenoidal soap film collapse induced by boundary deformation
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Experimental and theoretical work reported here on the collapse of catenoidal soap films of various viscosities
reveal the existence of a robust geometric feature that appears not to have been analyzed previously; prior to
the ultimate pinchoff event on the central axis, which is associated with the formation of a well-studied local
double-cone structure folded back on itself, the film transiently consists of two acute-angle cones connected to
the supporting rings, joined by a central quasicylindrical region. As the cylindrical region becomes unstable and
pinches, the opening angle of those cones is found to be universal, independent of film viscosity. Moreover,
that same opening angle at pinching is found when the transition occurs in a hemicatenoid bounded by a
surface. The approach to the conical structure is found to obey classical Keller-Miksis scaling of the minimum
radius as a function of time, down to very small but finite radii. While there is a large body of work on the
detailed structure of the singularities associated with ultimate pinchoff events, these large-scale features have
not been addressed. Here we study these geometrical aspects of film collapse by several distinct approaches,
including a systematic analysis of the linear and weakly nonlinear dynamics in the neighborhood of the saddle
node bifurcation leading to collapse, both within mean curvature flow and the physically realistic Euler flow
associated with the incompressible dynamics of the surrounding air. These analyses are used to show how much
of the geometry of collapsing catenoids is accurately captured by a few active modes triggered by boundary
deformation. A separate analysis based on a mathematical sequence of shapes progressing from the critical
catenoid towards the Goldschmidt solution is shown to predict accurately the cone angle at pinching. We suggest
that the approach to the conical structures can be viewed as passage close to an unstable fixed point of conical
similarity solutions. The overall analysis provides the basis for the systematic study of more complex problems
of surface instabilities triggered by deformations of the supporting boundaries.

DOI: 10.1103/PhysRevE.104.035105

I. INTRODUCTION

The nature of singularity formation during the collapse of
a soap film with boundary has been addressed in configura-
tions ranging from the prototypical catenoid to less familiar
one-sided and twisted surfaces [1–8]. Of particular interest
has been the location of the associated singularity—in the
bulk of the film or on the boundary—and how that location
depends on the topology of the film. An emerging conjecture
[5] is that the structure of the linear stability operator of
the surface (through the associated Jacobi fields that become
the unstable modes) determines the ultimate location of the
singularity. Because the most fundamental bulk singularity
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arises from the collapse of catenoidal necks, it is natural to
examine the stability problem of equilibrium catenoids to
understand the approach to that singularity. Despite the long
history of the study of stability of minimal surfaces, primarily
from an energetic point of view [9], and even though such
problems arise in many different contexts in fluid mechanics
[10] and soft matter [11–13], there have been only a few
discussions of the details of the linear and weakly nonlinear
problems [2,14–16]. And these have either focused on simpli-
fied laws of motion such as mean curvature flow, a model that
has been extensively studied in the pure mathematics literature
[17–20] without accounting for flow of the surrounding air, or
considered a dynamics governed only by the inertia of the film
[21,22], or did not provide systematic stability calculations.

Many years ago, Chen and Steen [2] outlined the char-
acteristic shapes adopted by soaps films as they progress
from an unstable catenoid to the topological transformation
at pinchoff. Some of these, from experiments described be-
low, are shown in Fig. 1, including the quasicatenoidal initial
shape (i) that steadily contracts into (ii), then a shape with
an approximately cylindrical central region (iii), and finally a
well-known double-cone geometry folded back on itself (v)
that leads to breakup. In the course of studying this problem
we discovered that there is an additional, intermediate state
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FIG. 1. Collapse of a soap film catenoid. (i) At the onset of the instability, a catenoid spans two wire rings of radius R, separated by a
distance 2d . The tangent to the film at the frame makes an angle θ with respect to the axis of symmetry. As the film collapses it passes through
four additional stages: (ii) narrowing of the neck, (iii) formation of the “Martini glass” configuration consisting of two cones connected by a
cylinder, (iv) development of a double pinch at the ends of the central cylindrical region, and (v) formation of a double-cone configuration and
breakup of the central thread leading to satellite bubbles.

shown in (iv), in which the transiently formed cylindrical
region pinches at its two ends, leading to conical films that
connect to each of the supporting circular frames, with a
unique opening angle to the cones. These same features, with
essentially the same cone geometry (iv), appear if the three-
dimensional catenoid is split in half with a glass plate along
its axis of revolution, so that there are two hemicatenoids, each
with a moving contact line on the glass plate subject to viscous
drag (Fig. 2) [23]. (In this case, since the moving contact line
is the junction between a soap film and a solid, it is termed a

Plateau border.) These findings raise several questions: What
is special about shape (iii), composed of surfaces with vanish-
ing Gaussian curvature, in the context of surface evolution?
What determines the selected cone angle at pinching? To what
extent can a weakly nonlinear analysis around the unstable
catenoid account for the experimental observations, and the
evolution toward the double-cone structure (iv)?

As noted above, the late stages of the breakup process that
begins in panel (iv) of Fig. 1 leads to the configuration shown
in panel (v), and exhibits a double cone. The geometry of this

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

FIG. 2. Collapse dynamics of a three dimensional catenoid compared to that of a hemicatenoid in contact with a glass plate. (a) Time
evolution of the scaled area A (where A = (film area)/2πR2 and R is the hoop radius) as the film evolves from the original catenoid to two
discs. Points labeled (i–viii) correspond to characteristic stages in the evolution shown in the respective images. (b) As in panel (a), for the
hemicatenoid collapse. Note the much longer timescale for collapse compared to panel (a).
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configuration was experimentally discovered some years ago
in the study of catenoid collapse [2,24] and soon thereafter
studied theoretically [25,26] using an approach based on a
combination of potential flow and similarity solutions [27]
for the film shape. These theoretical results were inspired not
only by experiments, but also by numerical computations of
surface dynamics coupled to inviscid fluid motion in which
the surface was closed, without boundaries. This is an ap-
propriate approximation for the local problem of the double
cone. However, earlier stages of the collapse, such as (ii) and
(iii) in Fig. 1, require accounting for the fact that the film is
open and thus air can escape the domain, as seen in numerical
simulations [2]. Otherwise, instead of the conical shape seen
in Fig. 1 (iii), a bulging quasihemispherical shape is seen,
as found in studies of capillary bridge breakup [28] with
impermeable boundaries pinning the two ends of the bridge.

In Sec. II we describe experimental studies of the col-
lapse of catenoids under boundary deformation which reveal
the geometrical features described above. Motivated by these
observations, Sec. III presents an in-depth analysis of the
stability of catenoids under several different laws of motion.
After a short review of general results in the theory of surface
motion and equilibrium catenoids, we develop the framework
necessary to treat both linear stability problems and weakly
nonlinear ones in the neighborhood of the critical catenoid. As
an example we first apply this to the case of mean curvature
flow (MCF) and then proceed to the realistic model in which
the surface motion is coupled to that of the surrounding air.
From these results it becomes clear that the complete set
of radial modes obtained from the Sturm-Liouville problems
within MCF is quantitatively very close to those within Euler
flow (albeit with growth rates given by very different physics)
and can serve as a means to understand the dynamical evolu-
tion of catenoids in a model-independent manner. Section IV
develops this idea by a numerical projection of the experi-
mental collapsing interface shapes onto those modes. We find
that with even as few as four modes the overall shape of the
interface is very accurately captured, and the experimental
growth rate of the unstable mode is accurately captured by
the Euler dynamics. In Sec. V we use these results to explain
the experimental data on the time evolution of the film area as
the catenoid evolves toward collapse. An alternative approach
involving the construction of a mathematical sequence whose
limit is the Goldschmidt solution [29] is used to derive the
value of the critical cone angle at pinching. We also present
a heuristic argument for this value by utilizing the geometry
of the unstable mode and connect these results to the potential
flow arguments of earlier work [25], leading to the suggestion
that the conical film shape prior to the ultimate collapse im-
plies that the film evolves close to an unstable fixed point of
similarity solutions. We conclude in Sec. VI with a discussion
of future work. Some calculational details are given in the
Appendix.

II. EXPERIMENTS

Catenoids were obtained by pulling two coaxial circular
rings of radius R = 4 cm out of surfactant solutions. Initially
the half separation distance d is smaller than the critical dis-
tance dc and is raised slowly until the instability is triggered.

While not precisely controlled, the typical displacement of the
rings from that of the last stable catenoid is 3–5 mm. For the
case of half-catenoids, a glass plate that fits snugly inside the
rings, and was pre-wetted with the surfactant solution, was
slowly lowered along the axis of the catenoid to separate it into
two identical hemicatenoids. The solutions were obtained by
dissolving tetradecyl trimethyl ammonium bromide (TTAB)
in deionized water and adding various amounts of glycerol, up
to 85% in mass, to increase the viscosity. The concentration of
TTAB was 3 g/l for the aqueous solution without glycerol and
was raised to 6 g/l for that with glycerol to enhance the sta-
bility of the soap films. The viscosity of the solutions ranged
from 1 to 77 mPa s, while the surface tension remained nearly
constant (between 38 and 35 mPa m [30,31]). We found that
the collapse dynamics were independent of the viscosity over
the range examined, which emphasizes that the phenomenon
is driven primarily by a balance between surface tension and
inertia of the surrounding air [2,34]. As discussed elsewhere
[32], we have also performed experiments with surfactant
solutions having higher interfacial moduli [33]. In these cases,
we have observed that both the dynamics and the patterns
are very different from those presented here. In what follows,
results are presented with surfactant solutions of viscosity 1.0,
4.3, and 77 mPa s. Fluorescein was added to the solutions
to render them fluorescent under illumination by arrays of
cyan LEDs as described previously [3]. The collapse dynam-
ics were recorded with a color high-speed camera (Phantom
V641, Ametek) at 4 000 or 5 600 frames per second. Typical
images are shown in Figs. 1 and 2; a representative video of
the collapse can be found in the Supplemental Material [35].

