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Instabilities of thermocapillary-buoyancy flow in a rotating annular pool for
medium-Prandtl-number fluid
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The instabilities of the steady axisymmetric thermocapillary-buoyancy flow in a rotating annular pool were
investigated by linear stability analysis. The critical instability parameters for the thermocapillary-buoyancy
flow (normal gravity) and the pure thermocapillary flow (microgravity) were compared under different pool
depths and rotation rates. The results show that the thermocapillary-buoyancy flow is more stable than the pure
thermocapillary flow due to the stabilizing effect of the gravity (buoyancy) force. Two types of oscillatory
instabilities were observed depending on the different rotation rates, and the propagation direction of the
hydrothermal wave is also affected by the rotation rate.
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I. INTRODUCTION

Thermocapillary flow, thermal-buoyancy flow, and rotating
flow are important in many technical and industrial pro-
cesses [1–4], for example, the Czochralski crystal growth, a
widely used technique to grow large single crystals. During
the Czochralski crystal growth, the thermocapillary force,
buoyancy, and the rotation of the crystal and the crucible
make the convection very complicated. The annular pool is
a simplified model proposed to study the complex flow in the
Czochralski growth, and therefore, the flow instability in rotat-
ing annular pools was extensively investigated in the past two
decades.

Bauer and Eidel [5] theoretically studied the two-
dimensional thermocapillary flow in a slowly rotating annular
container. They considered two heating modes; one is the
constant temperatures at the inner and outer walls, the other
is time-oscillatory temperatures on the inner and outer walls,
and the velocity distribution in the container was investigated.
Subsequently, Sim and Zebib [6] numerically simulated the
effect of rotation on oscillatory instability of thermocapillary
flow of high-Prandtl-number fluid (Pr = 30) in an open an-
nulus. They reported that the rotation destabilized the flow,
and the rotation parallel to the central axis of the annulus had
a stronger influence than that perpendicular to the axis. By
means of three-dimensional numerical simulations and linear
stability analysis, Shi et al. [7,8] studied the influence of pool
rotation on the thermocapillary flow in a shallow annular pool
filled separately with silicone oil (Pr = 6.7) and silicon melt
(Pr = 0.011). Similar to the results of Sim and Zebib [6], they
also pointed out that the weak rotation destabilized the steady
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axisymmetric flow. In particular, for silicone oil the hydrother-
mal wave was found to propagate in the direction opposite to
the pool rotation, while for silicon melt the hydrothermal wave
propagated in the same direction as pool rotation. Moreover,
Shi and Imaishi [9] also investigated the effect of the heating
direction of the annular pool on the thermocapillary flow.
With the three-dimensional numerical simulations, the effect
of pool rotation on the thermocapillary flow of the silicon
melt in a slowly rotating shallow annular pool was studied
by Li et al. [10]. Two flow transitions, corresponding to two
different hydrothermal waves, were observed with increasing
the temperature difference. Corresponding to the numerical
simulations of Li et al. [10], Yin et al. [11] further studied the
effect of pool rotation on thermocapillary flow instabilities.
Two shear instability mechanisms, caused by the thermo-
capillary force and pool rotation, respectively, were revealed
by perturbation energy analysis. In particular, at a moderate
rotation rate, the competition of the thermocapillary force and
the pool rotation leads to three transitions between the steady
axisymmetric flow and the three-dimensional oscillatory flow
with the increase of Marangoni number. Recently, Li et al.
[12] extended the work of Shi et al. [7] to a wider range of
rotation rate and aspect ratio through linear stability analysis.
Four types of hydrothermal wave instabilities were observed.

In the studies mentioned above, the buoyancy was ne-
glected. In fact, in the process of Czochralski crystal growth,
buoyancy also plays an important role, and the presence of
buoyancy makes the flow more complicated. In order to well
understand the instability of the thermocapillary-buoyancy
flow in a rotating annular pool, a series of linear stability
analyses was performed in this paper based on the spectral
element method. In addition, the disturbance of the energy
balance at the critical condition was calculated to reveal the
underlying instability mechanism.
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FIG. 1. Geometry of the annular pool.

