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Conditions for the stability under linear perturbations around the homogeneous cooling state are studied
for dilute granular gases of inelastic and rough hard disks or spheres with constant coefficients of normal
(o) and tangential (B) restitution. After a formally exact linear stability analysis of the Navier—Stokes—Fourier
hydrodynamic equations in terms of the translational (d;) and rotational (d,) degrees of freedom, the transport
coefficients derived in the companion paper [A. Megias and A. Santos, “Hydrodynamics of granular gases of
inelastic and rough hard disks or spheres. I. Transport coefficients” Phys. Rev. E 104, 034901 (2021)] are
employed. Known results for hard spheres [Garz6, Santos, and Kremer, Phys. Rev. E 97, 052901 (2018)] are
recovered by setting d; = d, = 3, while novel results for hard disks (d;, = 2, d, = 1) are obtained. In the latter
case, a high-inelasticity peculiar region in the («, ) parameter space is found, inside which the critical wave
number associated with the longitudinal modes diverges. Comparison with event-driven molecular dynamics
simulations for dilute systems of hard disks at « = 0.2 shows that this theoretical region of absolute instability
may be an artifact of the extrapolation to high inelasticity of the approximations made in the derivation of the
transport coefficients, although it signals a shrinking of the conditions for stability. In the case of moderate
inelasticity (¢ = 0.7), however, a good agreement between the theoretical predictions and the simulation results

is found.
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I. INTRODUCTION

Hard disks and spheres are very common models for de-
scribing fluids. In the molecular case, energy is conserved
upon collisions, which are set to be elastic. As a consequence,
the equilibrium state is obviously stable. In contrast, a dis-
tinctive feature of a granular gas, as compared to a common
fluid, is the possible instability of spatially uniform states and
the associated appearance of structure formations (clusters
and vortices). Characterization of the spontaneous formation
of these instabilities has been widely studied for granular
gases modeled as inelastic but smooth particles [1-8]. In these
systems, it is always possible to find a range of parameters and
perturbation wave numbers where a hydrodynamic descrip-
tion holds and instabilities are suppressed. In recent years, this
study has been expanded to the case of rough spheres [9,10],
where a dual role of roughness on instability has been
observed.

Structure phenomena are important and appealing from a
physical point of view. At a cosmological level, whereas the
universe is considered to be generally isotropic and homoge-
neous, clustering is essential to forge galaxies and is present
in planetary systems, dust agglomerations, planet rings, etc.
Moreover, vortex formation can remind the rotational motion
of disk or spiral galaxies like our Milky Way. From that point
of view, granular gases, apart from their intrinsic interest, can
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serve as useful examples for the formation of clusters and
vortices. However, whereas attractive gravitational forces are
the key of the clustering in the universe, in a granular gas the
inelastic nature of the interacting particles is enough to pro-
duce it. Even more, the instabilities in self-gravitating granular
gas systems has also been recently studied [11]. A similarity
aspect between both classes of systems is that in cosmology
one needs primordial perturbations in the early universe for
the formation of agglomerations, while in a granular gas one
can observe cluster formation spontaneously due to the growth
of a given long enough perturbation. Furthermore, granular
friction effects are known to have an influence on some astro-
nomical problems [12,13].

In this paper, we consider a dilute granular gas modeled as
a collection of hard spheres (HS) or hard disks (HD) which
collide with constant coefficients of normal («) and tangential
(B) restitution; while 0 < o < 1 controls the degree of inelas-
ticity, —1 < B < 1 measures the degree of surface roughness.
In general, each particle is animated with d; components of
the translational velocity v and d, components of the angular
velocity @, where (d;, d,) = (3, 3) and (2,1) for HS and HD,
respectively. Our main aim is to perform a linear stability anal-
ysis of the homogeneous cooling state (HCS) of the granular
gas by means of a Navier—Stokes—Fourier (NSF) hydrody-
namic description in terms of the number of translational (d;)
and rotational (d,) degrees of freedom, thus encompassing the
HS and HD systems within a unified treatment, as done in
previous works [14—16]. To that end, we make explicit use of
the approximate expressions for the NSF transport coefficients
derived in the companion paper I [16]. The HS results [10]
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are recovered by setting (d;, d,) = (3, 3), while novel results,
to the best of our knowledge, are presented for HD by the
choice (d;,d,) = (2,1). In the latter case, we additionally
present event-driven molecular dynamics (MD) simulations,
where the possible emergence of instability is monitored via a
coarse-grained Kullback—Leibler divergence (KLD) [17,18],
which measures the degree of spatial heterogeneities, as well
as by the evolution of other relevant quantities (temperature
ratio and velocity cumulants). As we will see, our results
do not confirm previous studies [19], where different cool-
ing laws for rotational and translational temperatures were
reported.

