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Spectrally wide acoustic frequency combs generated using
oscillations of polydisperse gas bubble clusters in liquids
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Acoustic frequency combs leverage unique properties of the optical frequency comb technology in high-
precision measurements and innovative sensing in optically inaccessible environments such as under water, under
ground, or inside living organisms. Because acoustic combs with wide spectra would be required for many of
these applications but techniques of their generation have not yet been developed, here we propose an approach
to the creation of spectrally wide acoustic combs using oscillations of polydisperse gas bubble clusters in liquids.
By means of numerical simulations, we demonstrate that clusters consisting of bubbles with precisely controlled
sizes can produce wide acoustic spectra composed of equally spaced coherent peaks. We show that under typical
experimental conditions, bubble clusters remain stable over time, which is required for a reliable recording of
comb signals. We also demonstrate that the spectral composition of combs can be tuned by adjusting the number
and size of bubbles in a cluster.
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I. INTRODUCTION

Frequency combs (FCs) are spectra containing equidistant
coherent peaks. Although mostly optical FCs have found
widespread practical and fundamental applications so far
[1,2], in general, FCs can be generated using waves other
than light. For example, a number of acoustic, phononic,
and acousto-optical FC techniques have recently been intro-
duced [3–13]. Among them, the acoustic frequency comb
(AFC) techniques stand out because they hold the promise to
enable ultrasensitive vibration detectors [14], phonon lasers
[15,16], and quantum computers [17]. AFCs can also find
applications in precision measurements in diverse physical,
chemical, and biological systems in conditions, where using
light—and hence optical FCs—poses technical and funda-
mental limitations. For example, this is the case in underwater
distance measurements [9] and also in some biomedical imag-
ing modalities [3,6,10].

In our previous work [13], we have theoretically and ex-
perimentally demonstrated the possibility of generating AFCs
using oscillations of a cluster of gas bubbles in liquids
[18–20]. We used low-pressure harmonic ultrasound signals
with the frequency that is an order of magnitude higher than
the natural frequency of the bubble cluster [19,21]. The in-
teraction of ultrasound waves with an oscillating bubble at
the natural frequency of a cluster results in the amplitude
modulation of cluster’s response and the appearance of side-
bands around the harmonic and ultraharmonic peaks of the
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driving ultrasound wave. We demonstrated that such sideband
structures can be used as AFCs.

However, as with other AFC generation techniques [6,8],
in our experiments the number of sideband peaks usable as an
AFC is small. At present, this restriction presents numerous
technological challenges that shape research efforts in the
field of FCs [1,2]. For example, similarly to optical FCs, for
many applications the AFC spectrum has to span over an
octave of a bandwidth—that is, the highest frequency in the
comb spectrum has to be at least twice the lowest frequency.
Of course, the spectrum of an AFC can be extended using one
of the techniques developed, for example, for broadening the
spectra of optoelectronic FCs [22] such as supercontinuum
generation using nonlinear optical effects. (Here, the adop-
tion of optical techniques in the acoustic domain is possible
because of the analogy between nonlinear optical processes
in photonic devices and nonlinear acoustic processes in liq-
uids containing gas bubbles [10].) Furthermore, our analysis
reported in Ref. [13] demonstrates that the number of peaks
in a bubble-generated AFC and their relative magnitude can
be increased by simultaneously decreasing the frequency and
increasing the pressure of the ultrasound wave driving bubble
oscillations.

In the current paper, we suggest an alternative strategy
for broadening spectra of AFCs generated using oscilla-
tions of gas bubbles. We theoretically investigate the use of
polydisperse clusters consisting of mm-sized bubbles with
equilibrium radii Rn0 = R10/n, where R10 is the equilibrium
radius of the largest bubble in the cluster and n = 1, 2, 3, . . .

is the number of bubbles in the cluster. Although clusters with
other bubble size distributions could be used in the proposed
approach, the specific ratio of equilibrium radii investigated in
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this paper allows generating AFCs with a quasicontinuum of
equally spaced peaks, which is convincingly demonstrated be-
low by numerical simulations of clusters with n = 4 bubbles.
In line with our previous experiments [13], in our analysis
we consider low-pressure ultrasound waves (up to 10 kPa).
We show that the ultrasound frequency can be chosen in a
wide spectral range above the natural oscillation frequency of
individual bubbles in the cluster. Our calculations demonstrate
that these relaxed technical specifications can greatly facilitate
the generation and recording of stable AFC signals. This is
because at low pressure, insonification bubble clusters exhibit
regular behavior until the bubble dynamics becomes affected
by their aggregation [13]. Moreover, formation of a bubble
cluster with mm-range equilibrium radii of about 2/n mm
is technologically straightforward and can be accomplished
using only a simple bubble generator equipped with a cus-
tomised air diffuser [13].