Taking advantage of its symmetry, we isolate one quadrant
of the soap film for analysis. The contour shape defined by
its radial coordinate ζ (z) as a function of the axial position
z is discretized with 20 or more points as needed to keep
computational errors below 2%. To make contact with ana-
lytical results described later, we define a rescaled interface
shape r = ζ/ac and coordinate u = z/ac via the quantity ac =
0.5524R that appears in the theory of equilibrium catenoids
(see below). Likewise, we define A to be the physical area
normalized by 2πR2, a scaling such that A ≈ 1.2 for the crit-
ical catenoid (with d = dc), while A = 1 in the configuration
of two discs spanning the frames. Figures 2(a) and 2(b) show
the collapse sequence for catenoids and hemicatenoids along
with the time evolution of their respective areas A. Figure 3
shows A, the respective neck radii rn (defined as the minimum
radius, found initially in the midplane, un = 0, and later at
secondary minima symmetrically displaced away at |un| > 0)
and tangent angles θ at the attachment point (Fig. 1) for ex-
periments with different film viscosities. Figures 2(a) and 3(a)
show that A relaxes towards 1 in less than 30 ms. The neck
radius decreases and reaches zero when the soap film pinches
off. The angle θ increases rather regularly in time from 57◦
(very close to 56.5◦ = arctan(R/dc) as expected at the onset
of the instability [14]). At the end of the relaxation of the area,
θ is still far from the 90◦ expected for the two-disc solution;
this value is reached on a much larger timescale. When the
soap film pinches, we measure θc = 71.5◦.

A more detailed examination of the film shapes is dis-
played in Figure 4. For each profile shown in Fig. 4(a), a
linear interpolation is performed to give an estimate of the
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FIG. 3. Time evolution of geometric parameters during collapse
of a catenoid soap film. (a) Scaled area A, (b) scaled neck radius
rn, and (c) tangent angle θ as functions of time relative to critical
time tc of the Martini glass configuration. Labels (i–v) refer to the
times corresponding to images (i–v) in Fig. 1. Symbols correspond
to different soap film viscosities: 1.0 mPa s ( ), 4.3 mPa s ( ), and
77 mPa s ( ). Symbols with lighter colors ( , , ) are those for
t > tc.

average angle in the r − u plane. The quality of that linear
interpolation is quantified by the standard deviation of this
angle, which is plotted as a function of time in Fig. 4(b),
where we see a strong local minimum with standard deviation
∼ 0.1◦, which corresponds to an average angle θ∗ = 68◦ that
is slightly less than θc due to the residual curvature of the inter-
face. At this time, the top and bottom of the soap film are the
most accurately conical, while the center section is a pinched
cylinder; we call this the “Martini-glass” configuration. Note
that this configuration occurs at the same time step as the one
of the pinch-off. The two values θc and θ∗ serve as lower and
upper estimates of the Martini glass angle, which we take to
be their mean, i.e., θM ∼ 69.8◦.

In their classic work on soap film collapse, Chen and Steen
[2] noted from numerical computations that the catenoid neck
radius rn shown in Fig. 3(b) appears to collapse with the
classic scaling expected by dimensional analysis for surface
tension driven Euler flows [27], namely, that characteristic
lengths evolve in time t relative to a singularity as (γ t2/ρa)1/3,
where γ is the surface tension and ρa is the density of the sur-
rounding air. Actually this regime is observed twice: first after
the location of the minimum radius bifurcates from its initial
value of u = 0 to two symmetrically placed points above and

-0.01 0 0.01
0

0.5

1

FIG. 4. Determination of the critical time for appearance of Mar-
tini glass configuration. (a) Film profiles (green) in the top-right
quadrant. Profile corresponding to the Martini-glass configuration is
blue and its linear interpolation (dashed blue) defines the angle θ∗.
(b) Standard deviation of the angle obtained by linear interpolation
vs. time relative to critical time tc. Inset displays values centered
around the local minimum. Same color scheme and labeling con-
vention as in Fig. 3.

below the midplane (named “roll-off”, with the law rn ∝ t2/3

attributed to be an artifact of the symmetry of the setup, with a
stagnation point at u = 0), then in the final self-similar regime
before pinching. In between there is a short regime following
rn ∝ t2/5. In our experiments, quantifying the final self-similar
regime is below the experimental resolution and the necks
seem to pinch at some values ±up straddling u = 0. Figure 5
shows that our data (obtained for several values of the film vis-
cosity) for the pinching neck radius rp = r(up) displays that
same exponent of 2/3. Thus, the approximate scaling holds
away from the central stagnation point. Additionally, film
viscosity plays only a minor role in the approach to pinching.
We conclude that despite the fact that the ultimate topological
transformation takes place later, through the appearance of the
folded double cone structure, the approach to the single cone
state exhibits Keller-Miksis scaling down to very small (but
finite) length scales.

III. STABILITY AND DYNAMICS FOR SURFACES OF
REVOLUTION

A. Geometrical preliminaries

We start with a brief review of the standard description
of a surface of revolution S spanning two parallel circular
“frames” separated by a distance 2d , with z ∈ [−d, d] the
vertical coordinate between them. The general equation of
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FIG. 5. Collapse of the dimensionless neck radius. Double loga-
rithmic plot. Dashed line has a slope of 2/3, the exponent expected
from scaling arguments.

motion of the surface ρ(z) = zêz + ζ (z, t )êζ is

n̂ · ρt = U, (1)

where t is time, n̂ is the surface’s unit normal, and U is deter-
mined by the underlying physics. For a surface of revolution,
we have n̂ · ρt = ζt/

√
1 + ζ 2

z , so ζ evolves as

ζt =
√

1 + ζ 2
z U . (2)

The time evolution of geometrical quantities follows di-
rectly from these definitions, as presented briefly in earlier
work [36] and in detail in the Appenedix. The area functional
I[ζ ], written for convenience as 2πA, where

A[ζ ] =
∫ d

−d
dz

√
G, (3)

and
√

G = ζ
√

1 + ζ 2
z , has the time evolution

At = −2
∫ d

−d
dzζHζt ′ = −2

∫
S

dSHU, (4)

where dS = √
Gdz is the element of surface area, we have

used Eq. (1), and H is the mean curvature,

H = 1

2

(
ζzz(

1 + ζ 2
z

)3/2 − 1

ζ
√

1 + ζ 2
z

)
. (5)

The volume V = π
∫ d
−d dzζ 2 enclosed by the surface evolves

in time as

Vt = 2π

∫ d

−d
dzζ ζt =

∫
S

dSU . (6)

As shown in the Appendix, H itself evolves as

Ht = (
2H2 − K + 1

2∇2
)
U, (7)

where

K = − ζzz

ζ
(
1 + ζ 2

z

)2 (8)

FIG. 6. Shape evolution and Gaussian curvature. (a) Shapes of
collapsing catenoid in upper right quadrant, with film viscosity
4.3 mPa , as a function of scaled coordinate u = z/ac from early time
until development of cone. Spacing between contours is 0.75 ms,
with colors transitioning from red (early) to blue (later). (b) Nondi-
mensionalized Gaussian curvature and (c) product of K and surface
metric for shapes in panel (a). Black curves in panels (a–c) are
quantities for equilibrium catenoid.

is the Gaussian curvature and the covariant Laplace-Beltrami
operator is

∇2 = 1

ζ
√

1 + ζ 2
z

∂

∂z

(
ζ√

1 + ζ 2
z

∂

∂z

)
. (9)

In highlighting the appearance of a conical film shape we
noted that a cone has vanishing Gaussian curvature. This
raises the more general question of the spatiotemporal evo-
lution of K during the collapse process. Figure 6 shows for
one particular experiment the evolution of r(u) and K (u) up
to the appearance of the cone. We see that K clearly develops
a singularity as the neck radius tends toward zero at u ≈ 0.35,
while at the same time K is very nearly zero over the region
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FIG. 7. Time evolution of the total curvature of collapsing
catenoids. Data shown follows color scheme in Figs. 3 and 4 with
reduced intensity. Solid black circles with error bars (standard devia-
tions) are binned averages of the data sets. Black curve is a low-order
polynomial fit to the data.

u � 0.7, which is further evidence of the formation of a coni-
cal structure.

The singularity that develops in K arises from the collaps-
ing radius of the film; by the (tc − t )2/3 scaling of lengths
we expect K ∼ (tc − t )−4/3. But this must be an integrable
singularity since there is a constraint on the total curvature
K = ∫

dSK . For an up-down symmetric surface of revolution,
direct integration of Eq. (8) yields

K = −4π sin θ, (10)

where θ is defined in Fig. 1, and can alternatively be ex-
pressed as θ = π/2 − φ in terms of the tangent angle of the
surface at the upper boundary (cot φ = ζz). When the catenoid
is not bounded, but extends to infinity, then θ → π/2 and
the well-known result K = −4π is recovered. As the metric
factor dS ∼ ζ the integral within the total curvature scales
as (tc − t )−2/3, and when integrated over a collapsing length
scale leads to a finite result. These balances of terms can be
seen in the graph of the product of K and the metric factor
shown in Fig. 6(c).

