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Elastic-plastic Rayleigh-Taylor instability at a cylindrical interface
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The boundaries of stability are determined for the Rayleigh-Taylor instability at a cylindrical interface between
an ideal fluid in the interior and a heavier elastic-plastic solid in the outer region. The stability maps are given in
terms of the maximum dimensionless initial amplitude ξ ∗

th that can be tolerated for the interface to remain stable,
for any particular value of the dimensionless radius B of the surface, and for the different spatial modes m of the
perturbations. In general, for the smallest dimensionless radius and larger modes m, the interface remains stable
for larger values of ξ ∗

th. In particular, for m > 1 and B → 0, it turns out ξ ∗
th → 1, and a cylindrical geometry

equivalent to Drucker’s criterion is found, which indeed ends up being independent of the interface geometry.
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I. INTRODUCTION

Rayleigh-Taylor instability (RTI) in elastic and elastic-
plastic (EP) media is of great relevance to many problems in
high energy density (HED) physics, either because it plays
a crucial role in determining the performance of the exper-
iments [1–8] or because it is used as a tool for probing the
mechanical properties of matter under extreme conditions of
pressure, strain, and strain rate [9–18]. Although RTI in solids
has been studied since Miles presented an approximate the-
oretical analysis of the instability in accelerated plates [19],
the field has only significantly progressed during the past two
decades in which a number of experiments on HED material
science have been performed, thus stimulating the research
by means of numerical simulations and theory [11,12,20–
24]. Nevertheless, all the studies have concentrated so far on
the RTI in planar surfaces by investigating different aspects
related to the effect of the elastic properties [22], the finite
thickness of the solid medium [25–28], and the presence of
magnetic fields [29,30].

Besides, the more complex problem involving EP solids
has been scarcely investigated by theory, and it has been done
by analyzing the problem for semi-infinite media as a first
step [20] and later for media with arbitrary thickness [31].
Very recently, a few experiments have been reported in which
elastic or EP soft matter is used [32–35] and therefore HED
is not involved, so much more friendly laboratory conditions
are present. These experiments have the potential to contribute
significantly to the understanding of RTI in solids since the
physical processes are analogous while the mechanical prop-
erties of the material can be known in advance with rather
good accuracy.

*roberto.piriz@uclm.es

The above-mentioned theoretical works on RTI in EP
solids were performed by assuming that the mechanical prop-
erties can be treated in such a manner that initially the material
behaves as a purely elastic medium and that this phase is
followed by one in which the medium behaves like a rigid-
plastic solid. In addition, according to the classical theory of
plasticity, this latter phase is considered as irrotational [36].
The good agreement of this model with two-dimensional (2D)
numerical simulations [20,31] and with experimental results
[35] suggests that it is a reasonably good way to deal with
the problem by using theoretical tools and that consequently
it could also be used in the study of the RTI at a cylindrical
interface, such as we do in the present work.

In fact, one of the main motivations of our work has been
the analysis of the performance of the Laboratory Planetary
Science (LAPLAS) experimental setup on HED physics to
be realized at the Facility for Ion and Antiproton Research,
presently under construction at the GSI Helmholtzzentrum
Darmstadt (Germany). In this experiment, an intense heavy
ion beam will deposit part of its energy in an annular region
that surrounds a solid cylindrical shell [1,37–44]. Then the
expansion of this absorber region drives the implosion of the
shell, thus compressing the sample in the interior, which is
driven to HED conditions. Typical material samples under
consideration are Fe, H2O, and H2, with which it is expected
that LAPLAS will enable access to the core conditions of
rocky and gaseous planets in the laboratory.

The planar geometry studies we have performed so far are
appropriate for describing the RTI evolution at the external
surface of the shell during the implosion phase, when the shell
radius is still considerably large. However, at the stagnation
phase, after the acceleration is reversed, the internal interface
becomes unstable and curvature effects of the surface will
be of relevance. Therefore, for the study of RTI in such a
situation we can consider that, during the phase of maximum
deceleration when RTI is more dangerous (Fig. 1), the shell’s

2470-0045/2021/104(3)/035102(10) 035102-1 ©2021 American Physical Society

https://orcid.org/0000-0003-4626-2148
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.035102&domain=pdf&date_stamp=2021-09-07
https://doi.org/10.1103/PhysRevE.104.035102


A. R. PIRIZ, S. A. PIRIZ, AND N. A. TAHIR PHYSICAL REVIEW E 104, 035102 (2021)

time

R(t)

v(t)

-g(t)

0

(a)

(b)

FIG. 1. Schematic of (a) the time evolution of the radius R(t ),
velocity Ṙ(t ), and acceleration R̈(t ) of the shell’s internal surface and
(b) the cylindrical interface between the ideal fluid in the interior and
the elastic-plastic medium in the outer region.

internal surface is practically at rest and stress-free. Then
we can neglect the convergence, or Bell-Plesset effect, and
compression effects during the stagnation phase. Of course,
convergence and compression effects are dominant during
the previous implosion phase, and they determine the initial
conditions for the RTI during the stagnation phase we are
studying. This previous implosion phase is Rayleigh-Taylor
(RT) stable most of the time, and the effects of the mechanical
properties of the involved media during such a stage will be
different than during the stagnation phase. Consequently, the
implosion phase must be analyzed separately from the RT
unstable stagnation phase. A similar approach was recently
adopted in Refs. [45,46] involving viscous media, by fol-
lowing the pioneer work by Chandrasekhar [47], and also in
Ref. [48] with elastic and viscous media.