It is noteworthy that stable gas bubble clusters called
bubble grapes have been previously generated [23–26] us-
ing low-pressure ultrasound waves. However, as discussed
in Sec. II, bubble grapes are formed when the sign of the
secondary Bjerknes force is reversed and the correspond-
ing equilibrium state becomes stable [27]. In contrast, we
propose to generate AFCs in a regime where the bubbles
attract each other but the magnitude of the secondary Bjerk-
nes force is very small due to the disparate natural bubble
frequencies and the frequency of the driving ultrasound
wave. As a result, the interbubble distance and the overall
arrangement of bubbles within a cluster appear to be suffi-
ciently stable for the observation of well-pronounced AFC
spectra without applying any additional cluster stabilization
procedures.

II. BACKGROUND THEORY

The accepted model of nonlinear oscillations of a sin-
gle gas bubble that does not undergo translational motion
is given by the Keller-Miksis (KM) equation [28] that takes
into account the decay of bubble oscillations due to viscous
dissipation and fluid compressibility. However, when the fo-
cus is on mm-sized gas bubbles oscillating at 20–100 kHz
frequencies in water being driven by low-pressure ultrasound
waves (with the amplitude of up to 10 kPa), the terms in
the KM equation accounting for fluid compressibility become
negligible [13]. Thus, the KM equation effectively reduces to
the classical Rayleigh-Plesset (RP) equation [29,30] that we
use as the base model in what follows.

As with a single bubble, the RP equation for a cluster
consisting of N bubbles not undergoing translational mo-
tion can be obtained by removing the acoustic loss terms
from the generalized KM equation for a bubble cluster
[31,32]:
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dt2
+ 3

2
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dRn
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= 1
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The term accounting for the pressure acting on of the nth
bubble due to scattering of the incoming pressure wave by
the neighboring bubbles in a cluster is given by

Psn =
N∑

l=1,l �=n

1

dnl

(
R2

l

d2Rl

dt2
+ 2Rl

(
dRl

dt

)2)
, (3)

where dnl is the interbubble distance and N is the total number
of bubbles in the cluster [31] (more comprehensive models of
bubble interaction in a cluster are available in the literature,
e.g., Ref. [33], but the above simple treatment will suffice
in the context of the current study). The expression P∞(t ) =
P0 − Pv + α sin(ω∗t ) with the angular frequency ω∗ = 2π f
represents the periodically varied pressure in the liquid far
from the bubble. Parameters Rn0, Rn(t ), μ, ρ, κ , σ , α, and
f denote the equilibrium and instantaneous radii of the nth
bubble in the cluster, the dynamic viscosity and the density
of the liquid, the polytropic exponent of a gas entrapped in
the bubble, the surface tension of a gas-liquid interface, and
the amplitude and the frequency of a driving ultrasound wave.
Diffusion of the gas through the bubble surface is neglected.

When bubble oscillations are not affected by fluid com-
pressibility, which is the case in this work, the acoustic power
scattered by the nth bubble in the cluster in the far-field zone
is [18]

Pscat(Rn, t ) = ρRn

h

(
RnR̈n + 2Ṙ2

n

)
, (4)

where h is much larger than the spatial extent of the cluster.
Interactions of gas bubbles, including their radial oscilla-

tions and translational motion driven by an acoustic pressure
field has been a subject of intensive research (see, e.g.,
Refs. [27,31,32,34–48]; for a review, see Ref. [49]). Most of
these works are based on the accepted models of spherical
gas bubble oscillations [Eqs. (1)–(3)] and account for the
action of Bjerknes forces [50]. The primary Bjerknes force
FpB is caused by the acoustic pressure field [50,51] while
the secondary Bjerknes force FsB arises between two and
more bubbles in the same pressure field [49]. The secondary
Bjerknes force between two gas bubbles is repulsive when
the driving frequency lies between the natural frequencies of
the bubbles, otherwise it is attractive [49]. This theoretical
prediction was confirmed experimentally [52,53].