The data on the time evolution of θ in Fig. 3(c) shows that
it has only a modest change from its initial value to that when
the cone appears. From the general expression for the time
evolution of K in an axisymmetric setting,

Kt = K

[
2H +

√
1 + ζ 2

z

ζzz
∂zz − 2ζz√

1 + ζ 2
z

∂z

]
U . (11)

one deduces by direct integration that the evolution of K
is given by the tangent angle and derivative of the normal
velocity at the boundary,

Kt = −4π sin2θ (d )Uz(d ). (12)

Figure 7 shows the slow variation of K averaged over four
different values of the film viscosity. K changes relatively
little from its initial value to that at the pinch time.

B. Equilibrium catenoids

For a surface to be minimal, the functional derivative of its
area must vanish. From Eqs. (3) and (5) we may write

δA

δζ
= −ζH. (13)

For a surface of revolution spanning frames of equal radii R,
the minimal surface condition H = 0 is solved by

ζ (z) = a cosh(z/a), (14)

for any a, and the value associated with a particular physical
situation is determined by the condition R = a cosh(d/a), that
the film meets the frames at z = ±d . In our experiments the
frame radius R is fixed and only d can be varied, so we rescale
by R, setting

α = a

R
and D = d

R
. (15)

The boundary condition can thus be written as

C(α, D) ≡ α cosh (D/α) − 1 = 0. (16)

As shown in Figs. 8(a) and 8(b), for each value of the scaled
separation D < Dc = 0.6627 . . . there are two solutions α±
to Eq. (16), which merge into one at Dc (where α± → αc =
0.5524 . . .), whereas for D > Dc there are no solutions. We

FIG. 8. Catenoid stability. (a) Solution of the transcendental equation (16) at various values of scaled loop separation D. (b) Two branches
(red, blue) of solutions for α as a function of D for subcritical catenoids, terminating at Dc = 0.6627 . . . with αc = 0.5524 . . ., and continuation
(dotted) with α = αc for supercritical ones. (c) Scaled area A of catenoids along the two subcritical branches, terminating at Ac = 1.199 . . . at
the critical separation Dc. The dotted line beyond Dc indicates the area of the family of stretched catenoids Eq. (20) given in Eq. (21).
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refer to the cases D < Dc, D = Dc and D > Dc as subcritical,
critical, and supercritical.

In the subcritical region the larger solution (α+) is the
stable one of interest. The rescaled areas A± = A±/R2 of the
two branches of solutions are

A± = α2
±
2

[
sinh

(
2D

α±

)
+ 2D

α±

]
. (17)

These two branches meet at Dc with area Ac = 1.199 . . .

[Fig. 8(c)]. Note that the quantities A± are the ratios of the
catenoid areas to the combined area of discs spanning each
individual circular frame. The latter is equal to the total area
of the Goldschmidt solution [29]: two discs spanning the two
circular frames, with an infinitesimal thread connecting the
two. We see in Fig. 8(c) that the Goldschmidt solution has
a smaller area than the stable catenoid for D > D∗, where
D∗ = 0.528.

For spacing D < Dc the two branches of solutions for α

have the structure of a saddle node bifurcation. We define the
dimensionless boundary deformation ε via

D = Dc(1 + ε), (18)

with ε < 0 in this subcritical case and ε > 0 in the super-
critical case discussed below. A Taylor expansion around the
critical point of Eq. (16) yields

α± = αc(1 ± c
√−ε + · · · ), (19)

where c = √
2αc/Dc, and we have used the condition

(∂/∂α)C(α, D)|αc,Dc = 0, which holds at the critical point.
Figure 8(b) shows that this is an accurate approximation to
the two branches, even for ε = O(1).

C. Stretched catenoids

In the supercritical regime, there is no minimal surface
solution of the form of Eq. (14), and any surface spanning the
two frames is unstable. To make analytical progress, it is thus
necessary to define a suitable initial condition and we adopt
the stretched catenoid introduced previously [14],

ζ (z) = R
cosh(z/a)

cosh(d/a)
, (20)

which satisfies the boundary conditions ζ (±d ) = R for any
value of a, and reduces to the minimal solution when a sat-
isfies Eq. (16) for d < dc. Since beyond the critical spacing
there are no minimal solutions, we may choose a shape with
any value of a as an initial condition. Close to the critical
catenoid, it is natural to set a = ac, and thus, the same param-
eter used in the subcritical case, ε = (D − Dc)/Dc, now with
ε > 0 can be used to parametrize the instability. This leads to
the continuation of the pitchfork bifurcation in Fig. 8(b) along
the path in the D − α plane shown by the dotted line. The area
of the stretched film can be calculated directly from Eq. (20)
[14],

A = th[xc(1 + ε)]
{
α2

c + th2[xc(1 + ε)]
}1/2

+α2
c sh−1

{
1

αc
th[xc(1 + ε)]

}
, (21)

where we use the notation th u ≡ tanhu, sh ≡ sinh, etc. and
xc = Dc/αc = 1.1997 . . ., and extends smoothly beyond Ac

as shown in Fig. 8(c).

D. Dynamics of perturbations within MCF

A natural first step in analyzing the dynamical evolution
of a catenoid towards collapse is to study the problem within
the simplest model, namely, mean curvature flow (MCF). This
is an overdamped temporal evolution, in which the surface
area plays the role of a Lyapunov function, dissipation is
purely local, and there is no global conservation law for the
volume enclosed by the film. As such, it is incapable of rep-
resenting the dynamics of real macroscopic soap films, whose
evolution is more nearly Hamiltonian and constrained by the
incompressibility of the surrounding air. Yet, the simplicity
of MCF allows for a clear understanding of the perturbative
calculations necessary for linear and weakly nonlinear prob-
lems, and the comparison between MCF and Euler flows is
very instructive regarding the mode structure. To make this
comparison we first present in this section the linear and
nonlinear dynamics of perturbed catenoids within MCF. In
the analysis of stability and dynamics near a catenoid there are
two relevant classes of shape perturbations: radial and normal.
The former is most appropriate when considering an Eulerian
PDE for the surface evolution, as in MCF, while the latter is
more suited to comparisons with formal results from differen-
tial geometry that utilize intrinsic coordinate systems. In the
following we focus on radial perturbations and comment later
on the connection between the two.

MCF is a time evolution in which local viscous drag bal-
ances the force per unit area arising from surface curvature,
i.e., μU = γ H , where μ is a drag coefficient and γ is the
surface tension. We use the parameter a to define the dimen-
sionless time t ′ = γ t/2a2μ and position r = ρ/a, and drop
the prime to obtain the scaled MCF

n̂ · rt = 2aH. (22)

Rescaling the coordinate and radial displacement as

u = z

a
, r = ζ

a
, (23)

MCF in an Eulerian reference frame is given by [20]

rt =
√

1 + r2
u 2aH = ruu

1 + r2
u

− 1

r
≡ H. (24)

It follows that the rescaled area S = A/a2 monotonically de-
creases in time,

St = −
∫

du
r√

1 + r2
u

H2. (25)

We note parenthetically that a dynamics akin to Eq. (24),
in which the Laplace pressure balances the inertia of the film
itself (rather than the surrounding air), has often been used to
describe dynamics of supported catenoidal films [14,21,22]. If
ρ f is the film density and � is its thickness, then the equation
of motion in a rescaled time variable t ′ = √

γ /2ρ f �a2t is
(dropping the prime)

rtt = H. (26)
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The stability analyses for subcritical and supercritical cases
differ primarily in the nature of the base state, as the minimal
surfaces in the former regime do not exist in the latter. So for
the sake of generality at the moment we keep the base state f
arbitrary and define the dimensionless film profile as

r = f − g. (27)

where with this sign convention g is positive for an inward
displacement of the surface. Then H can be expanded in a
series involving operators of increasing order of nonlinearity
in g as H = H0 + H1 + H2 + · · · , where

H0 = fuu

m
− 1

f
, (28a)

H1 = − 1

m
guu + 2

fu fuu

m2
gu − 1

f 2
g, (28b)

H2 = fuu

m

(
4 f 2

u

m
− 1

)
g2

u − 2
fu

m2
guguu − 1

f 3
g2, (28c)

H3 = 4
fu fuu

m3

(
2 f 2

u

m
− 1

)
g3

u (28d)

+ 1

m2

(
1 − 4 f 2

u

m

)
g2

uguu − 1

f 4
g3, (28e)

and m = 1 + f 2
u .