The paper is structured as follows. In Sec. II, the NSF
hydrodynamic equations are presented for a granular gas in
terms of the translational (d;) and rotational (d,) degrees of
freedom. Afterwards, the linear stability analysis of the d;, + 2
hydrodynamic equations around the HCS is completed in
Sec. III in a formally exact way, that is, without assuming
any particular form for the NSF transport coefficients. Next,
in Sec. IV, use is made of the approximate transport coeffi-
cients computed in Ref. [16] and the results of the stability
analysis are discussed. To clarify some unexpected outcomes
in the HD case, our MD simulation results are exposed in
Sec. V. Finally, concluding remarks of the work are presented
in Sec. VL.

II. NAVIER-STOKES-FOURIER
HYDRODYNAMIC EQUATIONS

Let us consider a dilute granular gas made of identical HD
(d, =2,d, = 1) or HS (d;, = d, = 3) of diameter o, mass m,
and moment of inertia I = kmo? /4, where k is the reduced
moment of inertia. As said before, the collision dynamics will
be assumed to be governed by two constant coefficients of
restitution: normal (o) and tangential (8). In a kinetic-theory
description of the gas, the mesoscopic relevant quantity is the
one-body velocity distribution function f(r, v, w;t), which
obeys the Boltzmann equation.

At a macroscopic level, the adopted hydrodynamic fields
are the number density n(r, t), the flow velocity u(r, ¢), and
the temperature 7'(r, t), which are defined as

n(r,t) = /dv/dwf(r, vV, ;t), (1a)
u(r’t):fdvfdwvf(r,v,w;t)’ (1b)
n(r,t)

[dv [de{m[v—u(r,)]* +I0*}f(r, v, ;1)
(d; +d)n(r, 1) '

T(r,t)=

(Ic)

By assuming a Chapman—Enskog expansion around the
HCS, the hydrodynamic equations to first order in the hydro-
dynamic gradients (NSF order) become

D,n = —nV - u, (2a)

mnDiy; = -7, V;(nT) + V; |:77(V,~uj + Vu;)

2
- <d—77 - Ub)5ijV '“:|7 (2b)

(Df+&®ﬂw=(s— 2% )TV-u

d, +d,

2
+ ———V . -(AVT 4+ uVn
TR nvn)

2
T
(d; +d)n

2
— (—T) — m,)SijV -ll:|V,'M,'. (20)
dt g F

In these equations, D, = 0, +u-V 1is the material time
derivative, t, is the HCS translational-to total temperature ra-
tio, ¢ is the Euler-order cooling rate, 7 is the shear viscosity,
np is the bulk viscosity, A is the thermal conductivity, u is
a Dufour-like transport coefficient, and & is a dimensionless
transport coefficient associated with the velocity-divergence
contribution to the cooling rate [16].

Dimensional analysis dictates that ¢© = ¢*v, n = n*nq,
Ny = NpNo, A = A¥Ag, and . = u*AoT /n, where

|:77(V,‘I/tj + lext,')

di—1
12, T 2n T
v = Kno®%™! i , = —\/_n i ) 3)
m I'(d;/2)
is a collision frequency, and
T 2d,K} nt,T d +2
IR RLLE e LR A )
v d —1 mv 4

are the shear viscosity and thermal conductivity, respectively,
of a gas of elastic (@« = 1) and smooth (8 = —1) particles.
Apart from that, the explicit forms of the dimensionless coef-
ficients 7, ¢*, &, n*, n;, A*, and u* will not be needed for the
moment.