II. PROBLEM DESCRIPTION AND NUMERICAL
TECHNIQUES

A. Problem description and formulation

We consider an annular pool with the same geometry as
in the space experiments of Schwabe et al. [13]. The inner
radius ri and outer radius ro of the pool are 20 and 40 mm,
respectively, and the depth d varies from 1 to 6 mm. The
geometry of the annular pool is controlled by two param-
eters, namely, the aspect ratio � = d/(ro–ri ) and the radius
ratio ε = ri/ro. The pool rotates around its central axis in the
counterclockwise direction, which is defined as the positive
azimuthal direction. The pool is heated from the outer wall
and cooled from the inner wall, and the temperature of the
outer and inner walls is maintained at �h and �c (�h > �c

and �� = �h–�c), respectively. In addition, the pool is filled
with Li Ca Al F6 melt and its physical properties refer to [14].
We introduce the following assumptions: (1) The bottom wall
and the free surface are insulated. (2) The free surface is
flat and nondeformable. (3) The surface tension on the free
surface is a linearly decreasing function of temperature as
σ = σ0–γT �, where σ0 is the surface tension at the reference
temperature �c, and γT is the surface tension coefficient. (4)
The Li Ca Al F6 melt is regarded as an incompressible New-
tonian fluid and the Boussinessq approximation is applied. (5)
The no-slip condition is applied to all solid-liquid boundaries.
(6) The inertial frame of reference is adopted, so the Coriolis
force is not present in the equations. See Fig. 1.

Given the assumptions above, the dimensionless governing
equations in the cylindrical coordinates are

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇)u = −∇p + ∇2u + GrT ez, (2)

∂T

∂t
+ (u · ∇)T = 1

Pr
∇2T . (3)

Here u is the nondimensional velocity vector, t the nondi-
mensional time, and p the nondimensional pressure. The
velocity, time, and pressure are nondimensionalized by
ν/(ro–ri ), (ro–ri )2/ν, and ρν2/(ro–ri )2, respectively, where
ν is the kinematic viscosity and ρ is the density. More-
over, the nondimensional temperature T is defined as T =
(Ф–Фc)/(Фh–Фc). Accordingly, the dimensionless parame-
ters, Gr = gβ��(ro–ri )3/ν2 and Pr = ν/κ are the Grashof

and Prandtl numbers, respectively, where g is the gravitational
acceleration, β is the thermal expansion coefficient, and κ is
the thermal conductivity. The Prandtl number of Li Ca Al F6

melt is 1.4.
The corresponding boundary conditions are as follows:

the free surface (z = �),

∂u

∂z
= −Ma

Pr

∂T

∂r
,

∂v

∂z
= −Ma

Pr

∂T

r∂θ
, w = 0,

∂T

∂z
= 0, (4)

the bottom (z = 0),

u = 0, v = ωr, w = 0,
∂T

∂z
= 0, (5)

the inner wall [r = ε/(1–ε)],

u = 0, v = ωr, w = 0, T = 0, (6)

and the outer wall [r = 1/(1–ε)],

u = 0, v = ωr, w = 0, T = 1, (7)

where u, v, and w are the velocity components in the
radial, azimuthal, and axial directions, respectively. The di-
mensionless parameters, Ma = γT ��(ro–ri )/(ρνκ ) and ω =
�(ro–ri )2/ν are the Marangoni number and dimensionless ro-
tational angular velocity, respectively, where � is the angular
velocity of pool rotation.

B. Basic flow and disturbances

The system of Eqs. (1)–(7) admits an axisymmetric steady-
state solution, which is the basis of linear stability analysis.
The basic flow is firstly simulated by the spectral element
method based on the time splitting method [11].