E. Subcritical catenoids

In the subcritical and critical regimes, we set f = cosh(u)
and obtain H0 = 0 for any ring spacing and

H1 = −Lg, (29a)

H2 = (4 th2u − 1)g2
u − 2 thu guguu − g2

cosh3u
, (29b)

H3 = (8 th3u − 4 thu)g3
u + (1 − 4 th2u)g2

uguu − g3

cosh4u
, (29c)

where L in Eq. (29a) is

L = 1

cosh2u

[
∂2

∂u2
− 2thu

∂

∂u
+ 1

]
(30a)

= ∂

∂u

(
1

cosh2u

∂

∂u

)
+ 1

cosh2u
, (30b)

a Sturm-Liouville operator with weight function unity. The
associated eigenfunctions of L vanish on the boundary of
the domain, so L is self-adjoint and its eigenfunctions Vn(u)
for n = 0, 1, 2, . . . form a complete orthogonal basis, and its
eigenvalues σn are real and distinct. Thus, within MCF, we
may write

g(u, t ) =
∞∑

n=0

bn(t )Vn(u). (31)

Since r = f − g, the equation of motion for g is

gt = −H, (32)

and thus
∑

ḃnVn = −H. If we now restrict attention to the
leading term H1, then we find ḃn = σnbn, where {(Vn, σn)}

satisfy the eigenvalue equation

LVn = σnVn, (33)

where Vn vanishes on the boundary (u = ±D/α). For the
critical catenoid, the well-known zero mode is

V0(x) = N (cosh x − x sinh x), (34)

where N is a normalization factor set by the condition∫ xc

−xc
duV0(x)2 = 1, namely,

N−2 =
(

5

4
+ x2

c

2

)
sh(2xc) − 3

2
xcch(2xc) + xc − x3

c

3
, (35)

so N = 0.8482 . . ..
Before proceeding further, we comment on the alternative

approach to perturbations, one based on displacements normal
to the catenoid. This formulation, unlike our analysis thus far,
is most appropriate to Lagrangian descriptions of the dynam-
ics. In this approach [14], when a normal perturbation to a
surface of revolution ρ(z) is applied, the displaced surface is
ρ′(z′) = ρ(z) + ω(z)n̂(z), where z′ = z − (ζz/

√
1 + ζ 2

z )ω(z)
and ζ ′(z′) = ζ + ω(z)/

√
1 + ζ 2

z are the displaced vertical and
radial coordinates. Taylor expanding to find ζ ′(z) yields the
leading order result in our rescaled units g = w

√
1 + f 2

u ,
where w = ω/a and, for the catenoid base state, g = w cosh u.
This implies that the neutral normal mode is W0 = N (1 −
u tanhu). Substituting this into the equation of motion gt =
−H1 yields an eigenvalue problem closely related to Eq. (33),

L̃Wn =
(

1

cosh2u

∂2

∂u2
+ 2

cosh4u

)
Wn

= σ̃nWn. (36)

The operator L̃ can be written as a2(∇2 − 2K ), which is
the familiar Jacobi operator [9], where K = −1/a2 cosh4u
is the Gaussian curvature of the catenoid. Thus, if Vn is
an eigenfunction of L it follows that Wn = Vn cosh u is an
eigenfunction of L̃ with the same eigenvalue σn. A similar re-
lationship involving radial and normal perturbations is found
by examining the second order contribution A2 to the total
surface area [37], which can be written in several forms:

A2 = α2

2

∫ D/α

−D/α

du

(
g2

u − g2
)

cosh2u
= −α2

2

∫ D/α

−D/α

du gLg (37a)

= α2
∫ D/α

−D/α

dS

{
1

2
|∇w|2 + Kw2

}
, (37b)

where dS = cosh2u du in Eq. (37a) is the element of surface
area. The result in Eq. (85) is the well-known quadratic con-
tribution for normal perturbations [9,38]. The calculation of
higher-order contributions to the area functional requires a
careful analysis of the connection between radial, tangential,
and normal perturbations [39–43]

Returning to the stability analysis, Fig. 9(a) shows the first
five modes Vn for the critical catenoid, ordered by the number
of nodes, obtained by an eigenvalue solver (bvp4c) in Matlab.
For comparison, Fig. 9(b) shows the modes for a subcritical
catenoid (ε = −0.05), which appear as compressed versions
of the critical modes. The growth rates σn for these two cases
are shown in Fig. 9(c). In the critical case, all modes are
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FIG. 9. Linear stability problem for mean curvature flow of subcritical and critical catenoids. First five eigenfunctions Vn(u) of the linear
operator Eq. (33) for (a) the critical catenoid (ε = 0) and (b) a weakly subcritical catenoid (ε = −0.05). (c) Growth rates σn for the cases in
panels (a) and (b) for the first 7 modes. When ε = 0, mode 0 is neutral and all others are stable, while for ε < 0 all are stable. (d) Shifts in
growth rates versus

√−ε (circles) compared to leading-order corrections (dashed) from Eq. (42).

linearly stable (with σn < 0), except for the zero mode, which
is neutral (σ0 = 0). In the subcritical case, all modes have
negative eigenvalues and hence are linearly stable.

To understand the dependence of the growth rates σ on
ε we make use of the fact that the subcritical modes differ
only quantitatively from the critical ones, which speaks to the
suitability of a regular perturbation theory. The key ingredient
in this approach is the fact that the parameter a+ used to define
the rescaled variable u = z/a+ appearing in the eigenvalue
problem Eq. (33) admits an expansion in powers of

√−ε near
the critical point [cf. Eq. (19)],

u = x(1 − c
√−ε + · · · ), (38)

where we define x = z/ac. Expanding L, σ and V within this
same framework, we have

L = L(0)(x) + √−ε L(1)(x) + · · · , (39a)

σn = σ (0)
n + √−ε σ (1)

n + · · · , (39b)

Vn = V (0)
n (x) + √−ε V (1)

n (x) + · · · . (39c)

Expanding L, we find L(0)(x) = L as in Eq. (30a) and

L(1)(x) = 2c

cosh2x

[
∂2

∂x2
+

( x

cosh2x
− thx

) ∂

∂x

]
. (40)

Collecting terms, we find (L(0) − σ (0)
n )V (0)

0 = 0 and, at
O(

√−ε), an inhomogeneous equation for the perturbed
eigenfunction and eigenvalue,(

L(0) − σ (0)
n

)
V (1)

n = −(
L(1) − σ (1)

n

)
V (0)

n . (41)

The boundary condition Vn(±D/α) = 0 can likewise
be expanded near the critical point using ±D/α �
±Dc/αc ∓ √

2
√−ε + O(ε), and yields V (0)

n (±Dc/αc) = 0
and V (1)

n (±Dc/αc) = ±√
2∂xV (0)

n (±Dc/αc). The eigenvalue
correction σ (1)

n is then found by orthogonalization with the
null space of the operator on the left-hand side of Eq. (41). At
leading order, we use the functions V (0)

n and obtain

σ (1)
n =

∫ xc

−xc

dxV (0)
n L(1)V (0)

n . (42)

Figure 9(d) shows the accuracy of the leading term in this ap-
proximation compared to direct numerical solution of the full
eigenvalue Eq. (33) for the first 5 modes. We see confirmation
of the

√−ε scaling and the leading order result Eq. (42) as√−ε → 0.

F. Nonlinear instability of the critical catenoid

We next consider the first situation in which the catenoid
collapses as ε is increased from negative values: critical
catenoids (ε = 0) under finite amplitude perturbations. As
noted by Chen and Steen [2] in the context of inertial dy-
namics, perturbation to the critical catenoid in the form of
arbitrary initial values of the relevant modes produce oscilla-
tory motion superimposed on the collapse process. However,
for the special case of an initial condition involving only the
neutral mode, the evolution is monotonic. The robustness of
the pinching phenomenon to the initial absence of higher
modes allows us to focus purely on neutral perturbations of

035105-9



GOLDSTEIN, PESCI, RAUFASTE, AND SHEMILT PHYSICAL REVIEW E 104, 035105 (2021)

TABLE I. Low-order projection coefficients for the nonlinear
instability of the critical catenoid. Those for odd values of k vanish
by symmetry.

k p(2)
k p(3)

k

0 −1.054 −0.220
2 −0.276 0.685
4 −0.115 0.238
6 −0.0985 0.159

the form g(t ) = b0(t )V0(u). Substituting this into the MCF
dynamics Eq. (24) we have H0 = 0 for a minimal surface
and H1 = 0 for the critical catenoid, while each higher order
operator can be projected onto the critical modes, with

Hn = bn
0

∞∑
k=0

p(n)
k Vk, (43)

where {p(n)
k } are projection coefficients. Note that the func-

tions Hn in Eq. (28) are defined for an arbitrary perturbation
g which need not satisfy the boundary conditions g(±d ) = 0
that must hold for a physical system, whereas the modes Vk do
vanish there. Thus, the mode decomposition exhibits a kind of
Gibbs phenomenon at the domain boundaries. Table I gives
the first four nonzero projection coefficients at second and
third order.

Within this approximation, the dominant mode is V0 and
the nonlinear evolution of its amplitude has the form

ḃ0 = −p(2)
0 b2

0 − p(3)
0 b3

0 + · · · , (44)

where the negative signs arise from the particular choice
Eq. (27) for the sign of g. Defining B = b0(0)/b0(t ) and
ν = p(3)

0 /p(2)
0 , Eq. (44) can be solved implicitly as

B − 1 − ν ln
(B + ν

1 + ν

)
= p(2)

0 b0(0)t . (45)

At very early times, we may neglect the contribution from the
cubic operator and obtain the explicit solution

b0(t )

b0(0)
� 1

1 + p(2)
0 b0(0)t

. (46)

Unlike the exponential growth exhibited by a linear instability,
Eq. (44) shows algebraic growth. Since p(2)

0 < 0, Eq. (46)
shows that if b0(0) > 0, then the amplitude grows in time
and the system has a finite-time singularity, when the catenoid
waist vanishes, at a time tp such that b0(tp)V0(0) = 1, or

tp = − 1

p(2)
0

(
1

b0(0)
− V0(0)

)
. (47)

As p(3)
0 < 0, inclusion of the cubic term shortens the singular-

ity time.