In the present work we will determine the stability bound-
aries for the RTI on a cylindrical interface between an interior
ideal fluid and an infinite EP solid medium in the outer region.
This will allow us to know what the maximum perturbation
amplitude is that can be tolerated at the beginning of the
stagnation phase in order to ensure the interface stability at
this later phase.

Our aim is to evaluate the effects of the curvature of the
interface on the stability quality of a cylindrical implosion
during the stagnation phase, under conditions in which the
imploding payload retains its EP mechanical properties, as
is the case of the LAPLAS experiment [37–44]. For this,
we will follow a strategy similar to the one developed in
Refs. [31,35] in order to analyze the effect of the surface
curvature.

II. LINEAR INSTABILITY ANALYSIS

We consider a cylindrical cavity of radius R filled with an
ideal fluid of density ρ1 surrounded by an infinite EP medium
of density ρ2 > ρ1 that occupies the region r � R and with
mechanical properties that can be characterized by constants
shear modulus G and yield strength Y (Fig. 1). Both media are
assumed to be incompressible and the whole system is sub-
jected to a uniform gravity acceleration �g = −gêr = − �∇ϕ,
where êr is the unity vector in the radial direction and ϕ is the
gravitational potential. We restrict ourselves to the 2D case in
which the interface is radially perturbed.

The equations governing the process are the mass
and momentum conservation for incompressible continuous
media

�∇ · �vn = 0, (1)

ρn
d�vn

dt
= − �∇pn + ρn�g + �∇ · ��σn, (2)

where n = 1, 2 indicate the inner and outer media, respec-
tively, pn is the hydrostatic pressure, ��σn is the deviatoric part of

the stress tensor ���n = −pn
��I + ��σn, and ��I is the identity tensor.

In addition, the material derivative of any magnitude M is

dM

dt
= ∂M

∂t
+ �vn · �∇M = 0. (3)

The linearized equations are obtained as in
Refs. [29–31,35] by writing every magnitude M as
M = M0 + δM, where M0 is the equilibrium value and
δM � M0 is the perturbation. In this manner, we get

�∇ · (δ�vn) = 0, (4)

ρn
∂ (δ�vn)

∂t
= − �∇(δpn + ρnδϕn) + �∇ · ��Sn, (5)

where δϕn = ρngηrn (ηrn is the radial component of the dis-
placement �ηn and �̇ηn = δ�vn, where the overdot denotes time

derivative) and we have defined δ ��σn ≡ ��Sn. For the inner ideal

fluid we have ��S1 = 0, and for the solid medium in the exterior
we assume, like in Refs. [31,35], that for the smallest strains
it behaves like a perfectly elastic Hookean (linear) solid, so
that

∂ ��S
∂t

= 2G�̇�e, ��e = 1
2

( �∇�η + �∇�ηT
)
, (6)

where ��e is the strain tensor and the superscript T indicates the
transpose tensor. Instead, for the largest strains, the medium
behaves like a perfectly rigid-plastic solid and the deviatoric
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tensor is given by the von Mises flow rule

��S =
√

2

3

�̇�e
‖�̇�e ‖

Y. (7)

Since the deviatoric tensor only exists for the solid medium,

we have dropped the subscript of ��S in Eqs. (6) and (7) and

taken ��S2 ≡ ��S.
It is worth mentioning that the von Mises flow rule indi-

cates the moment at which the solid becomes plastic first at
the interface. However, the transition of the instability from
the regime ruled by the elastic properties to the one dominated
by the plastic properties actually requires overcoming the in-
termediate phase of contained plastic flow in which the plastic
region is not sufficiently extended to affect the RTI evolution
[20,31,35,49–51]. This intermediate phase should actually be
assimilated to the elastic regime until the occurrence of the
plastic collapse so that the RTI plastic regime will start when
the stress is indeed somewhat larger than the value given by
Eq. (7).