III. LINEAR STABILITY ANALYSIS OF THE
HOMOGENEOUS COOLING STATE

The set of hydrodynamic equations, given by Egs. (2), ad-
mits the HCS as a special solution, in which V — 0 and thus
the right-hand sides vanish. In that case, ny = const, uy =
const, and Ty = —¢*vy Ty, where the quantities in the HCS
are denoted with the subscript H. Thus, v — vy & ny+/Ty,
no — nNor & /Ty, and Ao — Aoy o «/Ty. Moreover, we in-
troduce the thermal (translational) velocity in the HCS as
vy = /21Ty /m.

In this section we study the stability of the HCS by
means of a linear perturbation analysis of the NSF equations,
Egs. (2). This study is essential to characterize the well-known
structure formation that appears in granular gases.

The perturbations of the hydrodynamic fields around the
HCS are written as

n(r,t) = ng +on(r,t), u(r,t)=du(r,t), (5a)
T(r,t) =Ty +3T(r,1), (5b)
where, without loss of generality, we have chosen a ref-

erence frame with uy = 0. By inserting Egs. (5) into
Egs. (2), and neglecting terms nonlinear in the perturbations,
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Equations (6) form a closed set of d; + 2 linear partial differ-
ential equations.

It is now convenient to introduce the following scaled time
and space variables,

VH
= —r.
V2K vy

The variable s measures the average number of collisions per
particle, while £ represents distance in units of a nominal
mean free path (note that vy /vy is independent of time).
Given a perturbation field y(r, t), we define its Fourier trans-
form as

s(t)=%/ dt'va (), 2 (7
0

Sy (s) = f dle ®tsy(r, 1), (8)

where 1 is the imaginary unit and k is the reduced wave vector.
Thus, by defining the dimensionless quantities

87 Su 8T,
o) = 25O g = V2B gy () = 2ES)
ny Ve T
9
and taking the Fourier transform of Egs. (6), we obtain
K950k = —1k - Uy, (10a)
. n*kZ
Ko 0,Ux = | Ke$™ — 3 Uk — | 1(®k + px)
+1d’ 2*+*kU k (10b)
2 dt n 771; k )
KidsOx = —Kee* e+ 00 +1 (£ — —— )k - U
Ok = — 1§ - -
05Ok & (2px Kk 4 +d Kk
24K,
— T R0FOk+ o). (100)

(dy — 1)(d; +d;)

Taking the inner product with k in both sides of Eq. (10b),
one gets

*7,2
> )Uk.” - |:l(®k + oK)

+1 dt—2*+ N i
2 ) n Ny kIl [%5

n
KUy = <Kz§* -

(1)

where Uy | = k~'k - U is the longitudinal component of the
vector Ug. Next, combination of Egs. (10b) and (11) yields
the following equation for the d; — 1 transverse components
Uk,L = Uk — Uk_Hk/k,

5 ;* N T]* k2

' 2K,

Thus, the transverse vector Uy ; decouples from the other
three hydrodynamic fields. The solution to Eq. (12) is simply

)uqu o, (12)

n*kZ

2K,

This characterizes the behavior of the d, — 1 shear modes.
They decay in time if @ (k) < 0, i.e., if the (reduced) wave
number k is larger than a critical value

2K,
k, = ©r
n*

However, if k < k, then the shear modes grow in time and
the HCS is unstable under those transverse perturbations.

We consider now the three longitudinal modes pg, Ok,
and Uy . Equations (10a), (10c), and (11) can be rewritten
in matrix form as

Uy 1 (s) = Uk 1 (00”0 o (k) =¢* — (13)

(14)

Pk Pk
| Ok | =M | O |, (15)
Uk, U,
where
O 0 lk/K[
Mk) = — | 2¢* + C.k*  ¢* +Ck*  —Cerk/K,
lk/K[ lk/K[ —§*+an2
(16)
Here,
2d,\* 2d, 1*
CG=——""—+ C=——— (173
YT - D +d) T (d - D+ dy)
2‘[[ 1 d[_l nZ
CG=t-———7—, G=— +2). a7
¢ =8 di +d, ! Ke( d; o 2 (170)

Let us denote as @ ;(k), @ 2(k), and ) 3(k) the three
eigenvalues of the matrix M. They are given by the roots of
the characteristic polynomial

o) + B (K)@| + F (ko) + Fyk), (18)
with
k2
Fo(k) = [=¢" + (G — C#)kz]p, (19a)
14
) -G _ * |12 4
Fi(k)=—-¢""+ o T (Cy — COT* |k + C, Gk,
14
(19b)
Fy(k) = (G, + CK*. (19¢)