G. Supercritical catenoids

For catenoids with D > Dc we substitute Eq. (20) into the
governing MCF Eq. (24) and define

β = ac

R
cosh(d/ac) = αc cosh [xc(1 + ε)] (48)

and mβ = β2 + sinh2x. Then for ε � 0 we have

H0 = β

{
cosh x

mβ

− 1

cosh x

}
, (49a)

H1 = −Lβg, (49b)

where again x = z/ac, and the operator Lβ is

Lβ = β2

mβ

∂2

∂x2
− β2

m2
β

sinh 2x
∂

∂x
+ β2

cosh2x
(50a)

= β2

[
∂

∂x

(
1

mβ

∂

∂x

)
+ 1

cosh2x

]
, (50b)

the second relation being in the standard Sturm-Liouville
form. The operator Lβ reduces to L as β → 1 (ε → 0) and
mβ → cosh2x. From Eq. (49a) the stretched catenoid Eq. (20)
has nonzero mean curvature H0 when β �= 1.

As with the scheme used for the subcritical case, we ex-
pand Eqs. (49a) and (49b) to first order in ε, using β �
1 + ε + · · · and mβ � cosh2x + 2ε + · · · , to obtain

H0 = 2ε

cosh3x
+ · · · , (51a)

Lβ = (1 + 2εth2x)L(0)(x)

+ 2ε

cosh4x

(
2thx

∂

∂x
+ 1

)
+ · · · . (51b)

These are expressed in terms of the scaled coordinate x ∈
[−xc(1 + ε), xc(1 + ε)], and to obtain the full expansion in
ε we introduce the rescaled coordinate y = x/(1 + ε) to map
the problem back to the domain of the critical catenoid. Fur-
ther expanding in ε, the leading-order results are

H0 = 2ε

cosh3y
+ · · · , (52a)

Lβ = [1 + 2ε(th2y − ythy)]L(0)(y)

+ 2ε

cosh2y

[
− ∂2

∂y2
+

(
thy + 2thy − y

cosh2y

)
∂

∂y
+ 1

cosh2y

]

+ · · · , (52b)

and the linear dynamics of the perturbation is

gt = −H0 + Lβg. (53)

The homogeneous Sturm-Liouville problem LβVn = σnVn

can be treated perturbatively in a manner analogous to that
for subcritical catenoids in Eqs. (39), except that the expan-
sion is now linear in ε. Figure 10 shows the eigenfunctions,
eigenvalues and eigenvalue corrections for the first modes,
illustrating the accuracy of the linear shift in comparison to
the exact calculations on the stretched domain. All eigenval-
ues σn acquire positive contributions linear in ε, such that
for moderate stretches of, say, ε = 0.1–0.2, the mode that is
neutral at ε = 0 acquires a positive growth rate, while all other
modes remain strongly damped. This is the typical situation
in a pattern-forming system in a finite domain [44], and we
would expect the strongly damped modes to be slaved to the
weakly unstable one, whose evolution we first calculate. If we
set g(x, t ) = b0(t )V0(x) in Eq. (53) and write the projection of
H0 onto V0 as εd0, then we obtain ḃ0 = εd0 + εσ

(1)
0 b0. If the
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FIG. 10. Linear stability problem for MCF of supercritical
catenoids. (a) First five eigenfunctions of the operator Eq. (50b) for
a weakly supercritical case (ε = 0.1). (b) Growth rates σn for the
first seven modes. When ε = 0, mode 0 is neutral and all others
are stable; for ε > 0 mode 0 becomes unstable while others remain
stable. Note scale shift for positive σ axis. (d) Shifts in growth rates
(solid symbols) compared to leading-order linear corrections arising
from Eq. (53) (dashed lines).

catenoid is initially stretched but otherwise not perturbed, then
b0(0) = 0 and the unstable mode grows on the slow timescale
εσ

(1)
0 t due to the initial nonzero mean curvature, with

b0(t ) = d0

σ
(1)
0

(
eεσ

(1)
0 t − 1

)
. (54)

The amplitudes of the strongly damped higher modes n >

0 are obtained at quadratic order by considering the sepa-
rate contributions from the terms in the equation of motion
gt = −H0 + Lβg − H2, where H2 is given in Eq. (29b). If
g = bnVn, then the left-hand side is ḃnVn, while those on the
right are, respectively, of order ε, σ (0)

n bnVn, and b2
0 p(2)

n Vn,
where p(2)

n is the projection on Vn of the operator H2, evaluated
with g = V0, as in Eq. (43). Ignoring the O(ε) contribution,

the slaving approximation ḃn = 0 implies

bn(t ) ∼ p(2)
n b2

0(t )

σ
(0)
n

. (55)

Since the growth rates σ (0)
n grow in magnitude roughly

quadratically in n (cf. Fig. 10), in this slaving approximation
the dominant even mode will be n = 2, with b2 > 0 at this
level of approximation.

H. Euler flow

In our experiments, with catenoids supported on rings of
radius R = 4 cm, the typical timescale for collapse is ∼0.1 s,
giving a characteristic speed U ∼ 40 cm/s. Using the kine-
matic viscosity νa of air, the Reynolds number Re associated
with the expulsion of air from the interior is ∼103, justifying
a treatment of the air motion as an Euler flow, particularly
at the early stages of collapse. The simplest model for the
motion of the soap film itself is a vortex sheet [45] coupled
to that Euler flow. This dynamics, unlike mean curvature flow,
is intrinsically nonlocal. While this problem has historically
been studied from a Lagrangian perspective [45], a recent
Eulerian reformulation [46], motivated by prior work on in-
terface motion in lubrication theory [47–50], is particularly
suitable to the present analysis. In this approach, the motion of
an axisymmetric soap film is given by the coupled dynamics
of the radius ζ and vortex sheet strength η̃,

ζ 2
t = −Fz, (56a)

η̃t + (wη̃)z = γ

ρa
Hz, (56b)

where ρa is the density of air, F is the flux associated with
the conservation law for cross-sectional area and w is the
longitudinal fluid velocity, both of which can be expressed as
nonlocal integrals involving ζ and η̃ [46]. As before, H is the
mean curvature. The flux form of Eq. (56a), which embodies
the conservation law associated with the air surrounding the
film, distinguishes this dynamics from MCF. Using the gen-
eral relationship Eq. (2) between ζt and the normal velocity,
we have

U = − 1

2
√

G
Fz (57)

and thus the simple result (assuming up-down symmetry)

Vt = F (d ), (58)

which illustrates that F is the flux of air past a given point. For
long slender necks, F can be approximated by the local ex-
pression F = η̃ζ 2, reducing the dynamics to the well-known
one-dimensional model [51].

To analyze the linear instability of a stretched catenoid
under this local approximation we note that to leading order
the longitudinal velocity vanishes (motion starts from rest).
With the rescalings of ζ and z used previously and the rescaled
time t ′ = t/τcap, where

τcap =
(

2ρaa3
c

γ

)1/2

(59)
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is the capillary time, the rescaled vortex strength is η =
η̃(2acρa/γ )−1/2, and the linearized dynamics of the perturba-
tion g away from the stretched catenoid f is

gt = 1

f
( f 2η)x, (60a)

ηt = (Ĥ0 + Ĥ1 )x, (60b)

where, up to linear order, Ĥ0,1 = m−1/2H0,1 as per Eqs. (28),
(49a), and (49b). This pair of first-order equations can be
converted into a single second-order one by differentiating
Eq. (60a) with respect to time and using Eq. (60b) to obtain

gtt = 1

f
( f 2[Ĥ0 − L̂βg]x )x, (61)

where L̂β = m−1/2Lβ . Compared to the mode dynamics
Eq. (53) within MCF, we see not only inertial aspects (through
the second time derivative) but also the effect of the conserva-
tion law (through additional spatial derivatives).

An example of the applicability of the local approximation
is the Rayleigh-Plateau instability of a cylinder under the
Euler dynamics Eq. (61), where one can compare with the
exact result incorporating nonlocality [46]. With a cylindri-
cal base function of radius R and with time rescaling t ′ =
t/(ρaR3/γ )1/2, the linearized dynamics is

gtt = −gxx − g4x, (62)

where x = z/R here. Resolved into Fourier modes of rescaled
wave vector q, the growth rate is σ (q) = q2(1 − q2) versus
the exact result q2(1 − q2)I1(q)K1(q) given in terms of mod-
ified Bessel functions. The approximate result is qualitatively
identical to the exact one, while being quantitatively larger by
a factor ∼1.6.