A. Elastic phase

1. Displacement field

The instability growth rate in a cylindrical interface sur-
rounded by an elastic medium has been recently obtained
by Sun et al. [48]. However, for the present purpose of de-
termining the boundaries of stability, we need to find the
oscillation frequencies of the interface in the complementary
stable regime. Therefore, we will derive here the dispersion
relation for such frequencies and, as in Refs. [27,31,35], we
will use the Helmholtz decomposition for the displacement
field in the solid medium

�η2 = �∇φ2 + �∇ × �ψ2, (8)

where φ2 and �ψ2 = ψ2êz are the Lamé scalar and vector
potentials, respectively. Introducing Eq. (8) into Eqs. (4) and
(5), we obtain the equations

∇2φn = 0, (9)

�∇
(

∂2φn

∂t2
+ δpn

ρn
+ δϕn

)
+ �∇

(
∂2ψn

∂t2
− G

ρn
∇2ψn

)
êz = 0,

(10)

where, for the ideal medium in the region 0 � r � R, we have
ψ1 = 0.

The degree of freedom introduced by the vector potential
allows for the choice of a convenient gauge, so the potential
functions can be chosen in such a manner that Eq. (10) is split
into the two equations

ρn
∂2φn

∂t2
+ δpn + ρngηrn = 0, (11)

ρ2
∂2ψ2

∂t2
= G∇2ψ2. (12)

In polar coordinates, Eq. (9) leads to the following forms
for the potentials φn in each region, internal and external,
respectively:

φ1 = a1rm cos mθ, (13)

φ2 = a2

rm
cos mθ, (14)

where m corresponds to the set of positive integers numbers
and we have already imposed that the potentials φ1 and φ2 sat-
isfy, respectively, the vanishing boundary conditions at r = 0
and for r → ∞. In addition, these potentials are defined only
to within an arbitrary additive function of time. Similarly, by
solving Eq. (12) in the usual manner by separation of variables
into polar coordinates, we find that the solution is of the
form ψ2 = b(t )u(r) sin mθ and that the radial component u(r)
satisfies the Bessel equation

d2u

dr2
+ 1

r

du

dr
+

(
q2

m − m2

r2

)
u = 0, (15)

where

qm =
√

ρ2ω
2
m j

G
, (16)

with ωm j all the possible oscillation frequencies, denoted by
the subscript j that will result from the solution of the disper-
sion relation for each particular mode m.

As it is well known, the general solution of Eq. (15) is given
by the linear combination of the Bessel functions Jm(qmr) and
Ym(qmr) of the first and the second kind, respectively,

u(r) = A1Jm(x) + A2Ym(x), x = qmr, (17)

where A1 and A2 are constants to be determined by the bound-
ary conditions at the interface and far from it, for x → ∞. It
is worth noting that in such a limit both Jm(x) and Ym(x) van-
ish identically and therefore such a condition does not allow
for determining a unique solution. In fact, in that limit, we
have [52]

Jm(x) =
√

2

πx
cos(x − x1), Ym(x) =

√
2

πx
sin(x − x1),

(18)

with x1 = (m + 1)π
4 . Then, in order to find a unique solution,

we need to appeal to Sommerfeld’s radiation condition [53],
which sets that in a semi-infinite region (r > R) only outgo-
ing waves (∼eix) can exist and consequently the solution of
Eq. (12) must be given by the Hankel function of the first kind
Hm(x) defined by the linear combination

Hm = Jm + iYm, i = √−1. (19)

In this manner the incoming waves (e−ix) are eliminated and
the nonexistence of backward radiation from infinity is guar-
anteed. Then it turns out that

ψ2 = bHm(x) sin mθ. (20)

In Eqs. (13), (14), and (20), a1, a2, and b are time functions
such that

a1 ∝ a2 ∝ b ∝ F (t ) =
∑

j

Q je
ωm jt , (21)
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with Qj being constants that will be determined by the bound-
ary conditions on the interface.

2. Dispersion relation for the stable cases

In order to find the dispersion relation yielding all the
possible oscillation frequencies ωm j for the stable cases, we
must impose the boundary conditions at r = R, namely, the
continuity of the radial velocity and of the tangential and
normal stresses

δv1r (R) = δv2r (R) = η̇a(θ, t, R) = ξ̇ (t ) cos mθ, (22)

Srθ (R) = 0, (23)

−δp1(R) = −δp2(R) + Srr (R), (24)

where δpn are given by Eq. (11) and we have the following
expressions for Ṡrθ (r) and Ṡrr (r):

Ṡrθ (r) = G

[
r

∂

∂r

(
δv2θ

r

)
− 1

r

∂ (δv2r )

∂θ

]
, (25)

Ṡrr (r) = 2G
∂ (δv2r )

∂r
. (26)

Then the previous boundary conditions yield the set of linear
equations

ȧ1Rm = − ȧ2

Rm
+ ḃHm, mȧ1Rm−1 = ξ̇ , (27)

2m(m + 1)

Rm
ȧ2 = − ḃ[2xHm−1 + x2Hm − 2m(m + 1)Hm],

(28)

ρ2
ä2

Rm
+ ρ2g

(
− m

Rm+1
a2 + m

R
bHm

)
+ C0

+2G

{
m(m + 1)