However, several important experimental observations
cannot be explained using Bjerknes theory. These include
the formation of stable bubble grape clusters [23,25] and
self-organization effects in bubble-liquid mixtures [54] that
explain acoustic streaming phenomena [40,55] and underpin
some techniques of bubble manipulation [47].

Kobelev et al. [23] were the first to report the formation
of bubble grapes as a byproduct of their experiment targeting
the attenuation of sound in liquids containing gas bubbles.
They demonstrated that nonlinear oscillations of gas bubbles
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cannot be responsible for the observed effect. The original
Bjerknes force theory [49–51] based on the linear oscillations
of gas bubbles is unable to explain this phenomenon either
since it applies only to gas bubbles separated by distances
that are much larger than the bubble radii and because it only
predicts whether the bubbles attract or repulse depending on
their natural frequencies. Thus, the only plausible explanation
of the formation of bubble grapes could be a reversal in the
secondary Bjerknes force from attractive to repulsive.

One attempt to theoretically explain the formation of bub-
ble grapes was made by Nemtsov [34]. However, his model
did not account for wave scattering by bubbles [49]. Zabolot-
skaya [27] developed a model explaining the sign reversal
of the secondary Bjerknes force. Oguz and Prosperetti [56]
theoretically demonstrated the possibility of sign reversal of
the secondary Bjerknes force in the case of nonlinear bubble
oscillations driven by high-pressure acoustic waves. How-
ever, the result presented in their work cannot explain linear
processes underlying the formation of bubble grapes. Sub-
sequently, Zabolotskaya’s theory was extended by Doinikov
and Zavtrak [49] and used to explain [25] an intriguing obser-
vation of stable bubble structures in an experiment involving
strongly forced mm-sized gas bubbles oscillating in low grav-
ity conditions [24]. An alternative interpretation of the sign
reversal of the secondary Bjerknes force was proposed in
Ref. [57].

However, although the experimental conditions in our work
reported in Ref. [13] indeed resemble those required for the
formation of bubble grapes, the bubble clusters we observed
form due to a different mechanism that does not involve
the sign reversal of Bjerknes force. This is because we use
mm-size bubbles with the natural frequencies of 1–3 kHz but
drive their oscillations with a low-pressure high-kHz-range
ultrasound. As a result, although the aggregation and eventual
coalescence of bubble are inevitable in our experiments, they
occur on a timescale of several seconds and hence are mostly
inconsequential for the generation of AFCs.

III. INTERACTION BETWEEN TWO GAS BUBBLES

The interaction dynamics of gas bubbles oscillating in liq-
uids is very complex because the cluster geometry varies from
experiment to experiment and with time. Therefore, many
theoretical works consider a system of just two interacting
bubbles surrounded by an idealized liquid. This simplification
allows reducing the complexity of the model while accounting
for the essential physics of bubble interaction.

A. Analysis of the RP equation for two interacting gas bubbles

To identify the main characteristics of nonlinear oscilla-
tions of interacting gas bubbles relevant to the generation of
AFCs, we conduct an asymptotic analysis of Eq. (1), extend-
ing our previous model of nonlinear oscillations of a single
gas bubble [13].

We start with rewriting Eq. (1) in the nondimensional
form using the equilibrium radius of the largest bubble in
the cluster, R10, and 1/ω∗ as the length scale and timescale,
respectively, to introduce the nondimensional quantities rn =
Rn(t )/R10, rl = Rl (t )/R10, and τ ∗ = ω∗t [32]. Substituting

these into Eq. (1), we obtain

rnrn
′′ + 3

2
rn

′2 =
(
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Qn

)(Qn

rn

)K
− W
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− R rn
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(
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l r′′
l + 2rl r

′
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, (5)

where R = 4μ

ρω∗R2
10

, W = 2σ

ρω∗2R3
10

, M = P0 − Pv

ρω∗2R2
10

, Me =
α

ρω∗2R2
10

, ζnl = R10

dnl
, K = 3κ , and Qn = Rn0

R10
. Parameter M

characterizes the ratio of a bubble’s natural and forced os-
cillation frequencies, W and R can be treated as inverse
Weber and Reynolds numbers, representing the surface ten-
sion and viscous dissipation effects, respectively, and Me is
the measure of the ultrasound forcing [58]. Parameters ζnl