We first consider the nonlinear dynamics of the critical
catenoid under this Euler dynamics, analogous to the MCF
version of the problem described in Sec. III F. As remarked
in Sec. III F, we avoid the possibility of oscillatory excitations
by considering a perturbation to the critical catenoid involving
only the marginal mode, and set g(t ) = b0(t )V0(u). As with
MCF, since the critical catenoid has zero mean curvature and
L̂βV0 = 0 when β = 1, the leading order equation of motion
is

gtt = 1

f
( f 2Ĥ2,x )x, (63)

where

Ĥ2 = (6 th2u − 1)g2
u − thu ggu − 3 thu guguu − g2

cosh4u
. (64)

This yields the equation of motion for b0,

b̈0 = q(2)
0 b2

0 + · · · , (65)

where q(2)
0 is the projection of the right-hand side of Eq. (64)

onto V0. Equation (65) has the solution

b0(t ) = b0(0)

{
1 +

√
3

[
1 − cn(v, k)

1 + cn(v, k)

]}
, (66)

where v = (2q(2)
0 b0(0)/

√
3)1/2t , k = (

√
3 − 1)/2

√
2 =

sin 15◦, and we have assumed zero initial velocity for b(t ). As
noted previously [2], the early time behavior is quadratic in t ,

FIG. 11. The linear stability problem for Euler flow for critical
and supercritical catenoids. (a, b) First five eigenfunctions Wn(u) of
the linear operator in Eq. (61) for a the critical catenoid (ε = 0) and
a weakly supercritical one (ε = 0.1). (c) Growth rates σn and oscil-
lation frequencies ωn for the first seven modes for the cases in panels
(a) and (b). Note the frequency scale (ωn) increases downward, while
the growth rate scale (σn) increases upward and is magnified by a
factor of ten.

b0(t )/b0(0) = 1 + (q(2)
0 /2)t2 + · · · , in contrast to the linear

behavior Eq. (46) within MCF.
Finally, we return to the case of the stretched catenoid un-

der Euler flow Eq. (61). A calculation completely analogous
to that within MCF for the stretched catenoid leads to the
Euler-dynamics modes for the critical and stretched catenoids
and their growth rates, as shown in Fig. 11. As in the case
of MCF, the modes of the stretched system appear simply as
stretched versions of those for the critical case. Under this in-
ertial dynamics the modes of the critical catenoid for n � 1 are
oscillatory, with real frequencies shown in Fig. 11(c), while
the zero mode is neutral. For ε > 0 the oscillatory modes
acquire small shifts in frequency but do not otherwise change
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FIG. 12. Projection of experimental collapse dynamics onto modes. (a) The perturbation function g(u) as defined in Eq. (27), corresponding
to the deviation of the interface shape from the criticial catenoid, as a function of u = z/a, color-coded by time as in Fig. 6 from red (early)
to blue (late). (b) Projection amplitudes for the first 4 even modes as a function of time relative to critical time tc. (c) Reconstruction of the
interface evolution using the mode amplitudes in panel (b). (d) As in panel (b), but a semilog plot of the absolute values of the mode amplitudes.
Heavy dashed line is linear fit to extract mode growth rate.

their character, while the n = 0 mode becomes unstable, with
a positive real growth rate σ0.

Again by analogy to the case in MCF [cf. discussion before
Eq. (54)] the leading order equation of motion for the unstable
mode amplitude is of the form

b̈0 = εq(0)
0 + εq(1)

0 b0. (67)

If we again assume an unperturbed stretched catenoid, then
b0(0) = 0, and if furthermore it is not initially moving, so
ḃ0(0) = 0, then

b0(t ) = q(0)
0

q(1)
0

[
cosh

([
εq(1)

0

]1/2
t
) − 1

]
. (68)

This result provides the sought-after form of the exponential
growth of the mode amplitude.

IV. MODE DECOMPOSITION OF EXPERIMENTAL
COLLAPSE DYNAMICS

The results of Secs. III E–III H, as summarized in Figs. 9–
11, reveal that the form of the modes associated with the linear
stability of catenoids is essentially independent of the under-
lying equations of motion and that it is instead the growth
rates which depend on the dynamics (MCF or Euler). This
quasiuniversality suggests that a mode decomposition of the
experimental shapes will give model-independent insight into

the actual collapse process. The dynamics of the mode growth
is also a check on the validity of the Euler calculation.

Such a projection proceeds along the lines by which we
defined the base and perturbed states of catenoids in Eq. (27),
namely, from the physical interface shape ζ (z, t ) we define
the perturbation function g(u) = f (u) − ζ/a, where f (u) =
cosh(u) is the critical catenoid, with u = z/a ∈ [−d/a, d/a]
and a = αcR is given by the measured hoop radius R and the
critical value αc = 0.5524 . . .. As f is defined to match the
hoop radius at z = d , g vanishes identically at the domain
boundaries. Using, for example, the critical modes Vn(u) that
satisfy Eq. (33) and are shown in Fig. 9, we write

g(u) =
∞∑

n=0

bn(t )Vn(u), (69)

and use orthonormality to obtain the bn(t ) by direct numerical
integration using the Vn. By the experimental z → −z sym-
metry, bn = 0 for odd n.

The results of this projection are shown in Fig. 12 through
the function g itself and the first four nonzero projection coef-
ficients. The central result of this analysis is the very strong
dominance of the shape evolution by the mode V0 that is
neutral for the critical catenoid. Figure 12(d) shows that its
amplitude grows exponentially until very close to the critical
time, when the higher modes begin a rapid growth while
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remaining relatively small even at tc. The subdominant mode
until just near tc is V2, but it is rapidly overtaken by V4 whose
amplitude b4(t ) < 0. With V4 as in Fig. 9(a), we infer that
splitting of the minimum of the film shape into two incipient
pinch points arises from the negative value of b4.

A fit of the linear portion of the semilogarithmic plot
in Fig. 12(d) to the form b0(t ) = A exp(σexpt ) yields the
experimental growth rate σexp = 28.4 ± 0.1 s−1. From the
original rescaling of the equations of motion introduced above
Eqs. (60) and the perturbative result in Eq. (68) we expect the
dimensional growth rate to be

σdim = (
εq(1)

0

)1/2
τ−1

cap, (70)

where the factor of ε arises from the stretch of the catenoid.
Using experimental parameters ac = 0.55...R, with R =
4 cm, ρa = 10−3 g/cm3, and γ = 35 dyn/cm, we have τ−1

cap ≈
40 s−1, and with q(1)

0 � 2.83 in Eq. (67) by direct numerical
integration, we find σdim � 67

√
ε s−1. With ε in the range of

0.1–0.2 for our studies as described in Sec. II, we therefore
find good agreement between the Euler calculation and exper-
iment.

V. CALCULATION OF GEOMETRIC OBSERVABLES

A. Cone angle at pinching: Approach based
on a mathematical sequence

Here we use a simple geometric approach to calculate
θ∗, the cone angle at pinching introduced earlier. It is based
on approximating the observed shape of the evolving soap
film surface by a minimizing sequence of shapes [52]. This
method, which is suitable for area minimization when the
solutions are continuous, differentiable functions has been
extended to discontinuous solutions of functionals of the form
[53]

J[ζ ] =
∫ z1

z0

ψ (ζ , ζz )
√

1 + ζ 2
z dz, (71)

where ζ (z) and ζz are the radial coordinate and its z-derivative,
respectively, which clearly includes the area functional for
a surface of revolution. That is, the minimizing sequence
method can be applied to study the approach toward the Gold-
schmidt solution.

Following Koshelev and Morozov [53], if ζ̂ is the mini-
mizing function of the functional J[ζ ], then any sequence {ζε}
(where ε is a label and does not indicate differentiation) for
which the limits

lim
ε→0

J[ζε] = J[ζ̂ ] and lim
ε→0

ζε = ζ̂ (72)

exist, is a minimizing sequence. Because the solution need not
be differentiable, it is possible to construct a sequence consist-
ing of right circular cones and cylinders with discontinuities
in derivatives.

To proceed, we note that it is possible to construct from
truncated piecewise conical surfaces, which are clearly not
minimal, a suitable approximation to any catenoid [54,55]. In
fact, the area 2S(c) of the critical catenoid, i.e., the last stable
catenoid bounded by two circles of radius R separated by a
distance 2d , is equal to that of the surface constructed with
two right circular cones of height d and base radius R, each of

h

R

2d2b

FIG. 13. Martini-glass approximation to the soap film surface.

area

S(c) = πR2

√
1 + 1

tan2 θ0
, (73)

whose vertices touch, and where θ0 is the half apex angle of
the cone. S(c) is the area of the first element of a sequence of
surfaces consisting of just two separate cones, whose vertices
are connected by a line, and whose half apex angle becomes
successively larger, i.e., θ0 < θ1 < θ2 < · · · � π/2, each with
half-area we denote by S(c)

n ,

S(c)
n = πR2

√
1 + 1

tan2 θn
, (74)

which decreases as n increases. While this sequence satisfies
the conditions Eq. (72), the connecting line is unphysical.

We now construct a more physical sequence such that (i)
it tends to the Goldschmidt solution, (ii) the area Sn of its
nth element is greater than S(c)

n , and (iii) it eliminates the
unphysical connecting line. It consists of shapes composed of
two oppositely oriented truncated cones with apex angle θn,
joined by a cylinder of radius h(θn): the “Martini glass” shape
(Fig. 13). The elements of the new sequence then have area

Sn = π (R2 − h2(θn))

√
1 + 1

tan2 θn
+ 2πbr(θn), (75)

where the half-length of the connecting cylinder is

b = d − R − h(θn)

tan θn
. (76)

It is possible to construct a sequence ζε(z) which is an
upper bound to the area of the successive surfaces approach-
ing the Goldschmidt solution. Introducing the dimensionless
λε = ζ/R, λ = h/R, δ = d/R, and s = z/R, and setting ε =
1/ tan θn, we have

λε(s) =
⎧⎨
⎩

1 − (δ+s)
ε

if − δ � s < −δ + ε[1 − λ(ε)],
λ(ε) if |s| < δ − ε[1 − λ(ε)],
1 − (δ−s)

ε
if δ − ε[1 − λ(ε)] < s � δ,

(77)
where λ(ε) is as yet unspecified. There is an infinite number
of ways to choose λ(ε). One of the simplest is to let h(θn)
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be the radius of the cylinder joining two annuli separated by
a distance 2d with inner radius R − h(θn) and outer radius
R, such that the combined area of the three elements (annuli
and cylinder) is 2S(c)

n , or S(c)
n = π [R2 − h(θn)2] + 2πh(θn)d .