In the long-wavelength limit (k < 1), the roots of Eq. (18)
reduce to
1-C:/2

@)1(k) = —¢* + ( Ko Ck>k2 +--0, (20a)
f
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k2
K ¢*

C
oy3k) =¢* — <C7] - 2K§§*>k2 +-e
¢

The two eigenvalues w1 and @, define a pair of sound
modes, while @3 corresponds to the heat mode. The heat
mode is unstable for wave numbers (k < k) such that @ 3(k)
becomes positive. To determine the associated critical value
ky, we set | = 0 in Eq. (18), i.e., Fy(k) = 0. Therefore,

_[ldr = 1)(d +d)) c*
ky —\/ 2d, \/A* o 21

IV. ANALYSIS

@) 2(k) = — +---, (20b)

(20c)

All the results in Secs. II and III are general in the sense that
the explicit expressions for the dimensionless coefficients t;,
¢*, &, 0%, ny, A*, and u* have not been used. Those coefficients
are functions of the coefficients of restitution (c, 8) and the
reduced moment of inertia (k), and they also depend on the
number of degrees of freedom (d; and d,). As shown in paper
I [16], the exact determination of 7, and ¢* would require to
solve the nonlinear Boltzmann equation for the zeroth-order
HCS velocity distribution function f©. The situation is even
more involved in the case of the transport coefficients &, n*,
n;, A*, and pu*, whose determination, assuming £ were
already known, would require to solve four linear integral
equations for the first-order distribution function f).

To overcome the above difficulties, in paper I we adopted a
Sonine-like approximation for £ supplemented by a quasi-
Maxwellian approximation for £ (see Ref. [16] for details)
that allowed us to obtain (approximate) explicit expressions
for 7, ¢*, &, n*, n;, A*, and u* as functions of «, B, «, d;, and
d,. The results are summarized in Table I of paper I and agree
with those previously derived [20] for HS (d; = d, = 3). For
completeness, we present in Table I the results for HD (d;, = 2,
d, = 1), which, to the best of our knowledge, have not been
shown before.

In the case of purely smooth particles (8 = —1 or, in our
approach, d, — 0), it is known that the HCS becomes unsta-
ble under perturbations with a sufficiently small wave number
(k < max{ky, kj}) [5,8]. Interestingly, the quasismooth limit
B — —1 is singular and yields {* — 0 and u* — 0. Conse-
quently, according to Eqs. (14) and (21), k1, kj — 0. In the
general case, however, the HCS of a granular gas of rough
HD or HS can be unstable.

Figure 1 shows the dispersion relations @ (k), as obtained
from Eqgs. (13) and (18), at « = 0.7 and for several repre-
sentative values of 8. In each case, uniform HD (x = %) and
uniform HS (k = %) are considered. The curves for HD and
HS are qualitatively similar. In both systems, the real part of
the sound modes (w1 and @) ) remain negative for all k,
thus indicating that those perturbative modes decay in time.
However, the shear (z| ) and heat (z),3) modes grow in time
if the wave number is smaller than k, and kj, respectively.
Note that both frequencies (| and @ 3) tend to ¢* in the
small wave number limit k — O [see Egs. (13) and (20c)].

TABLE I. Summary of the explicit expressions of the transport
coefficients for a granular gas of inelastic and rough HD in a Sonine-
like approximation [16].

Gl Fol
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o - 42

The scenario becomes much more complex for highly in-
elastic particles, as illustrated in Fig. 2 at « = 0.2. In the
cases B = —0.5 [Fig. 2(a)] and 8 = 1 [Fig. 2(d)], the HD and
HS curves are still qualitatively similar. However, if g =0
[Fig. 2(b)] or B = 0.5 [Fig. 2(c)], then @ 3 > 0 for all k (i.e.,
kj — oo) in the HD case. From Eq. (21) we see that the locus
in the plane o versus 8 separating the region where k; = finite
from the region where k; — oo is defined by the condition
A= ut.