and Qn are the inverse of the distance between the bubble
centers and the bubble radius relative to that of the largest
bubble in the cluster, respectively [32], and primes denote
differentiation with respect to t . As discussed in Refs. [13,58],
K = 4 for bubbles of sizes relevant to the AFC context and for
the fluid parameters, ultrasound pressure and frequency given
in Sec. IV the maximum values of other parameters do not
exceed M = 9.7 × 10−4, W = 7.4 × 10−7, R = 6.5 × 10−6,
and Me = 9.9 × 10−5. Therefore, the effects of water viscos-
ity and surface tension on bubble oscillations are negligible
and we set R = W = 0 in what follows. Thus, ultrasonically
forced bubble oscillations can be assumed perfectly periodic
when the driving frequency is much higher than any of the
natural frequencies of the individual bubbles in the cluster
(i.e., no resonances arises). This warrants using a method
similar to that in Ref. [13].

We consider a cluster consisting of two gas bubbles
with the nondimensional equilibrium radii rn0 = Qn, n = 1, 2
(Q1 ≡ 1). Following Refs. [13,59], we look for the asymptotic
solutions of Eq. (5) in the form

rn = Qn + εrn1(τ ) + ε2rn2(τ ) + · · · , n = 1, 2, (6)

where 0 < ε � 1 is a parameter characterizing the amplitude
of bubble oscillations used to distinguish between various
terms in the asymptotic series and τ = ωτ ∗ = ωω∗t . At the
first order of ε, we obtain

r̈11 + KM
Q2

1ω
2

r11 + Q2
2

Q1
ζ12r̈21 = p

Q1
sin(�τ ), (7)

r̈21 + KM
Q2

2ω
2

r21 + Q2
1

Q2
ζ12r̈11 = p

Q2
sin(�τ ), (8)

where overdots denote differentiation with respect to τ and
we write (Me/ω

2) sin τ ∗ ≡ −εp sin(�τ ) and introduce � ≡
1/ω � 1. For convenience we also choose ω2 = KM, where
KM is Minnaert frequency [13,21] of the largest bubble in
the cluster. Finally, we obtain

r̈11 + r11 + Q2
2ζ12r̈21 = p sin(�τ ), (9)

r̈21 + 1

Q2
2

r21 + ζ12

Q2
r̈11 = p

Q2
sin(�τ ). (10)
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At O(ε2), equations then become

r̈12 + r12 + Q2
2ζ12r̈22 = K + 1

2
r2

11 − 3

2
ṙ2

11 − r11r̈11

− 2Q2ζ12
(
ṙ2

21 + r21r̈21
)
, (11)

r̈22 + 1

Q2
2
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Q2
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Q2
2
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2Q2
ṙ2

21 − 1

Q2
r21r̈21

− 2
ζ12

Q2

(
ṙ2

11 + r11r̈11
)
. (12)

Similar to Ref. [13], we write the random initial conditions
as r1(0) = 1 + εa, r2(0) = Q2 + εb, ṙ1(0) = εc, and ṙ2(0) =
εd that results in

r11(0) = a, r21(0) = b, ṙ11(0) = c, ṙ21(0) = d. (13)

Subsequently, we obtain the leading order solutions

r11(τ ) = C1 cos (ω′
1τ + φ1) + C2 cos (ω′

2τ + φ2)

+ B1 sin �τ, (14)

r21(τ ) = C3 cos (ω′
1τ + φ1) + C4 cos (ω′

2τ + φ2)

+ B2 sin �τ, (15)

where ω′
1,2 =

√
2√

Q2
2 + 1 ±

√
(Q2

2 − 1)2 + 4Q3
2ζ

2
12

. These fre-

quencies depend on the inverse of the interbubble distance
ζ12, which is a well-established fact [27,49,60]. Consid-
ering a particular case of Q2 = 1

2 , as expected, for non-
interacting distant bubbles with ζ12 → 0 we obtain ω′

1 →
ω′

10 = 1 and ω′
2 → ω′

20 = 2. In general, the leading order
bubble response will always contain three distinct frequen-
cies: two bubbles’ natural frequencies ω′

1,2 and the driving
ultrasound frequency �.