The linear stability of the basic flow is investigated by
imposing the infinitesimal perturbations onto the basic flow:

(u, p, T ) = (u0, p0, T0) + (û, p̂, T̂ ). (8)

Here (u0, p0, T0) represents the basic flow, and (û, p̂, T̂ )
indicates the infinitesimal perturbation. Then the linearized
perturbation equations are derived by substituting Eq. (8) into
Eqs. (1)–(3) and neglecting the second-order infinitesimal,

∇ · û = 0, (9)

∂û
∂t

+ (u0 · ∇)û + (û · ∇)u0 = −∇ p̂ + ∇2û + GrT̂ ez,

(10)

∂T̂

∂t
+ (u0 · ∇)T̂ + (û · ∇)T0 = 1

Pr
∇2T̂ . (11)

Similarly, the boundary conditions of the perturbations can be
derived from Eqs. (4)–(7) as follows:

the free surface (z = �),

∂ û

∂z
= −Ma

Pr

∂T̂

∂r
,

∂ v̂

∂z
= −Ma

Pr

∂T̂

r∂θ
, ŵ = 0,

∂T̂

∂z
= 0,

(12)
the bottom (z = 0),

û = v̂ = ŵ = ∂T̂

∂z
= 0, (13)
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the inner wall [r = ε/(1–ε)],

û = v̂ = ŵ = T̂ = 0, (14)

and the outer wall [r = 1/(1–ε)],

û = v̂ = ŵ = T̂ = 0. (15)

We decompose the perturbations as the normal mode form,
namely, ⎛

⎜⎝
û(r, θ, z, t )

p̂(r, θ, z, t )

T̂ (r, θ, z, t )

⎞
⎟⎠ =

⎛
⎜⎝

ũ(r, z)

p̃(r, z)

T̃ (r, z)

⎞
⎟⎠e(λr+iλi )t+ikθ . (16)

Here λr and λi are the linear growth rate and the oscilla-
tion frequency, respectively, and k is the wave number in the
azimuthal direction. Substituting Eq. (16) into Eqs. (9)–(15),
a generalized eigenvalue problem is obtained as

Ax̃ = (λr + iλi )Bx̃. (17)

This generalized eigenvalue problem is solved using the
Arnoldi algorithm from the ARPACK library [15]. The most
dangerous mode is obtained by seeking the eigenvalue with
the largest real part (λr), and the critical Marangoni num-
bers are determined from the condition λr max = 0. Under the
critical condition, the corresponding imaginary part (λi) of
the eigenvalue is the critical oscillation frequency. In partic-
ular, λi = 0 indicates a stationary bifurcation while λi �= 0
denotes an oscillatory (Hopf) bifurcation. After the oscillatory
instability occurs, the angular velocity of oscillating wave is
defined as ωosc = –λi/kc. Therefore, λi < 0 represents that the
oscillating wave propagates in the positive azimuthal direc-
tion (counterclockwise), the same as the pool rotation, while
λi > 0 indicates that the oscillating wave propagates in the
negative azimuthal direction (clockwise).

C. Energy analysis

In order to get some physical insights into the stability
results, the disturbance energy analysis around the critical
condition is performed. The total change rate of the distur-
bance kinetic energy (Ekin) is given by multiplying Eq. (10)
with û and integrating over the whole fluid region V , namely,

1

Dk

dEkin

dt
= Iv + Mr + Mθ + Bu − 1, (18)

with the following terms:
the viscous dissipation of kinetic energy Dk ,

Dk =
∫

V
(∇ × û)2dV, (19)

the interaction between the perturbation velocity and the basic
flow Iv ,

Iv = Iv1 + Iv2 + Iv3 + Iv4 + Iv5 + Iv6 + Iv7 + Iv8

= 1

Dk

∫
V

(
− ûû

∂u0

∂r
− ûŵ

∂u0

∂z
+ ûv̂v0

r
− ûv̂

∂v0

∂r

− v̂ŵ
∂v0

∂z
− v̂v̂u0

r
− ûŵ

∂w0

∂r
− ŵŵ

∂w0

∂z

)
dV, (20)

the work done by thermocapillary force on the free surface in
the radial direction Mr ,

Mr = 1

Dk

∫
S

(
û
∂ û

∂z

)
dS, (21)

where S indicates the free surface,
the work done by thermocapillary force on the free surface

in the azimuthal direction Mθ ,

Mθ = 1

Dk

∫
S

(
v̂
∂ v̂

∂z

)
dS, (22)

and the work done by buoyancy force Bu,

Bu = Gr

Dk

∫
V

(T̂ ŵ)dV. (23)

Similarly, the total change rate of the disturbance thermal
energy is given by multiplying Eq. (11) with T̂ and integrating
over the whole fluid region,

1

DT

dET

dt
= IT − 1, (24)

with the following terms:
the heat diffusion of the thermal energy DT ,

DT = 1

Pr

∫
V

(∇T̂ )
2
dV, (25)

and the convective transfer of thermal energy from the basic-
state temperature field to the disturbance temperature field IT ,

IT = IT 1 + IT 2 = 1

DT

(
−

∫
V

T̂ û
∂T0

∂r
dV −

∫
V

T̂ ŵ
∂T0

∂z
dV

)
.