Rm+2
(a2 − a20)

+ m

R2
(b − b0)[xHm−1 − (m + 1)Hm]

}

= ρ1Rm

(
ä1 + g

m

R
a1

)
, (29)

where a0 = a(0) and b0 = b(0). In addition, in the above
equations and hereafter x denotes its value on the interface,
that is, x = qmR. We also notice that in obtaining these equa-
tions we have used the recurrence formulas for the Hankel
function

H ′
m = Hm−1 − m

x
Hm, (30)

H ′
m−1 = m − 1

x
Hm−1 − Hm, (31)

where H ′
m denotes the derivative of Hm with respect to the

argument x. In addition, we have introduced the constant C0

in Eq. (29) by taking into account the incomplete definition
of the potentials φn in order to impose the conditions of being
stress-free and of the irrotationality of the displacement field
as initial conditions, since we are considering that vorticity
is created by the elasticity effects at times t > 0. Then, after
a short calculation, we get the equation of motion for the

perturbation oscillations at the interface,(
ξ̈ − AT

m

R
ξ

)
(xHm + 2Hm−1)

= m(m + 1)
(1 + AT )G

ρ2R2
Hm−1

{
xHm

ξ̈ − ξ̈0

ω2
m j

− [xHm − 2(m − 1)Hm−1](ξ − ξ0)

}
, (32)

where ξ̈0 = ξ̈ (0), ξ0 = ξ (0), and AT = (ρ2 − ρ1)/(ρ2 + ρ1)
is the Atwood number. We notice that the above dispersion
relation is analogous to the one obtained in Ref. [48] with the
Hankel function of the first kind Hm instead of the modified
Bessel function of the second kind Km.

The general solution of Eq. (32) can be constructed in the
usual manner by adding the solution of the homogeneous
part to a particular solution of the complete equation. The
solution of the homogeneous part is found by proposing an
exponential solution of the form eiωm jt . In this manner, the
homogeneous part of Eq. (32) leads to the dispersion relation
for the oscillation frequencies ωm j :(

ω2
m j + AT

m

R
g

)
(xHm + 2Hm−1)

= m(m + 1)
(1 + AT )G

ρ2R2
[xHm − 2(m − 1)Hm−1]. (33)

Since the Hankel function is given by Eq. (19), Eq. (33)
actually yields two equations corresponding, respectively, to
the real and imaginary parts of Hm. However, since Jm(x) → 0
for x → 0, we can see that only the imaginary part yields a
physically meaningful equation that leads to the same result
as the unstable solution in the cutoff, when ωm j = 0. In fact,
in such a limit xYm(x),Ym−1(x) → 2(m − 1) and we retrieve
the cutoff value Bc for the dimensionless radius B = ρ2gR/G,
already found in Ref. [48] for the unstable regime:

Bc = 1 + AT

AT

m2 − 1

m
. (34)

Then the equation of motion for the perturbation oscillations is
given by Eq. (32) by identifying Hm with the Bessel function
of the second kind Ym. On the other hand, we can write the
dispersion relation (33) in the convenient form

�2
m(x)

σ 2
p

= 1

�m(x)
− 1, x = �mB, (35)

where the definitions for the dimensionless magnitudes have
been introduced,

�2
m = ω2

m j

(
G

ρ2g2

)
, σ 2

p = AT
m

R
g

(
G

ρ2g2

)
, (36)

�m(x) = AT B

2(1 + AT )(m + 1)

Fm(x) + 2

Fm(x) − m + 1
, (37)

where

Fm(x) = xYm(x)

Ym−1(x)
. (38)
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FIG. 2. Dimensionless frequency �m(x) and x/B given by
Eq. (35) for AT = 1, m = 3, and B = 3.1.

In Fig. 2 we represent �m(x) and x/B as given by Eq. (35)
for a typical case with AT = 1, m = 3, and B = 3.1 in order to
show how the different solutions result from the intersection
of the straight line with the different branches of the func-
tion �m(x) giving place to an infinite number of oscillations
frequencies.

As it was discussed in Refs. [31,35], for the purpose of
finding the stability boundaries, we are interested in the lowest
frequency, that is, the one imposing the most restrictive condi-
tions on the stability of the interface and which describes the
average evolution of the perturbation oscillations. This lowest
frequency ωm, in dimensionless form � = ωm

√
G/ρ2g2, is

represented in Fig. 3 as a function of the dimensionless radius
B of the cylindrical interface for several modes m (m = 2, 4,
6, and 8) and for two values of the Atwood number (AT = 1
and 0.3). In every case �(B) presents a discontinuity that
corresponds to the jump from the second to the first branch
of �m(x) (Fig. 2) as B is increased, with the consequent
reduction of the lowest frequency and making the system less
stable. Figure 3 is in a semilogarithmic scale to make this
jump more evident, which later will be reflected in the bound-
aries of stability. The results are qualitatively the same for the
different Atwood numbers but, as it could be expected, for any
particular spatial mode m, the cutoff value Bc [�(Bc) = 0] of
the dimensionless radius [Eq. (34)] is larger for the smaller
values of AT , showing a wider range of stability. In addition,
we can also notice that the magnitude of the jump decreases
for the largest modes m.