Coefficients C1−4 and phase shifts φ1,2 in Eqs. (14) and
(15) depend on ζ12, �, and p. As shown in Ref. [13], their
exact expressions can be obtained for arbitrary initial condi-
tions (13). However, the resulting expressions are too long
to be given here explicitly and we only discuss the physical
conclusions that follow from them. Specifically, these coef-
ficients demonstrate that the spectra of both bubbles contain
frequencies � and ω′

1,2. The magnitude of the ω′
1 peak is

greater than that of ω′
2 in the spectrum of bubble 1 and vice

versa. In the spectra of both bubbles, the amplitude of the
peak corresponding to the frequency of a neighboring bubble
decreases with the distance between them and vanishes when
the interaction between them becomes negligible.

Analysis of Eqs. (10) and (12) can be performed following
the procedure outlined in Ref. [13]. However, here we do
not pursue this any further since, for the purposes of the
current paper, it suffices to note that the right-hand sides of
these equations contain quadratic terms involving r11 and r12

and their derivatives. Therefore, in addition to the harmonic
components with frequencies ω′

1,2 solutions of Eqs. (10) and
(12) will include steady and periodic terms with frequencies
equal to all possible pairwise sums and differences of ω′

1,2 and
�: ω′

1,2 ± ω′
2,1, � ± ω′

1,2, 2ω′
1,2, and 2�.

B. Bjerknes force between two oscillating bubbles

The asymptotic analysis in Sec. III A shows that, when the
bubble oscillations are driven by a low-pressure ultrasound
wave, the magnitude of any nonlinear effect is propor-
tional to M2

e ∼ 9.8 × 10−9 (as per experimental conditions in
Ref. [13]). Hence, the nonlinearity is neglected in this section.

Two physically equivalent dimensional expressions ac-
counting for a sign reversal of Bjerknes force arising between
two oscillating gas bubbles separated by a distance that is
much larger than bubble radii were derived previously in
Refs. [27,49]. From the expression given by Eq. (2.5) in
Ref. [49], we obtain the leading term of the nondimensional
secondary Bjerknes force (scaled with ρω∗2R4

10),

F ′
sB = −4πζ 2

12Q2
2ω

2ε2〈r11r̈21〉, (16)

where the angle brackets denote time averaging. Substituting
expressions (14) and (15) into Eq. (16), taking into account
that |ω′

1 − ω′
2| ∼ 1, we obtain

F ′
sB = 2πζ 2

12Q2
2ω

2ε2(B1B2�
2 + C1C3ω

′
1

2 + C2C4ω
′
2

2)
.

Evaluating coefficients B1,2 and C1−4 in the limit ζ12 → 0
finally leads to

F ′
sB = 4πζ 2

12Q2
2M2

e

�8

(� − 1)2(� + 1)2
. (17)

Here we focus on a particular bubble oscillation regime [13]
characterized by � � 1. In this case,

F ′
sB → 4πζ 2

12Q2
2M2

e�
4 = 4πζ 2

12Q2
2

M2
e

K2M2
. (18)

By its definition, Q2 < 1 and in the reference experiment [13]
Me/(KM) ∼ 0.025 and ζ 2

12 � 0.04. Therefore, we conclude
that the secondary Bjerknes force is small at the typical driv-
ing frequencies used in the generation of bubble-based AFCs
away from bubble resonances. This provides an opportunity
for measuring the acoustic bubble response and recording the
resulting signals for AFC applications before bubble oscilla-
tions become affected by their aggregation. Our calculations,
using a more rigorous model of a translational motion, the
results of which are presented in Sec. IV, provide convincing
arguments in favor of this.

C. Dynamics of multibubble clusters with translational motion

It has been shown in Ref. [61] that Eq. (1) can be
extended to include the effect of a translational bub-
ble motion. The resulting system of differential equations
reads

RnR̈n + 3

2
Ṙ2

n − Pn

ρ

= ṗn

4
−

N∑
l = 1
l �= n

{
R2

l R̈l + 2Rl Ṙ2
l

dnl

+ R2
l

2d3
nl

(pn − pl ) · (Rl p̈l + Ṙl ṗn + 5Ṙl ṗl )
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− R3
l

4d3
nl

[
ṗl · (ṗn + 2ṗl ) + 3

d2
nl

[ṗl · (pl − pn)]

× [(pn − pl ) · (ṗn + 2ṗl )]

]}
, (19)

1

3
Rnp̈n + Ṙnṗn

= Fn

2πρR2
n

+
N∑

l = 1
l �= n

{
(pn − pl )B1

d3
nl

− R2
l

2d3
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[RnRl p̈l + B2ṗl ]

+ 3R2
l

2d5
nl

(pn − pl )〈(pn − pl ) · [RnRl p̈l + B2ṗl ]〉
}
, (20)

where overdots denote differentiation with respect to time,
B1 = RnR2

l R̈l + 2RnRl Ṙ2
l + ṘnṘlR2

l , B2 = ṘnRl + 5RnṘl , pl,n

are the position vectors of the lth and nth bubble centers and
Fn denotes the external force acting on the nth bubble.