(26)
The positive and negative values of the above energy terms

indicate the destabilizing and stabilizing effect, respectively.
In order to compare the disturbance energy balance under
different parameters, the kinetic and thermal energy equations
are normalized by the corresponding dissipation terms Dk and
DT , respectively.

III. NUMERICAL RESULTS AND DISCUSSION

The self-developed spectral element method codes for the
basic state and the linear stability analysis had been vali-
dated in our previous papers [16,17]. The mesh convergence
is also carefully checked and a nonuniform mesh 76r × 31z

(15 elements in the radial direction, six elements in the axial
direction, and fifth-order discretization in both directions) is
adopted in this paper. For the largest rotation rate calculated
in this paper (ω = 250), the relative deviation of the critical
Marangoni numbers between the grids of fourth-, fifth-, and
sixth-order discretization is less than 2%.

In order to evaluate the effect of gravity (buoyancy) force,
we have considered two cases, namely, case A: normal grav-
ity (1G) corresponding to the thermocapillary-buoyancy flow,
and case B: zero gravity (0G) corresponding to the pure
thermocapillary flow.

035101-3



LIU, HE, ZENG, AND QIU PHYSICAL REVIEW E 104, 035101 (2021)

FIG. 2. Dependence of Mac and relative difference on the aspect
ratio Г (ε = 0.5, Pr = 1.4, ω = 0).

A. Comparison of the critical Marangoni numbers
at different aspect ratios

Figure 2 shows the critical Marangoni numbers (Mac)
for the thermocapillary-buoyancy flow and the pure thermo-
capillary flow versus the aspect ratio. The detailed critical
parameters for different aspect ratios are listed in Table I in
the Appendix. With the increase of aspect ratio, the critical
Marangoni number decreases monotonically for both cases,
while the relative difference of the critical Marangoni num-
bers increases. In the experiments conducted by Schwabe
et al. [18], they reported that the gravity (buoyancy) is neg-
ligible when the liquid depth is less than 3 mm (� = 0.15).
However, the present results show that even for a depth
of 3 mm (� = 0.15), there is still a relative difference of
about 18% between the two cases. Besides, we can see the
thermocapillary-buoyancy flow is more stable than the pure
thermocapillary flow; the reason will be explained in the sub-
sequent section.

B. Effect of rotation on the flow instability

We adopt depth d = 5 mm (� = 0.25) to study the ef-
fect of rotation on the instability of thermocapillary and
thermocapillary-buoyancy flow. The critical parameter values
for the onset of flow instability under different dimensionless
rotation rate ranging from ω = 0 to 250 are determined, as
listed in Table II in the Appendix. Figure 3 shows the de-
pendence of the critical Marangoni number and oscillation

TABLE I. Critical parameters for different aspect ratio Г (ε =
0.5, Pr = 1.4, ω = 0).

� Mac (0G) fc (0G) kc (0G) Mac (1G) fc (1G) kc (1G)

0.05 77998 ±4695.0 33 78984 ±4665.7 32
0.10 27037 ±1160.8 17 29202 ±1211.4 17
0.15 16067 ±530.3 12 19632 ±574.4 16
0.20 11099 ±303.3 11 13619 ±314.2 10
0.25 7855 ±193.1 9 11162 ±214.4 8
0.30 6347 ±138.8 8 10491 ±167.6 7

TABLE II. Critical parameters for different rotation rate ω (� =
0.25, ε = 0.5, Pr = 1.4).