In dimensionless units,

λ(ε) = δ −
√

δ2 + 1 −
√

1 + ε2, (78)

where we have chosen the root of the quadratic equation
that has λ → 0 as ε → 0 (the minus sign before the outer
radical); that is, the solution tends (in dimensional units) to
the Goldschmidt solution

ζG(z) =
⎧⎨
⎩

R if z = −d,

0 if |z| < d,

R if z = d.

(79)

To verify that this sequence is a suitable one, it is only left to
show that limε→0 J[ζε(z)] = J[ζG(z)] [53]. Direct integration
yields

J[ζε] = 4πh(ε){d − ε[R − h(ε)]}
+ 2π

√
1 + ε2[R2 − h2(ε)], (80)

which becomes 2πR2, as ε → 0, as required.
A test of the suitability of the sequence to describe the

physical system, when λ(ε) is given by Eq. (78), is its predic-
tion of the cone angle at pinching. From the Rayleigh criterion
that a cylinder is unstable under the action of surface tension
when its length exceeds its circumference, the cylindrical sec-
tion of the Martini glass shape will be unstable when b = πh.
With Sn = Sn/(πR2), Eq. (75) yields

Sn(π − ε)2 − 2π (δ − ε)2 −
√

1 + ε2(π − δ)(π + δ − 2ε)

= 0. (81)

As n grows and Sn decreases from the value associated with
the critical catenoid, the first nonnegative solution of Eq. (81)
for ε appears when Sn � 1.1244, which corresponds to θ∗ �
69.5◦, equivalent to 2θ∗ � 139◦, within 3% of the experimen-
tal value.

The entire evolution of experimental shapes, from the ini-
tial catenoid to that with the cone angle at pinching, can
also be compared to the sequence. To do this, we return to
the general expressions Eqs. (75) and (76), and use the pairs
(Sn, θn) obtained from experiment to calculate the radius as
the solution of the resulting quadratic equation

λ2(
√

1 + ε2 − 2ε) − 2λ(δ − ε) + Sn −
√

1 + ε2 = 0, (82)

where, again, it is necessary to choose the root that takes λ →
0 when ε → 0. Implementing this procedure for a typical set
of experimental results yields for each pair (Sn, θn) a point in
the ε − λ plane, as shown in Fig. 14. Overlaid on these data is
a contour plot of the area function, and arrows indicating the
local gradient of that function at each point. After an initial
transient period, the evolution becomes progressively more
aligned with the direction of steepest descent, indicating that
the system evolves as a gradient flow, and providing further
evidence of the accuracy of the representation of the shapes as
combinations of cylinders and cones.
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FIG. 14. Mapping experimental data onto the sequence. Contour
plot of the energy function S in the parameter space of cone angle
θ and scaled radius λ. Arrows on experimental data points indicate
−∇S.

B. Cone angle at pinching: Heuristic argument

An alternative approach to calculate the cone angle at
pinching involves finding functional relationships between
surface area, neck radius, and the tangent angle φ at the
point of support. This can be done within perturbation the-
ory around the critical catenoid by noting that MCF and
Euler dynamics share the same critical mode V0(x) given by
Eq. (34), where x ∈ [−xc, xc]. For the critical catenoid f (x) =
cosh x, the perturbed shape r(x) = f (x) − κV0(x), where κ �
0 is a parameter, satisfies the boundary conditions r(±xc) =
cosh(xc) for any κ . Since dr/dx|xc = tan θ then the tangent
angle satisfies

tan θc + κNxc cosh xc = tan θ. (83)

Likewise, the minimum neck radius is

rn = f (0) − κV0(0). (84)

Since the catenoid around which we are perturbing is not
only a minimal surface, but also the critical one, the first
nonzero correction to the area is third order in s,

A3 = κ3 α2
c

2

∫ xc

−xc

dx

{
f fxV3

0,x(
1 + f 2

x

)5/2 − V0V2
0,x(

1 + f 2
x

)3/2

}
. (85)

With f (x) = cosh x and V0 given in Eq. (34), we obtain

A = Ac − κ3

3
α2

c N3x3
c + · · · . (86)

With the results Eqs. (83), (84), and (86) we have the three
geometric quantities given in terms of κ , and thus instead of
considering the time evolution of each, we may relate one to
another with κ as a parameter and compare these binary re-
lations with the corresponding experimental results (Fig. 15).
The good agreement found lends further support to the idea
that much of the geometry of the collapsing catenoid is a
consequence of the dominance of the fundamental unstable
mode V0.
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FIG. 15. Geometry of collapsing catenoid compared with one-
mode approximation. Scaled area A (a) and neck radius rn (b) as
functions of cone angle θ , and (c) area versus neck radius. Binned
data is compared to theory (blue lines) in Eqs. (83)–(86), with indi-
vidual data sets as in Fig. 3.

C. Conical similarity solutions

We conclude in this section by discussing the arguments
first advanced by Day, Hinch, and Lister [25] to explain the
inverted double-cone cone structure that leads to the ultimate
topological transformation, seen in Fig. 1(v). If the collapse
dynamics obeys a similarity solution so that the velocity po-
tential has the scaling form

φ(ρ, t ) =
(

γ 2τ

ρa

)1/3

�(P), (87)

where P = ρ/(γ τ 2/ρa)1/3 and τ = tc − t , then the potential
function � obeys the full Laplace equation in two dimen-
sions (assuming axisymmetry). The kinematic and Bernoulli
boundary conditions at the interface are consistent with a
conical solution at large P, with � ∼ |P|1/2, equivalent to φ ∼
ρ1/2, where ρ = |ρ|. Regularity of the solution of Laplace’s
equation then requires

φ ∼ ρ1/2P1/2(cos θ ), (88)

where P1/2 is the Legendre function of order 1/2. Such a
velocity potential produces a contribution to Bernoulli’s equa-
tion |∇φ|2 proportional to 1/ρ, which can naturally balance
the Laplace contribution to the pressure proportional to the

mean curvature of the surface, as H ∼ 1/ρ for a cone, pro-
vided that curvature is negative, as in the larger of the two
cones seen in Fig. 1(v). For the smaller cone, whose curvature
is positive, an additional source term proportional to τ/ρ can
provide that balance.

The functional form of Eq. (88) for the velocity potential is
the same invoked by Taylor [56] to explain the conical shapes
of water drops in strong electric fields. There, the requirement
that the surface of the drop be an equipotential fixes the cone
angle θ0 to be that of the zero of P1/2. Unlike that situation,
the solution outlined above provides a balance of forces that
supports a conical solution, but does not, by itself, determine
the angles; they emerge from the full analysis of the similarity
solution. In the case of the acute angle cone studied here, we
have seen that the conical structure reaches from the pinch
point all the way to the supporting rings. The arguments based
on the sequence of shapes in Sec. V A and the dominance of
the unstable mode in Sec. V B suggest that it is fundamentally
the Rayleigh instability of the central cylinder that dictates the
pinch point and thus the acute angle of the large cone.

The power-law decay of the minimum neck radius shown
in Fig. 5 and the blow-up of the Gaussian curvature there both
suggest that the acute-angle cone that we have focused on is
describable in terms of a classic similarity solution, but with
two important differences. First, the pinching region has two
cones with curvatures of the same sign: the large cone we have
focused on, reaching the supporting frame, and the smaller
one connecting to the central cylindrical region that ultimately

FIG. 16. Test of similarity solution. Data used in Figs. 6 and 12
are plotted in similarity variables Eq. (89) with same color scheme
as before. Panel (b) is an enlargement of the central region of panel
(a).
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H1

H2

FIG. 17. Conjectured diagram of fixed points for conical simi-
larity solutions. Axes represent mean curvatures of the two parts of
the interface that meet at an incipient pinch point. Red fixed point
associated with two curvatures of the same sign is unstable, while
the green fixed point, with opposite curvatures, is stable. Blue fixed
point at the origin represents the starting catenoid, a minimal surface.
Black arrow represents dynamical trajectory as catenoid collapses
following boundary deformation.

forms the satellite bubble. Second, the pinching process does
not go to completion. Instead, after the critical time tc those
two cones begin to retract, connected by a very thin thread.
Thus, an important issue is the extent to which the pinching
interface conforms not only to the Keller-Miksis scaling but
the more general behavior of self-similarity. If self-similar,
then we should expect the data to collapse when we adopt
instead of (u, r) the similarity variables (χ, ξ ) with

χ = u − un

rn
and ξ = r

rn
. (89)

Figure 16 shows such a plot, with the data used in previous
figures. While at a coarse scale there appears to be an evo-
lution towards a fixed scaling function, the magnified view
in Fig. 16(b) shows the failure to converge to a true time-
independent similarity form.