Equation (19) describes the radial oscillations of the nth
bubble in the cluster and Eq. (20) governs its translational
motion. In these equations, similarly to Eqs. (1) and (2), the
pressure Pn is defined as

Pn(R, Ṙ) =
(

P0 − Pv + 2σ

Rn0

)(
Rn0

Rn

)3κ

− 4μṘn

Rn
− 2σ

Rn

− P0 − Pv − Pex(pn), (21)

where Pex(pn) is the pressure of the driving ultrasound wave
in the center of the nth bubble. The external forces Fn are the
sum of the primary Bjerknes force

FnB = −4π

3
R3

n∇Pex(pn) (22)

and the force exerted on the bubble by the surrounding fluid
(see Ref. [62], Chap. 8, Sec. 82 [63]), which in the case of the
oscillating bubble is given by [61]

FnL = −12πμRn

⎛
⎜⎝ṗn − vex(pn) −

N∑
l = 1 l �= n

vln

⎞
⎟⎠, (23)

where vex(pn) is the liquid velocity forced by the driving
pressure field in the center of the nth bubble. The fluid velocity
generated by the lth bubble in the center of the nth bubble is
given by

vnl = R2
l Ṙl (pn − pl )

d3
nl

+ R3
l

2d3
nl

{
3(pn − pl )

d2
nl

[ṗl · (pn − pl )] − ṗl

}
. (24)

Note that although the model Eqs. (19)–(24) were derived for
the case of microscopic gas bubbles driven by high-pressure
ultrasound fields [61], all its equations remain valid for mm-
size bubbles [62].

IV. NUMERICAL RESULTS

Computations have been performed for the following
fluid parameters corresponding to water at 20 ◦C: μ =

10−3 kg m/s, σ = 7.25 × 10−2 N/m, ρ = 103 kg/m3, and
Pv = 2330 Pa. We take the air pressure in a stationary bubble
to be P0 = 105 Pa and the polytropic exponent of air to be
κ = 4/3. The duration of a typical simulation is 2000 oscil-
lation periods of the driving ultrasound wave.

The system of equations (19) and (20) is solved numer-
ically using a fixed-step fourth-order Runge-Kutta method
implemented in a customised subroutine rk4 [64] ported from
Pascal to Oberon-07 programming language. The accuracy
of this subroutine was tested by solving Eq. (1) for a single
gas bubble and comparing the result with a solution obtained
using a standard adaptive-step subroutine ode45 in the Octave
software. While essentially the same results were obtained
using both subroutines, Oberon-07-based computations are an
order of magnitude faster and thus are preferred for modeling
multibubble clusters.

We analyze an acoustic response of four clusters
that consist of two, three, and four bubbles with the
equilibrium radii Rn0 = R10/n, where n is the number
of the bubbles and R10 = 1.95 mm is the typical bubble
radius used in Ref. [13]. The frequency of the driving
sinusoidal ultrasound wave propagating in the positive
z direction is 26 kHz and its peak pressure is 10 kPa.
The coordinates of the centers of the bubbles are
(x, y, z) = (−2.5R10, 0,−2.5R10), (2.5R10, 0, 2.5R10),
(0, 4.33R10, 0.2R10), and (0,−4.33R10,−0.1R10). This
specific configuration resembles a typical bubble cluster
arrangement observed in our experiments [13]. Results
qualitatively similar to those presented below were obtained
using other cluster configurations with the same equilibrium
radii of the bubbles and distances between them.