ω Mac (0G) fc (0G) kc (0G) Mac (1G) fc (1G) kc (1G)

0 7855 ±193.1 9 11162 ±214.4 8
6 7531 127.7 9 11102 160.0 8
12 7460 63.2 9 11112 108.2 9
18 7617 –0.00234 9 11281 47.8 9
25 8104 –71.7 9 11734 –21.5 9
31 8805 –130.9 9 12285 –485.6 8
37 9747 –187.8 9 12378 –535.1 8
50 9750 –668.2 9 12400 –642.2 8
75 10140 –906.0 9 12741 –853.8 8
100 10818 –1144.0 9 13803 –1068.8 8
125 11719 –1382.7 9 15278 –1282.8 8
150 12839 –1621.9 9 17045 –1495.4 8
175 14156 –1861.5 9 19073 –1706.2 8
200 15635 –2101.1 9 21236 –1914.5 8
225 17252 –2340.6 9 23504 –2121.1 8
250 19164 –2580.3 9 25914 –2326.3 8

frequency ( fc) on the rotation rate. As ω is increased, the Mac

decreases slightly to a minimum of 7460 at ω = 12 for 0G,
and to a minimum of 11 102 at ω = 6 for 1G. In other words,
the weak rotation destabilizes the steady axisymmetric flow,
and this result is consistent with that in earlier reports in the
literature [7,10–12]. As ω is increased from this minimum,
the Mac increases monotonically, and there is a transition of
the instability mode when ω reaches a certain threshold value
[see Fig. 3(a)]. This transition occurs at ω = 37 for 0G, and
at ω = 25 for 1G. The fc varies linearly with the increasing
ω, and there is a jump change of fc corresponding to the
transition of the instability mode [see Fig. 3(b)].

C. Instability mode and mechanism

1. Instability of type I

When the pool is not rotating, there will be a pair of
conjugated critical oscillation frequencies with the same value
and opposite signs. In other words, the hydrothermal wave
propagates randomly in the positive or negative azimuthal di-
rection with equal probability after the flow instability occurs.
As ω is increased from zero, the critical oscillation frequen-
cies decline linearly from the positive oscillation frequency
of ω = 0. The hydrothermal wave is clockwise (rotates in
the direction opposite of the pool rotation) for ω < 18 for
0G, and for ω < 23 for 1G, and the hydrothermal wave is
counterclockwise (rotates in the same direction as the pool
rotation) for ω higher than these values, as shown in Fig. 4.
A similar phenomenon is also reported by Feudel et al. [19]
in the study of rotating waves in a rotating spherical shell.

Figure 4 shows that the disturbance temperature patterns
on the free surface of instability type I are characterized by
a series of curved spokelike waves. Compared with the pure
thermocapillary flow, the thermocapillary-buoyancy flow
has stronger disturbance temperature near the outer wall.
The surface temperature patterns of instability type II will
be presented in Fig. 8. The energy balances in Fig. 5 show
that Mr , Mθ , and Iv2 (secondary) are the main source of the
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FIG. 3. Dependence of (a) Mac, (b) critical frequency fc, and (c)
ωHTW/ω on the rotation rate ω (� = 0.25, ε = 0.5, Pr = 1.4).

disturbance kinetic energy. Thus, the thermocapillary effect
is the main cause for the flow instability. Moreover, we can
see that Bu occupies a certain negative proportion, indicating
a stabilizing effect of the buoyancy force. Therefore, the

FIG. 4. Surface patterns of the perturbation temperature under
the critical mode at (a) ω = 6, � = 0.25, ε = 0.5, Pr = 1.4, Mac =
7531 and (b) ω = 25, � = 0.25, ε = 0.5, Pr = 1.4, Mac = 8104 for
pure thermocapillary flow. (c) ω = 6, � = 0.25, ε = 0.5, Pr = 1.4,
Mac = 11 102; and (d) ω = 25, � = 0.25, ε = 0.5, Pr = 1.4, Mac =
11 734 for thermocapillary-buoyancy flow.

thermocapillary-buoyancy flow is more stable than the pure
thermocapillary flow.