The locus A* = p* for HD is shown in Fig. 3(a) for several
values of k. For each «, kj — oo in the region enclosed by
the locus. The latter curve presents an apex at a point («, ) =
(Qapex> Bapex)> 80 that ky = finite if o > orpey, regardless of the
value of 8. A similar behavior occurs in the HS case [10],
except that the regions where k; — oo are much smaller and
disappear if ¥ > 0.277. The dependence of apex and Bapex ON
k for both HD and HS is shown in Fig. 3(b). While apex
for HS decays monotonically as « increases (and eventually
vanishes at k = 0.277), it exhibits a nonmonotonic behavior
for HD, with a maximum value ogpex = 0.426 at « = 0.302.
However, Bapex grows monotonically with « both for HD and
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k k

FIG. 1. Dispersion relations @ (k) for the hydrodynamic modes
vs the reduced wave number k. The curves correspond to the degen-
erate shear mode @, (red lines), the heat mode @ 3, and the sound
modes @) and @, (blue lines). Note that when =, and @,
become a complex conjugate pair, only the (common) real part is
plotted. The solid and dotted lines represent the HD system, while the
dashed and dash-dotted lines refer to HS systems. The coefficient of
normal restitution is ¢ = 0.7, the reduced moment of inertia is k = %
(HD) ork = % (HS), and the coefficients of tangential restitution are

@) B =—0.5,()B=0,(c) B =0.5and (d) B = L.

HS. The contrast between the HD and HS behaviors is clearly
highlighted in Fig. 3(c), which shows the «-dependence of the
area of the region where kj — oo.

Let us now visualize the dependence of the two critical
wave numbers k; and kj on «, B, and « for both HD and
HS systems. The results are shown as density plots in the
plane « versus B in Figs. 4 and 5, where two representative
mass distributions of the particles are considered: a uniform
distribution (x = % and % for HD and HS, respectively) and a
distribution concentrated on the surface (x = 1 and % for HD
and HS, respectively). In the case of the transverse shear-mode
critical wave number k, , the dependence on «, B, and « is
qualitatively similar for HD and HS granular gases. However,
this similarity disappears in what respects the longitudinal
heat-mode critical wave number k| as one approaches the HD
locus A* = p*, in agreement with the previous discussion of
Fig. 3.

Depending on the values of @ and B, the most unstable
mode could be either the transverse shear mode (if k; > k)
or the longitudinal heat one (if k; > k). Figure 6 depicts
the locus k; = kj for HD and HS gases and the same values

=
B
\\ —1.0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
(c) (d)
0.6 0.6
—w| (HD) ---wH (HS)
-------- w (HD) —=w (HS)
0.2
= 02 o —0.2
B

—0.6 ) ~0.6

—1.0 —-1.0

;
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
k k

FIG. 2. Same as described in the caption of Fig. 1, except that
a=0.2.

of « as in Figs. 4 and 5. In each case, k; > kj or kj > k|
above or below the locus, respectively. We observe that the
region where the heat mode dominates (kj > k) is generally
wider for HD than for HS; moreover, its area decreases as
k increases for HS, while for HD it has a nonmonotonic k-
dependence with a maximum at about « = 0.348 (not shown).

The critical wave numbers k; and k; imply that the
HCS becomes unstable if the (reduced) length of the sys-
tem is larger than the critical value ¢, = 2m/k., where
ke = max{k,, k;}. In real units, the critical length is L. =

(V2Kevy [vi)e., ie.,

L_wtorn -
o d2dk¢

where
/2

=———— o
24-14,T'(d, /2)

is the solid fraction of the system. At a given value of the
reduced moment of inertia x, L. is associated with either
vortex or clustering instability in the region above or below,
respectively, the corresponding locus in Fig. 6. Moreover,
L. — 0 in the region below the locus on Fig. 3(a) for HD
gases. In other words, in that region (henceforth referred to
as the region of absolute instability), the HCS would always
be unstable for any system size. This is a very strong statement
that needs some discussion.