Figure 1 shows the calculated spectra of the bubble clus-
ters (shown by color-filled regions). The number of rows in
each column corresponds to the total number of bubbles in
the cluster. Each column shows the spectrum of the pressure
scattered by an individual bubble within the cluster [calcu-
lated using Eq. (4) for each bubble]. Analyzing panels within
the same row from left to right, we observe changes in the
AFC peak structure caused by the addition of smaller bubbles
to the cluster. For example, the four panels in the top row
considered from left to right demonstrate that the number
of equidistant peaks in the AFC spectrum produced by the
largest bubble increases when smaller bubbles are added. This
is because bubbles within a cluster are affected by pressure
waves scattered by their neighbors and thus their spectra in-
clude additional frequency peaks compared to the spectra of
isolated noninteracting stationary bubbles of the same equilib-
rium radii calculated using Eq. (1) and shown by the dashed
lines. Similarly, panels in the second row show the evolution
of the AFC spectrum of the second largest bubble in the
cluster, and so on. In all cases, the spectra exhibit the key
features pertinent to the generation of AFCs: the spectrum of
the acoustic response of each bubble consists of a series of
well-defined equally spaced peaks.

For a two-bubble cluster, these observations agree with
predictions of our asymptotic analysis in Sec. III A. Indeed,
in the leftmost column in Fig. 1, we can identify (counting
from from left to right) a pair of peaks at the natural fre-
quencies of the first and second bubbles and two other at the
second harmonics of these frequencies. In each pair, the peak
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FIG. 1. Columns, from left to right, show the AFC spectra produced by the individual bubbles within the clusters consisting of two, three,
and four gas bubbles with the equilibrium radii Rn0 = 1.95/n mm, where n is the index number of the bubble in the cluster. The number
of panels in each column corresponds to the total number of bubbles in the cluster. The red dashed lines in each panel show the spectra of
individual non-interacting stationary bubbles with identical equilibrium radii. Computational parameters are given in the main text.

corresponding to oscillations at the natural frequency of the
first (second) bubble has a larger magnitude than that induced
by the second (first) bubble in the cluster. All these peaks give
rise to the sideband structure around the peak at the forcing
frequency (26 kHz), the highest peak in both spectra (and also
at its ultraharmonic at 42 kHz that is not shown in Fig. 1).
The relative magnitude of the sideband peaks follows the
pattern of the peaks originating from oscillations at the nat-
ural frequencies of the bubbles. The results of our numerical
simulation also indicate the presence of the third and fourth
harmonics of the natural frequencies in the spectrum of the
cluster response above the noise level. Capturing them analyt-
ically is straightforward but would require retaining cubic and
quartic terms in ε in expansions (6), thus leading to very long
algebraic expressions. For this reason, we do not present them
here.

A similar but more complex picture is observed in the cases
of three and four bubbles, where the triplets and quadruples of
the peaks corresponding to the natural frequencies of the bub-
bles and their harmonics can be identified. Furthermore, these
peak ensembles generate the sideband peak structures around
the forcing frequency, thereby forming a quasicontinuum of
equally spaced peaks, which is important for AFC applica-

tions. However, a detailed analysis of the origin of individual
peaks in such a quasicontinuous spectrum in large clusters,
while straightforward, is somewhat tedious and here we limit
ourselves to discussing the spectra of clusters consisting of up
to four bubbles.

Of course, the magnitudes of the peaks originating from
the bubbles of different sizes are different. However, whereas
generating peaks of the same magnitude would be advanta-
geous for certain AFCs applications, having peaks of different
magnitudes is, in general, inconsequential as long as they are
detectable and their frequencies are stable (see Ref. [13] for a
comprehensive discussion of this technical aspect).

It follows from this discussion that accounting for the
translational motion of bubbles does not noticeably alter com-
putational results. This fact was confirmed by comparing the
spectra in Fig. 1 with those calculated for the case of mo-
tionless bubbles (not shown) and establishing that all results
are virtually indistinguishable within the limits of computa-
tional accuracy. We also note that the spectral line positions
and shapes corresponding to bubbles undergoing translational
motion and interacting with their neighbors are almost identi-
cal to those of isolated noninteracting stationary gas bubbles
(compare the color-filled spectra with the spectra shown by
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FIG. 2. Initial arrangement of bubbles in the four-bubble cluster
(the transparent spheres) and the position of the same bubbles after
2000 periods of oscillations of the driving ultrasound wave (colored
spheres).

the red dashed lines in each panel in Fig. 1). This means
that bubble translation does not affect their natural frequency
within the considered computational time.

In support of this conclusion, in Fig. 2 we compare the
initial spatial bubble positions in a four-bubble cluster inves-
tigated above with the positions of the same bubbles after
2000 periods of the driving ultrasound wave. In agreement
with the results of the analysis presented in Sec. III B, we ob-
serve that bubble attraction is weak so even after 2000 periods
of oscillations the distance between them remains sufficiently
large for the cluster to generate a usable AFC spectrum (and
for the model to remain validity).