Since the flow instability is mainly caused by the ther-
mocapillary mechanism, the analysis of the perturbation
temperature field is the focus of discussion. From the thermal
energy budget shown in Fig. 5, we can see both the radial
transfer IT 1 and axial transfer IT 2 are responsible for the in-
stability of the temperature field. For a deeper understanding
of the heat transfer process, Figs. 6 and 7 show the basic-state
field and critical mode under the critical condition. The quasi-
two-dimensional stream function in Fig. 6 is calculated from
the radial and axial velocities. It can be seen that there is a
hot spot and a cold spot of temperature perturbation in the
bulk, and the disturbance flow will transport thermal energy
from the basic-state temperature gradient to the perturbation
temperature field near the two spots.

2. Instability of type II

When the rotation rate ω is large enough, another type of
hydrothermal wave arises and becomes the most dangerous
instability mode. As shown in Fig. 3(b), the absolute value of
the critical frequency fc increases linearly with the increase
of rotation rate ω. In order to further explain this linear re-
lationship, Fig. 3(c) gives the dependence of ωHTW/ω on the
rotation rate ω, where ωHTW = – fc/kc is the angular velocity
of hydrothermal wave propagation. We can see that ωHTW/ω

asymptotes to 1 when the rotation rate of the annular pool
is large. This means that when the rotation rate is large, the
propagation of the hydrothermal wave tends to be consistent
with the rotation rhythm of the annular pool.
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FIG. 5. Disturbance energy balance under the critical mode at (a) ω = 6, � = 0.25, ε = 0.5, Pr = 1.4, Mac = 7531 and (b) ω = 25,
� = 0.25, ε = 0.5, Pr = 1.4, Mac = 8104 for pure thermocapillary flow. (c) ω = 6, � = 0.25, ε = 0.5, Pr = 1.4, Mac = 11 102 and (d)
ω = 25, � = 0.25, ε = 0.5, Pr = 1.4, Mac = 11 734 for thermocapillary-buoyancy flow.

As demonstrated in Fig. 8, the surface patterns of the
perturbation temperature take the form of parallelogramlike

FIG. 6. Basic state and critical mode on a r-z cut plane where
the perturbation temperature takes the maximum value for ω = 6,
� = 0.25, ε = 0.5, Pr = 1.4, Mac = 7531 under zero gravity. (a)
Quasi-two-dimensional streamlines of the basic flow and distribution
of the basic-state temperature T0 (isolines). (b) Disturbance velocity
vectors (arrows) and perturbation temperature combined with the
local thermal energy iT 1 (isolines). (c) Disturbance velocity vectors
(arrows) and perturbation temperature combined with the local ther-
mal energy iT 2 (isolines).

waves distributed near the outer (hot) wall. From Figs. 4 and
8 we can see that there are obvious differences between the

FIG. 7. Basic state and critical mode on a r-z cut plane where
the perturbation temperature takes the maximum value for ω = 6,
� = 0.25, ε = 0.5, Pr = 1.4, Mac = 11 102 under normal gravity.
(a) Quasi-tw- dimensional streamlines of the basic flow and distri-
bution of the basic-state temperature T0 (isolines). (b) Disturbance
velocity vectors (arrows) and perturbation temperature combined
with the local thermal energy iT 1 (isolines). (c) Disturbance velocity
vectors (arrows) and perturbation temperature combined with the
local thermal energy iT 2 (isolines).
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FIG. 8. Surface patterns of the perturbation temperature un-
der the critical mode at (a) ω = 150, � = 0.25, ε = 0.5, Pr =
1.4, Mac = 12 839 for pure thermocapillary flow and (b) ω = 150,
� = 0.25, ε = 0.5, Pr = 1.4, Mac = 17 045 for thermocapillary-
buoyancy flow.

surface temperature pattern of instability type I and type II.
The temperature perturbations of instability type II are more
highly concentrated near the outer wall and are less curved
(leaning but not spiraling) than those of type I. This surface
temperature pattern is different from that of the typical hy-
drothermal wave, and it is also reported by Li et al. [12] in the
study of thermocapillary flow in a rotating annular pool with
medium Prandtl number (Pr = 6.7). Moreover, from Table II
we can see that for case 1G, the wave number changes from
kc = 9 to kc = 8 at the transition of the instability mode.
However, this change did not occur for case 0G. In fact, the
wave number is related to the size of the instability cells
[20]. The instability occupies a certain radial range, and the
instability cells have approximately equal lengths in the radial
and azimuthal directions. For instability type II, the instability
for case 1G occupies a larger radial range than case 0G (see
Fig. 8); therefore the instability cells for case 1G have larger
length in the azimuthal direction than case 0G. Thereby, the
wave number for case 1G is smaller.