B. Plastic phase

As in the previous studies for the planar case [31,35],
we assume the classical theory of plasticity in which the
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FIG. 3. Dimensionless lowest frequency � as a function of the
dimensionless radius B for several modes m, (i) m = 2, (ii) m = 4,
(iii) m = 6, and (iv) m = 8, with (a) AT = 1 and (b) AT = 0.3..

displacement field is assumed to be irrotational [36]. There-
fore, it is ψ2 = 0 and from Eq. (14) we get

�̇�e
‖�̇�e ‖

= cos mθ√
3

. (39)

On the other hand, as it was already discussed, the tran-
sition to the RTI regime controlled by the plasticity does
not occur just when the von Mises flow criterion is satisfied,
but somewhat later when a considerable region of the solid
becomes plastic and the plastic collapse occurs [50,51]. Then
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we consider that, for the transition to occur, the stress must
reach a value

Srr = βY√
3

cos mθ, β > 1. (40)

In analogy with the planar case, for quantitative calculations
we will take β ∼ 3 (β/

√
3 ∼ 2). Then, from Eq. (24) we get

ξ̈ − AT
m

R
gξ = −β(1 + AT )m

2
√

3ρ2R
Y. (41)

As in the elastic case, the general solution of this equation can
be constructed as the solution of the homogeneous part plus
a particular solution. The solution of the homogeneous part is
obtained by proposing the exponential form ξ ∝ eγpt , where
γp is the instability growth rate during the elastic phase, and it
ends up being just the one corresponding to the classical RTI
case:

γ 2
p = AT

m

R
g. (42)

III. BOUNDARIES OF STABILITY

As it was shown in Ref. [20], the necessary condition
for the stability of the system is that it must be stable dur-
ing the elastic phase described by Eqs. (32) and (33). Since
Eq. (33) has an infinite number of roots for each mode m,
the general solution will consist in oscillations containing
an infinite number of frequencies. Indeed, the solution of
Eq. (32) can be considered like an oscillation with the lowest
frequency, which leads to the most unstable situation, plus
an infinite number of superposed modes of oscillation with
higher frequencies [31,35]. Therefore, for times shorter than
the transition time tT , from the RTI regime controlled by the
elasticity to the one controlled by the plasticity, the average
evolution of the perturbations is described by the equation

z = 1 + ξ̈0

ξ0ω2
m

(1 − cos �τ ), (43)

where the lowest frequency ωm and its dimensionless form �

are given by Eq. (35). In addition, the following definitions
have been used:

z = ξ

ξ0
, τ = t

√
ρ2g2

G
. (44)

The initial acceleration ξ̈0 can be obtained from Eq. (32) by
evaluating it at t = 0:

ξ̈0

ξ0ω2
m

= σ 2
p

�2
. (45)

On the other hand, for times t � tT , when the system achieves
the regime of unrestricted plastic flow, the perturbation evolu-
tion is described by the solution of Eq. (41),

z = 1

ξ ∗ + K1eσpτ + K2e−σpτ , (46)

where

ξ ∗ = 2
√

3AT

1 + AT

ρ2gξ0

βY
(47)

and K1 and K2 are constants to be determined from the match-
ing conditions with Eq. (43) at the transition time tT .

We also notice that at t = tT we have, from Eq. (43),

ξ̈T − ξ̈0 = −ω2
m(ξT − ξ0), (48)

where ξ̈T = ξ̈ (tT ). Therefore, from Eqs. (32) and (41) and
using Eqs. (37) and (48), we can write

zT − 1 = �

ξ ∗ , (49)

with � denoting the corresponding value of �m for the lowest
frequency �. Then, from Eq. (43) it turns out that

cos �τT = 1 − �2

σ 2
p

�

ξ ∗ . (50)

Now the constants K1 and K2 can be determined from
Eqs. (43) and (46) by noticing that at t = tT the perturbation
amplitude ξ (tT ) = ξT and velocity ξ̇ (tT ) = ξ̇T must be con-
tinuous. Thus, it turns out

K1eσpτT + K2e−σpτT = 1 + � − 1

ξ ∗ , (51)

K1eσpτT − K2e−σpτT = σp

�
sin �τT , (52)

and solving for K1 and K2 we get

2K2e−σpt = 1 + � − 1

ξ ∗ − σp

�
sin �τT , (53)

2K1eσpt = 1 + � − 1

ξ ∗ + σp

�
sin �τT . (54)