The above suggests a picture in which the acute-angle cone
formation is associated with an unstable similarity solution,
as depicted in Fig. 17 in the space of the mean curvatures H1

and H2 of two surfaces that meet at an incipient pinch point.
The initial minimal surface at H1 = H2 = 0 flows under the
collapse dynamics toward the acute-angle fixed point along an
attracting direction, only to be repelled before the true singu-
larity, flowing then toward the stable [26] obtuse-angle conical
fixed point and the ultimate topological rearrangement.

VI. CONCLUSIONS

In this paper, we have focused primarily on the collapse
of three-dimensional catenoidal soap films induced by defor-
mations of the boundary, and have shown by several methods
how one can understand global geometric features of the films
near pinching. Analysis of the linear and weakly nonlinear
dynamics of both stable and unstable catenoids shows that
the underlying modes are qualitatively the same whether the
dynamics is mean curvature flow or Euler flow, even though
the dynamics of the modes in the two cases are fundamentally
distinct. Our study of the mode dynamics just beyond the
critical catenoid reveals a familiar structure in the field of

pattern formation, with a fundamental unstable mode and an
infinite ladder of stable ones. This structure raises the question
of whether it may be possible develop an “inertial manifold”
dynamics for the unstable mode in a manner analogous to that
which has been described for interface pinching singularities
in Hele-Shaw flow [48,49]. The unified analysis of the role
of boundary deformations on a paradigmatic problem that
we have presented in this paper constitutes a framework to
study more complex problems. Among them is the collapse of
hemicatenoids bounded by solid surfaces, with a free contact
line [57,58] where, as we discuss elsewhere [59], the motion
is dominated by viscous drag in the moving contact line, and
more significantly the collapse dynamics of soap films with
exotic topologies [3–7].
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APPENDIX: EVOLUTION OF GEOMETRIC QUANTITIES

In this Appendix we provide a self-contained summary of
the key results for the time evolution of geometric quantities
relevant to the calculations in the main body of the paper.
We start by assuming that we have a surface traced out by
the vector x(uα, t ) through internal coordinates uα , α = 1, 2,
and varying with time t . The surface has a metric tensor with
components

gαβ = xα · xβ, (A1)

where here subscripts denote differentiation, so xα ≡ ∂x/∂uα .
The xα are the unnormalized tangent vectors to the surface.
They define the unit normal n̂ as, say,

n̂ = x1 × x2

|x1 × x2| = x1 × x2√
g

, (A2)

or its opposite if we switch 1 ↔ 2. Here, g = det(g) is the
determinant of the metric tensor,

g = εαβg1αg2β, (A3)

where ε is the Levi-Civita symbol and the summation conven-
tion holds. The inverse metric tensor, with coefficients gαβ is
the usual

g−1 = 1

g

(
g22 −g12

−g21 g11

)
. (A4)

The coefficients hαβ of the second fundamental form are
defined by the normal and tangent vectors as

hαβ = −n̂α · xβ. (A5)
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If we denote by Tr the conventional trace of a matrix, then the
mean and Gaussian curvature, H and K , of the surface can be
expressed in terms of h as

H = 1
2 Tr

(
hα

β

)
, (A6)

K = det
(
hα

β

)
, (A7)

where hα
β = gαμhμβ .

1. Dynamics

For the dynamical problem, the surface is assumed to move
purely in the normal direction, with a velocity U that is some
local or nonlocal function of the surface shape,

xt = U n̂. (A8)

Given this law of motion, we calculate the time evolution of g,
h, and hence H and K . The fundamental assumption we make
is that the internal coordinates uα are independent of time.

Let us start with the normal vector. Using the relationship
n̂ · xα = 0, we differentiate with respect to time to obtain n̂t ·
xα = −n̂ · xαt . Now, xαt = ∂αxt = ∂α (U n̂) and since n · n̂α =
0, we have n̂t · xα = −∂αU . To obtain nt itself, we note that it
can be expanded in terms of the tangent vectors as n̂t = Aμx̂μ,
for some coefficients Aμ, yielding Aμgμα = −∂αU . Multiply-
ing by xα

Aμxαgμα = Aμxμ = −xα∂αU, (A9)

so, recognizing the middle expression as n̂t again, we have

n̂t = −xα∂αU . (A10)

Next, we examine the components of the metric tensor.
Differentiating directly we find

∂t gαβ = xαt · xβ + xα · xβt . (A11)

Again noting that n̂ · xα = 0, we obtain

∂t gαβ = [n̂α · xβ + xα · n̂β]U = −2hαβU . (A12)

From this, we can obtain the time evolution of det g,

∂t g = −2gTr(g−1h)U . (A13)

Comparing with Eq. (A6), we deduce

∂t g = −4gHU . (A14)

Note the sign difference compared to Eq. (18) of Ref. [36].
We can do two checks on this result. The first is to note

that the sign of the mean curvature depends on the particular
parametrization chosen. For example, the normal vector of a
sphere may point inward or outward depending on the order in
which the two coordinates are chosen, but the mean curvature
will also have opposite signs in the two cases. If we flip the
normal, then H changes sign but so too will U , leaving ∂t g
unchanged.

In the particular case of mean curvature flow (MCF) of
a sphere, we can carry through the entire calculation easily.

With the parametrization

x = ζ [sin θ cos φ e1 + sin θ sin φ e2 + cos θ e3], (A15)

and choosing u1 = θ and u2 = φ we have

n̂ = sin θ cos φ e1 + sin θ sin φ e2 + cos θ e3, (A16)

which is an outward normal. The metric tensor is

gαβ =
(

ζ 2 0
0 ζ 2 sin2 θ

)
, (A17)

so g = ζ 4 sin2 θ and

g−1h =
(−1/ζ 0

0 −1/ζ

)
, (A18)

and thus H = −1/ζ . With this outward normal, MCF has U =
−1/ζ and so

∂t g = 4ζ 3ζ̇ sin2 θ = −4ζ 2 sin2 θ. (A19)

Thus, ζ ζt = −1, which yields ζ 2 = ζ 2
0 − 2t . Choosing the

origin of time to when ζ vanishes, we find

ζ (t ) = √−2t . (A20)

This is the famous self-shrinker of MCF [60], apart from a
factor of 2 that differs from that found in the mathematics
literature due to the definition of H .

Returning to the derivation, we now examine the coeffi-
cients hαβ of the second fundamental form. Acting directly on
the definition Eq. (A5), we obtain

∂t hαβ = ∂α (xμUμ) · xβ − n̂α · n̂βU, (A21)

and one can show that

n̂α · n̂β = 2Hhαβ − Kgαβ. (A22)

Introducing the Christoffel symbol �
γ

αβ = −xβ · ∂αxγ , we ob-
tain

∂t hαβ = [
∂α∂β − �

γ

αβ∂γ − (2Hhαβ − Kgαβ )
]
U . (A23)

After further manipulation we obtain the time evolution of the
mean curvature:

Ht = (
2H2 − K + 1

2∇2
)
U, (A24)

where

∇2 = gαβ
(
∂α∂β − �

γ

αβ∂γ

)
(A25)

is the covariant Laplace-Beltrami operator. Again we can
check the results for MCF of a sphere, with H =
−1/ζ , K = 1/ζ 2 and U = −1/ζ , which give ∂t (−1/ζ ) =
(1/ζ 2)(−1/ζ ) = −1/ζ 3, or ζ ζt = −1 as before.

For the Gaussian curvature evolution we obtain

Kt = K
[
2H + (h−1)αβ

(
∂α∂β − �

γ

αβ∂γ

)]
U . (A26)

This is consistent with prior results [36], apart from some
differences in notation for Christoffel symbols.

2. Surface of revolution

For an axisymmetric surface described by

x = ζ (z)[cos θ ê1 + sin θ ê2] + zê3, (A27)
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we have

n̂ = cos θ ê1 + sin θ ê2 − ζzê3√
1 + ζ 2

z

, (A28)

g =
(

ζ 2 0
0 1 + ζ 2

z

)
. (A29)

Then,

hα
β =

(−1/ζ
√

1 + ζ 2
z 0

0 ζzz/(1 + ζ 2
z )3/2

)
, (A30)

and thus

H = 1

2

(
ζzz

(1 + ζ 2
z )3/2

− 1

ζ
√

1 + ζ 2
z

)
, (A31)

and

K = − ζzz

ζ
(
1 + ζ 2

z

)2 . (A32)

Assuming there is no θ -dependence to the quantities of inter-
est, we find by direct calculation that �1

11 = �2
12 = �1

22 = 0

and

�2
11 = −ζ ζz√

1 + ζ 2
z

, �1
12 = ζz, �2

22 = ζzζzz√
1 + ζ 2

z

. (A33)

Thus, for the purely radial case, the covariant Laplacian re-
duces to

∇2 = 1

1 + ζ 2
z

∂zz − 2H
ζz√

1 + ζ 2
z

∂z (A34a)

= 1

ζ
√

1 + ζ 2
z

∂

∂z

(
ζ√

1 + ζ 2
z

∂

∂z

)
. (A34b)

The operator analogous to the Laplacian found in
Eq. (A26) for the evolution of K reduces to

(h−1)αβ
(
∂α∂β − �

γ

αβ∂γ

) =
√

1 + ζ 2
z

ζzz
∂zz − 2ζz√

1 + ζ 2
z

∂z,

so

Kt = K

[
2H +

√
1 + ζ 2

z

ζzz
∂zz − 2ζz√

1 + ζ 2
z

∂z

]
U . (A35)
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