The disturbance energy budget shows that Mr , Mθ , and
Iv2 (secondary) play the leading role in the energy balance
(Fig. 9). It means that the thermocapillary effect is still the
major cause of flow instability. Besides, we can see Iv3, Iv4,
and Iv5, which are associated with the rotation, are very small
compared with Mr and Mθ . Therefore, the pool rotation does
not provide much additional energy for the flow instability,
and its effect is reflected in the modification of the basic-state

FIG. 10. Basic state and critical mode on a r-z cut plane where
the perturbation temperature takes the maximum value for ω = 150,
� = 0.25, ε = 0.5, Pr = 1.4, Mac = 12 839 under zero gravity. (a)
Quasi-two-dimensional streamlines of the basic flow and distribution
of the basic-state temperature T0 (isolines). (b) Disturbance velocity
vectors (arrows) and perturbation temperature combined with the
local thermal energy iT 1 (isolines). (c) Disturbance velocity vectors
(arrows) and perturbation temperature combined with the local ther-
mal energy iT 2 (isolines).

flow. In fact, the basic flow is of great significance in trig-
gering this type of flow instability. Although the contributions
of each energy term are similar to those of instability type
I, the mechanisms are different. As shown in Figs. 10 and 11,
there is only a hot spot of temperature perturbation in the bulk.
Compared with the instability of type I, the cold spot near the
inner (cold) wall disappears, resulting in the atypical surface
patterns of perturbation temperature (see Fig. 8).

IV. CONCLUSIONS

In this paper a series of linear stability analyses are per-
formed to investigate the effect of rotation on the instabilities
of thermocapillary and thermocapillary-buoyancy flow in an-
nular pools. The results indicate that the ignoring of the

FIG. 9. Disturbance energy balance under the critical mode at (a) ω = 150, � = 0.25, ε = 0.5, Pr = 1.4, Mac = 12 839 for pure thermo-
capillary flow and (b) ω = 150, � = 0.25, ε = 0.5, Pr = 1.4, Mac = 17 045 for thermocapillary-buoyancy flow.
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FIG. 11. Basic state and critical mode on a r-z cut plane where
the perturbation temperature takes the maximum value for ω = 150,
� = 0.25, ε = 0.5, Pr = 1.4, Mac = 17 045 under normal gravity.
(a) Quasi-two-dimensional streamlines of the basic flow and distri-
bution of the basic-state temperature T0 (isolines). (b) Disturbance
velocity vectors (arrows) and perturbation temperature combined
with the local thermal energy iT 1 (isolines). (c) Disturbance velocity
vectors (arrows) and perturbation temperature combined with the
local thermal energy iT 2 (isolines).

buoyancy force would cause a large deviation even for the
very small liquid depths, and the deviation increases with the
increase of the liquid depth. The thermocapillary-buoyancy

flow is more stable than the pure thermocapillary flow owing
to the stabilizing effect of the buoyancy force.

For both thermocapillary-buoyancy flow and pure thermo-
capillary flow, the weak rotation destabilizes the flow while
the strong rotation stabilizes the flow. Two types of flow insta-
bilities are predicted. The first one occurs when the rotation
rates are relatively small, and the hydrothermal wave propa-
gates in the opposite or same direction of the pool rotation
depending on the rotation rate. The second type of instability
arises at relatively large rotation rates, and the hydrothermal
wave propagates in the same direction as the pool rotation.
The propagation velocity increases linearly as the rotation rate
increases. The perturbation energy analysis indicates that the
flow instability is mainly hydrothermal in nature. Although
the pool rotation affects the critical instability parameters and
the instability type, it does not provide a large amount of
additional disturbance energy for the flow instability.
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APPENDIX

The critical instability parameters are shown in Tables I
and II.
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