As in Refs. [20,31,35] we need to impose conditions for
the marginal stability by taking into account that the interface
will be stable provided the perturbation amplitude reaches an
absolute maximum at a certain time t = tm � tT . Then it must
be that ξ̇ (tm) = 0 and ξ̈ (tm) � 0, and the marginal stability
conditions, in dimensionless form, read

ż(τm) = 0, z̈(τm) = 0 (τm � τT ). (55)

These conditions can only be satisfied when the system is
stable in the purely elastic phase. Therefore, we apply the
previous marginal stability conditions to the plastic regime
evolution described by Eq. (46) [with K1 and K2 given by
Eqs. (53) and (54), respectively]. Since Eqs. (55) can only
be satisfied when K2 = 0, the equation for the dimensionless
amplitude ξ ∗

th under marginal stability conditions results in

1 + � − 1

ξ ∗
th

= σp

�

√
1 −

(
1 − �2

σ 2
p

�

ξ ∗
th

)2

, (56)

where we have used Eq. (50). Furthermore, using Eq. (35) and
after a short calculation, the previous expression takes a much
simpler form

ξ ∗
th = 1 −

√
� (57)

orξ ∗
th = 1 − σp√

σ 2
p + �2

. (58)

The form given by Eq. (57) is analogous to the one found
in Ref. [20] for the marginal stability conditions in planar
geometry with semi-infinite media. In that case � represented
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the dimensionless perturbation wavelength λ∗ = ρ2gλ/4πG.
In the present case, instead, it is � = �(AT , B, m), which
must be determined from the roots of Eq. (35).

In the same manner we can easily obtain the equation for
the EP transition by requiring that the perturbation amplitude
zT at the transition be reached when, in the elastic regime, the
oscillation amplitude is a maximum. That is, when zmax = zT ,
it turns out that

2σ 2
p

�2
= �

ξ ∗
EP

, (59)

where we have used Eqs. (43), (45), and (49). Then, from
Eq. (35) we get

ξ ∗
EP = 1

2 (1 − �), (60)

which also resembles the result of Ref. [20] for the planar
case by changing λ∗ → �. From Eqs. (60) and (57), the
relationship between ξ ∗

EP and ξ ∗
th can be written

ξ ∗
EP = 1

2 [1 − (1 − ξ ∗
th)2], (61)

which once again indicates the feature previously noticed in
Ref. [20] that ξ ∗

EP � ξ ∗
th and therefore the transition to the

plastic regime must in general occur before the system be-
comes unstable. Thus, plastic flow is necessary for instability
but not at all sufficient and in general there exists a regime of
stability after plastic flow has occurred.

IV. RESULTS AND DISCUSSION

In Fig. 4 represent the stability boundaries ξ ∗
th =

ξ ∗
th(B, AT , m) as given by Eqs. (57) and (35)–(38), as a func-

tion of the dimensionless radius B of the cylindrical surface,
for two values of the Atwood number (AT = 1 and 0.3) and
for several modes m (m = 2, 4, 6, 8). As it could be expected,
the different curves for marginal stability present a jump that
reflects the behavior observed in Fig. 3 for the lowest oscilla-
tion frequency. This jump decreases in magnitude as the mode
m increases and, for the largest values of m, it moves towards
the smallest values of B. At the limit of very large values of m,
the oscillation frequency � becomes determined only by the
second branch of �(x) in Fig. 2.

In order to explain these features we notice that, since the
stable region for B < Bc exists because the system is stable in
the initial elastic phase, it depends on the stable solutions of
the dispersion relation. As we have already discussed, in such
a stable regime, the system oscillates with multiple infinite
frequency modes. However, the most stringent requirement
for the stability is set by the lowest oscillation frequency. This
is because the oscillation with the lowest frequency describes
the average evolution of the multifrequency oscillation. These
facts are independent of the geometry of the system and are
also present in planar geometry [31]. However, in cylindrical
geometry, the curvature effects introduce the radius R as a
new characteristic length. Therefore, for large values of R, the
system behaves like in planar geometry and the characteristic
oscillation frequency is determined by the only relevant char-
acteristic length, the perturbation wavelength. However, when
R is small enough and it becomes another significant char-
acteristic length, a new branch with different traits appears
such as that shown in Fig. 2 for the lowest values of x. This
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FIG. 4. Stability boundaries ξ ∗
th(B) for several modes m, (i) m =

2, (ii) m = 4, (iii) m = 6, and (iv) m = 8, with (a) AT = 1 and (b)
AT = 0.3.

branch determines a new lowest oscillation frequency that is
larger than the one determined by the wavelength. In addition,
this change of behavior is not continuous when R is reduced
because stable situations (�m > 0) can only exist for certain
ranges of values of x corresponding to the different branches
in Fig. 2. The ranges in between of course correspond to un-
stable situations. Therefore, there is a discontinuous change in
the lowest oscillation frequency when we go from one stable
region to other and it gives place to the observed jump shown
in Fig. 3. As it can be appreciated in Figs. 3 and 4, the effect
of such a branch enhances the stability region for the smallest
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radii R, but it also becomes less and less relevant as the mode
m increases and the system approaches the planar limit.