In highly populated clusters, the probability of bubble
collision and coalescence increases, which may lead to an
undesirable random change of the cluster frequency spectrum.
To assess the scalability of the proposed bubble-based AFC

generation, we performed a series of calculations with n > 4
randomly located bubbles with sizes Rn0 = R10/n, where the
integer parameter n was randomly chosen from the range
[1 . . . 5]. In all such computational tests, we observed that,
provided that the initial interbubble distance was larger than
the equilibrium bubble size, the bubble displacement over the
first 2000 periods of the driving ultrasound wave remained
small, see Fig. 3, where two representative eight-bubble ar-
rangements used in our computations are shown. Therefore, it
is demonstrated that, given that care is taken to create an initial
cluster with well-separated bubbles, a stable bubble oscillation
spectrum can be safely expected to exist over the time interval
required for a reliable AFC generation.

V. CONCLUSIONS

We have proposed an approach to the generation of spec-
trally wide AFCs using oscillations of polydisperse gas bubble
clusters in liquids. The plausibility of such an approach has
been demonstrated via theoretical analysis and numerical sim-
ulation. In the model used in computations, we excite a bubble
cluster with a low-pressure ultrasound wave at a frequency
that is higher than the natural frequency of any bubble in
the cluster. Bubbles within a cluster interact with each other
and their acoustic spectra are affected by their neighbors. We
choose the bubble sizes in such a way that their natural fre-
quencies become integer multiples of the natural frequency of
the largest bubble in the cluster. Because of that, the spectra of
individual bubbles contain multiple peaks, each of which can
be unambiguously associated with the specific bubble within
the cluster.

In agreement with the analysis and experimental ob-
servations reported in our previous publication [13], the
interference of bubble responses at their natural frequencies
with the driving ultrasound wave results in the amplitude mod-
ulation of the latter and in the appearance of equally spaced
sideband peaks in the spectrum. Moreover, the combination
of sidebands and the ensemble of peaks originating directly
from the oscillations at the natural bubble frequencies results

FIG. 3. Initial arrangement (described in the main text) in two representative eight-bubble clusters (the transparent spheres) and the position
of the same bubbles after 2000 periods of oscillations of the driving ultrasound wave (colored spheres).
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in a quasicontinuum of equally spaced peaks. Its spectral
composition depends on bubble radii and the frequency of a
driving ultrasound wave. Therefore, it can be tuned by chang-
ing either of these parameters. In particular, because mm-sized
gas bubbles are required to generate AFCs discussed in this
paper, a practical realization of the proposed approach is tech-
nically straightforward. Indeed, a simple customized bubble
generator consisting of a standard air pump and a diffuser
made of a suitable porous material [13] would suffice to
produce bubble clusters with the configuration investigated in
this paper. We have also demonstrated that the attraction and
potential coalescence of oscillating bubbles due to the action
of the secondary Bjerknes force do not affect the generation
of the AFC because coalescence occurs at a timescale that is
much larger than the time needed for a reliable recording of
AFC signals. Our results are also expected to apply to smaller
gas bubbles driven by ultrasound waves in high kHz and MHz
frequency ranges, which paves the way for the generation of
AFCs suitable for a wide range of technologically important
applications.

Finally, we note that there exist several techniques suitable
for separating individual bubble contributions to the overall
pressure signal emitted by the cluster, which can be used
to produce experimental AFC spectra following the format
of Fig. 1. First, one can apply a blind source separation
method widely used in the fields of signal processing, acous-

tics, medical imaging, and neurobiology [65] for extracting a
particular component contribution from a set of mixed signals
without relying on any information about the mixing process.
Second, one can use the experimental approach described
and validated in our earlier paper [66]. There, a temporal
sequence of images of a vibrating object was recorded using
a high-speed camera that was subsequently processed using a
Fourier transform-based algorithm yielding information about
the oscillation spectrum. This procedure can be applied to
a small cluster of oscillating gas bubbles such as those of
interest in the current paper, provided that a camera with a suf-
ficiently high frame rate (compared to temporal dynamics of
individual gas bubbles in the cluster) is available. This method
can be used in conjunction with a bubble pattern recognition
technique relying on an artificial neural network algorithm
[67], which, in particular, should be applicable when the bub-
ble number in a cluster is large or if bubbles interact in a
complex way.
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