Note that the condition A* < p* takes place for very in-
elastic disks and never holds if @ > 0.426. Since the explicit

é df (23)
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K K

FIG. 3. (a) Plane « vs 8 showing the locus A* = u* for HD with
a reduced moment of inertia ¥ = 0.1, 0.3, 0.5, 0.8, and 1. In each
case, kj — oo in the region below the locus, which has an apex
located at (a, ) = (Qapex» Bapex)- (b) Dependence of dgpex and Bpex
on k for HD and HS. (c) Variation with « of the area of the region
where k; — oo for HD and HS.
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3 0.20
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0.0 0. 0.00

210 =05 00 05 L0 =10 —05 00 05 L0
B B

FIG. 4. Density plots of the reduced critical wave number &, in
the plane « vs 8 for (a) HD with a uniform mass distribution (x = %),
(b) HD with a mass distribution concentrated on the outer surface
(k = 1), (c) HS with a uniform mass distribution (¢ = %), and (d) HS
with a mass distribution concentrated on the outer surface (k = %).
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FIG. 5. Same as described in the caption of Fig. 4, but for the
reduced critical wave number k.

expressions for the transport coefficients derived in paper
I [16] made use of a Sonine-like approximation for the first-
order distribution £ and a quasi-Maxwellian approximation
for the zeroth-order distribution f©, it cannot be discarded
that the combination of those two approximations is respon-
sible for the existence of the region of absolute instability. If
that were the case, then a more sophisticated approximation,
for instance, by consistently including the cumulants of f©
in the description, would erase such a region and A* would be
larger than p* for any «, 8, and «.

To put that possibility in context, let us recall the case
of purely smooth particles (d, — 0). It is then easy to find
that \* < pw*ifa < 4 —d)/(7d; — 4) (ie.,a < % =0.2and
o< % 2~ (.06 for HD and HS, respectively) when the fourth-
degree cumulant a, of f© is neglected. Paradoxically, if the
role of a; is introduced in a standard way [5,21], the interval of
absolute instability grows to o < 0.333 (HD) and « < 0.175
(HS). However, if the cumulant a, is taken into account in
a more consistent manner [22], then A* > p* for all o, both

1.0

— HD:k=1/2
0.8 ereeees HD: k=1

---- HS:k=2/5
0.6r —— Hs: k=23 =T

S | T T,
0.4
0.2
/ AR B
0.0k . / . . K . ER—
~1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00
g

FIG. 6. Plane « vs 8 showing the locus k; = k; for HD («x = %
and 1) and HS (x = % and %). In each case, the longitudinal heat
mode is the most unstable one (k; > k) in the region below the

locus.
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for HD and HS. To make things even more complicated, it
is known that the cumulant expansion of f® for smooth
particles breaks down if « is small [23].

The situation is much more delicate in the case of rough
particles. First, instead of a single fourth-degree cumulant of
f©, there are three (HD) or four (HS) independent fourth-
degree cumulants [24]. Second, those cumulants have been
reported for HS [25-29], but not for HD. And third, the known
cumulants for HS can take rather large values [27,28], except
for small inelasticity, and this effect is expected to become
even more dramatic for HD [24].

Considering all of this, the prediction of a region of ab-
solute instability in the HD case must be taken with much
caution. In any case, one can conclude that the HD gas
typically develops clustering instabilities with much larger
reduced wave numbers than the HS gas if the values of o and
B belong to the regions signaled in Figs. 3 and 5.

V. MOLECULAR DYNAMICS SIMULATIONS FOR
INELASTIC AND ROUGH HARD DISKS

Although the main aim of this paper is theoretical, we
present in this section event-driven MD results for freely
cooling HD gases to check the stability of the HCS.

We have considered systems characterized by a certain
number N of uniform disks (kx = %) and a certain reduced
number density no2. The particles were enclosed in a square
box of side length L/o = /N/no? and periodic boundary
conditions were applied. Since the largest wavelength of a
perturbation is L, the smallest (reduced) wave number is k =
2/ /noL =2,/ /[Nno?. For each choice of o and B, the
system was allowed to evolve for s = 1000 average number
of collisions per particle and data were extracted every 0.5
collisions per particle. To avoid dealing with extremely low
temperatures and velocities after a large number of collisions
per particle, thus compromising the accuracy of the simulation
data, a velocity rescaling [30] was performed every 0.5 colli-
sions per particle. Moreover, inelastic collapse was prevented
by switching to elastic collisions whenever two successive
collisions involved the same pair in a very short period of
time [31].