From Eqs. (57) and (58) we can see that 0 � ξ ∗
th � 1.

In fact, in the cutoff, when � = 0 (x = �B = 0), we have
B = Bc, � = 1, and ξ ∗

th = 0. As it was already mentioned, this
limit is determined exclusively by the elastic properties of the
medium since for B � Bc the system is already unstable in the
early elastic regime.

At the other extreme, when B = 0 (x = 0), we have � = 0
and ξ ∗

th = 1 for any value of m. Then, from Eq. (47) we find
that the cylindrical geometry equivalent to Drucker’s criterion
reads [49,50]

2
√

3AT

1 + AT

ρ2gξ0

βY
= 1. (62)

Drucker’s criterion was originally obtained for the RTI in
purely rigid plastic media at a planar interface with AT = 1
and it is valid in the limit of very short perturbation wave-
lengths (λ = 0). However, as it can be seen, in cylindrical
geometry we find the same result in the limit when � = 0
(B = 0), such that it could be expected from the role of the
parameter � in Eq. (57) as the equivalent of the perturbation
wavelength in planar geometry (note that the number of wave-
lengths that can be accommodated in the perimeter 2πR of
interface is just λ = 2πR/m).

This coincidence has nothing to do with the planar limit
of the cylindrical problem, which indeed corresponds to the
opposite limit (B � 1). Instead, it is related to the physical
meaning of Eq. (62), which, as it was shown by Drucker,
is also valid for a single bump with a high of the order of
ξ0. In fact, it just reflects the feature that the plastic collapse
will occur when the weight per unitary area ρ2gξ0 overcomes
the yield strength Y and it is therefore independent of the
interface geometry. This condition also coincides with the one
usually considered to estimate the maximum possible high of
a mountain either on earth or on a neutron star, which marks
the maximum weight that can be supported by the crust [54].
For the intermediate values of B (0 < B < Bc) in which the
system is stable in the elastic regime, it is still stable after
plastic flow takes place [determined by Eq. (61) for the EP
transition] provided the initial perturbation amplitude remains
below the marginal stability curve.

The stability boundaries given in Fig. 4 show that the max-
imum amplitude that can be tolerated by the system without
being unstable decreases with the parameter B for any mode
m and that this amplitude becomes equal to zero for the cutoff
value Bc of the parameter. This is because the region with
B � Bc corresponds to situations in which the system is stable
during the initial elastic phase and therefore it can remain
stable provided the initial amplitude is not too large. For
B > Bc the system is already unstable in the elastic regime
and thus it will never be stable independently of the value of
the initial amplitude ξ0.

In this sense, the stability boundaries represented in Fig. 4,
and compactly expressed by Eq. (57), can be considered as
a generalization of Drucker’s criterion for arbitrary values of
�, thus including the effects of elasticity (EP media) and of
the interface geometry. In fact, the Drucker criterion is not
valid when elasticity is present, and in such an unphysical

situation there is no cutoff value for the parameter B (Bc →
∞). Then the stability boundary is determined only by the
initial perturbation amplitude ξ0 such as that given by Eq. (62).
However, when the unavoidable elastic initial phase is taken
into account, it imposes an extra restriction that reduces the
maximum allowable initial amplitude of the perturbations ac-
cording to the corresponding value of B. Beyond the cutoff,
the system will be unstable for any value of ξ0 because, as
we have already mentioned, the initial elastic phase is already
unstable.

It may also be worth noting that the initial elastic phase is
unavoidable and thus it will be always present. In fact, even in
the case when the material in the unperturbed state has been
taken in some manner to the plastic state, the onset of the
instability will occur by growing initially in the elastic phase.
This is because the plastic state can only exist under the action
of a sustained deformation rate and it immediately relaxes to
a new elastic state under the onset of any small perturbation.

As it was previously noticed in Ref. [48], for the lowest
mode m = 1, the cutoff value of B given by Eq. (34) becomes
Bc = 0 and the mechanical properties of the solid are unable
to stabilize this mode no matter how small the perturbation
amplitude is. However, for the particular case of the LAPLAS
experiment discussed in the Introduction, this mode can be
stabilized by the rotating beam that creates the annular focal
spot by means of which the absorber region that surrounds the
solid pusher is heated by the ion beam. In fact, the wobbler
system that rotates the beam is being designed to produce an
asymmetry level below 1–2 % [55], and it has been shown
that the mode m = 1 can be canceled provided a suitable
noninteger number of beam revolutions is performed by the
wobbler [56]. Therefore, while the higher modes would be
stabilized by the mechanical properties of the pusher material,
the lowest mode could be stabilized by a suitable operation of
the rotating beam.

In fact, in LAPLAS, extensive numerical simulations show
that, depending on the sample at the interior of the shell
(Fe, H2O, and H2), the Atwood number is 0.3 � AT � 1,
the radius at the implosion stagnation is R � 200 μm, and
g ≈ 1010 m/s2 [37–44]. Since the shell is made of Ta, we
can take G ≈ 160 GPa and Y = 2.2 GPa [57], and for these
values it turns out that B < 1. Therefore, according to the
results shown in Fig. 4, the interface would be stabilized by the
pusher elastic-plastic mechanical properties for all the modes
m > 1 provided that ξ ∗

th � 0.5–0.6.
For the typical values mentioned above, the required ini-

tial amplitude ξ0 at the beginning of the stagnation phase
should be less than 10–20 μm. This value will be actually
determined by the previous implosion phase dominated by
the Bell-Plesset effects that depend on the convergence of
the interface and the compressibility of the media [58]. So
more precise estimations would require the analysis of the
Bell-Plesset effects, which is beyond the scope of the present
work.

V. CONCLUSION

On the basis of the methodological procedure developed in
Refs. [31,35] for the planar geometry RTI, we have extended
the previous results to the case of a cylindrical interface in
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order to shed light on the conditions for marginal stability
determined by the mechanical properties at the stagnation
phase of a cylindrical implosion, like the one considered in
the LAPLAS experimental setup.

As in the case of planar geometry RTI, plastic flow results
to be necessary for instability, but is not sufficient. After the
EP transition has occurred, a stable plastic region generally
exists that determines the maximum initial perturbation am-
plitude that keeps the system stable for any particular value of
the dimensionless radius B of the interface (for a given spatial
mode m and Atwood number AT ).

The effects of the interface curvature, expressed by the
dimensionless radius B, are seen to make the system more
stable for a smaller radius, in the sense that the interface can
tolerate larger initial amplitudes of the perturbations. This
is true essentially for all the modes m > 1 but, as it was
already noticed in Ref. [48], the mechanical properties of the
pusher cannot stabilize the lowest mode m = 1. In the case of
LAPLAS, the wobbler system that will generate the annular

focal spot can be conveniently operated to cancel such a mode
just by producing a noninteger number of revolutions of the
rotating beam [56].

Since the initial amplitude ξ0 at the stagnation phase will be
determined by the previous implosion phase dominated by the
Bell-Plesset effects, including the effects of the geometrical
convergence and compressibility of the involved media [58],
as well as by the quality of the surface finish of the interface
and by the feedthrough effect of RTI at the outer surface of
the shell, it is difficult to provide a good estimation of ξ0.
However, the present work allows for putting a limit on the
maximum initial amplitude that can be tolerated in order to
have a stable stagnation phase.
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[53] A. C. Eringen and E. S. Şuhubi, Elastodynamics (Academic,
New York, 1975), Vol. II.

[54] P. A. G. Scheuer, J. Astrophys. Astron. 2, 165 (1981).
[55] A. R. Piriz, M. Temporal, J. J. López Cela, N. A. Tahir, and

D. H. H. Hoffmann, Plasma Phys. Control. Fusion 45, 1733
(2003).

[56] A. Bret, A. R. Piriz, and N. A. Tahir, Phys. Rev. E 85, 036402
(2012).

[57] D. J. Steinberg, S. G. Cochran, and M. W. Guinan, J. Appl.
Phys. 51, 1498 (1980).

[58] R. Epstein, Phys. Plasmas 11, 5114 (2004).

035102-10

https://doi.org/10.1017/jfm.2019.193
https://doi.org/10.1063/1.5050800
https://doi.org/10.1103/PhysRevE.100.063104
https://doi.org/10.1103/PhysRevLett.113.178301
https://doi.org/10.1103/PhysRevLett.116.154502
https://doi.org/10.1103/PhysRevE.99.053104
https://doi.org/10.1103/PhysRevE.103.023105
https://doi.org/10.1016/j.jmps.2004.04.010
https://doi.org/10.1016/j.nimb.2005.11.084
https://doi.org/10.1002/ctpp.201700076
https://doi.org/10.1103/PhysRevE.101.023202
https://doi.org/10.3847/1538-4365/aa813e
https://doi.org/10.3847/1538-4365/aadd4c
https://doi.org/10.1002/ctpp.201800143
https://doi.org/10.1002/ctpp.201800135
https://doi.org/10.1063/5.0037943
https://doi.org/10.1063/1.4921648
https://doi.org/10.1063/5.0018601
https://doi.org/10.1093/qjmam/8.1.1
https://doi.org/10.1063/5.0050629
https://doi.org/10.1007/BF02426914
https://doi.org/10.1007/BF02715676
https://doi.org/10.1088/0741-3335/45/9/311
https://doi.org/10.1103/PhysRevE.85.036402
https://doi.org/10.1063/1.327799
https://doi.org/10.1063/1.1790496