The appearance of clustering instabilities in simulations is
usually identified by means of visual snapshots [9]. However,
this might be difficult if N is not large enough, as happens in
a dilute gas. It is then very convenient to monitor the degree
of spatial homogeneity of the gas by means of a single quan-
tity that oversees the whole system. To this end, we propose
here the (discrete and coarse-grained) KLD [17,18] of the
spatial distribution of particles in the box with respect to a
reference homogeneous distribution as a control parameter to
detect clustering inhomogeneities. Although the KLD is not
actually a metric function, it somehow measures the distance
(divergence) of a distribution with respect to a reference one
as the amount of information lost when the reference model
distribution is used to approximate the true distribution. The
KLD has been used to measure inhomogeneities in other phys-
ical contexts [32,33]. More recently, Shannon’s entropy [34]
(which is related to the KLD but with a constant reference

distribution) has been used to study clustering in granular
dynamics experiments [35].

To construct the coarse-grained KLD, the HD simulation
box is split into M > 1 square cells of side length L. and
area Lfeu. Let us denote by Ney =0, 1, ..., N the number
of disks inside a given cell. The fraction of cells having ex-
actly N particles will be denoted as p(Nee1); equivalently,
this is the probability that a cell chosen at random has N
particles. Obviously, the average number of particles per cell
is deenl = (Neen) = N/M = nL%,,. A relevant quantity is the
variance 02, = (N2,) — a2,;, measuring fluctuations around
the average number. Now, we define the KLD as

14 (N cell )

N
D= p(Ncell )In s
Z pref(Ncell)

Neen=0

(24)

where prs(Nee1) 1S a reference distribution modeling a spa-
tially uniform system. Here we choose such a distribution
as that of a system of totally uncorrelated point particles. If
we randomly “shoot” a particle to the simulation box, then
the probability that it hits a given cell is M~!. Thus, in the
reference model, the probability that N, particles have hit
the cell after N shootings is given by the binomial distribution

N
pref(Ncell) = MﬁN (M - 1)N7Nw"- (25)
Ncell

In this reference model, ocze"’ref = acn(1 — M. Taking
into account that M > 1 (so that acy < N), it is pos-
sible to approximate the binomial distribution by the
Poisson one, pref(Neenn) == e~ %! alc\;“ﬁ“ /Neenn!. In that case,
<che]|)ref > deenn(1 + acen), <N3611>ref > deep(1 + 3acen + agen)7
and (Nc4611>ref > deent(1 + 7acen + 6613611 + azeu)-

While the KLD defined by Eq. (24) compares the distri-
butions p(Neei) and prer(Neen) for all values of N1, a simple
relationship between D and the variance difference 80026“ =
0(;25;11 — aﬁzztill,ref can be established if p(Neen) ~ Pret(Neenr), SO we
can write

50c2e11
P(Neet) = Pret(WNee)| 1 + 5 So(Neer) [, (26a)
1+ 2acell N2
So(Neen) = 1 = ————Neen + —2. (26b)
acell acell
Note that <SZ(Ncell))ref = (NceIISZ(Ncell))ref =0 and
(N2S2(Nee))ref = 2 within the Poisson approximation.

By inserting Eq. (26a) into Eq. (24) and expanding up to

second order in 803611, one gets
2 2
802, 1 acze
D~ — ([ (Nea) et = — | <2 — 1) . (27)
8 4 Acell

It is important to bear in mind that the reference model
neglects excluded-volume effects and nonequilibrium spa-
tial correlations. Therefore, it is possible to have D # 0 and
‘75311 # acen(1 — M) >~ acen, even if the system remains ho-
mogeneous. However, significant nonzero values of D and/or
Gczell /acen — 1 are expected to be indicators of spontaneous
heterogeneities in the spatial particle distributions.

In most of our simulations, we have chosen the system
identified with the label A in Table II. After an aging stage
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TABLE II. Values of the main parameters of the systems ana-
lyzed by event-driven MD simulations.

System N no? L/o k M Leen/o (Neen)
A 1600 0.005 565.7 1253 625 22.63 256
B 1600 0.010 400.0 0.886 625 16.00 2.56
C 6400 0.005 11314 0.627 2500 22.63 2.56

of s = 500 collisions per particle, the coarse-grained spatial
distribution p(N¢e;1) was obtained by averaging the histograms
corresponding to the population of the M cells from s = 500
to s = 1000. The KLD was then evaluated from Eqs. (24)
and (25). Figures 7(a) and 7(b) show the dependence of the
computed KLD versus 8 (at fixed « = 0.2 and « = 0.7) and
versus « (at fixed g = 0.25), respectively. The behavior of
the theoretical eigenvalues @, and w3 for the value of
the wave number corresponding to system A (k = 1.253) are
shown in Figs. 7(c) and 7(d), respectively. We observe that
the MD values of the KLLD and the theoretical values of the
eigenvalue o 3 are rather correlated: in general, the larger
@) 3 the larger D. The relevant point here is that theory

(a) (b)
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FIG. 7. (a) Plot of the MD simulation values of the KLD D vs
at « = 0.2 and @ = 0.7 for system A (see Table II). (b) Plot of the
MD simulation values of the KLD D vs « at 8 = 0.25 for the same
system. (c) Theoretical eigenvalues @, (transverse shear mode) and
@) 3 (longitudinal heat mode) vs B at « = 0.2 and o = 0.7 for a
reduced wave number k = 1.253. (d) Theoretical eigenvalues @,
(transverse shear mode) and @ 3 (longitudinal heat mode) vs « at
B = 0.25 for a reduced wave number k = 1.253. The vertical dotted
lines denote the borders of the regions where, according to theory,
the HCS of the system is unstable (w3 > 0) at (a, ¢) &« = 0.2 and
(b,d) 8 =0.25.
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FIG. 8. MD temporal evolution of (a) the rotational-to-
translational temperature ratio 6, (b) the excess translational velocity
kurtosis ay, (c) the excess angular velocity kurtosis ag,, (d) the
translational-angular correlation cumulant a,;, (e) the KLD D, and
(f) the ratio 4D/ (Uc2e11 /acen — 1)? [see Eq. (27)]. The (blue) thin and
(red) thick lines correspond to systems A and B, respectively (see
Table II), in both cases with « = 0.2 and g = 0.25. The horizontal
dashed lines in panels (a—d) are theoretical values [24].

predicts that the system becomes unstable if « = 0.2 in the
interval —0.217 < 8 < 0.695 and if B8 = 0.25 for & < 0.466.
However, the MD data for D do not seem to experience a
big increase in those cases, thus casting doubts about the true
instability of perturbations with k = 1.253 if @ = 0.2.

To clarify the situation, we have selected the coefficients
of restitution « = 0.2 and 8 = 0.25, and performed additional
simulations for system B (see Table II), in which the associ-
ated wave number is k = 0.886. Figure 8 shows the temporal
evolution of some relevant quantities for both systems (A
and B). The considered quantities are (a) the rotational-to
translational temperature ratio 6 =3/t —2, (b) the ex-
cess translational velocity kurtosis ayy = (V4)/2(V?)? —1,
(c) the excess angular velocity kurtosis ap, = (w*)/3(w?)* —
1, (d) the translational-angular correlation cumulant a;; =
(V2 / (V2 (w?) — 1, (e) the KLD D, and (f) the ratio
4D /(02 /acn — 1)*. In a first stage (lasting about 10 colli-
sions per particle) we have observed that both systems evolve
in an analogous way. However, as clearly seen from Fig. 8,
their evolutions depart from each other in later stages. System
B evolves to a state where (a) almost all the kinetic energy is
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FIG. 9. MD snapshots at s = 100 collisions per particle showing
the positions [left panels (a, c)] and translational velocities [right
panels (b, d)] in the cases of systems A [top panels (a, b)] and B
[bottom panels (c, d)] (see Table II), in both cases with &« = 0.2 and
B = 0.25. In the left panels, the color code refers to the ratio between
the rotational and the translational kinetic energies of each particle.

concentrated on the translational degrees of freedom (6 < 1),
(b) the distribution of translational velocities is strongly
platykurtic (axp < 0), (c) the distribution of angular veloci-
ties is much less leptokurtic (ap, > 0) than in system A, (d)
the translational velocities are negatively correlated with the
angular ones (a;; < 0), (e) the KLD takes values more than
an order of magnitude higher (D ~ 10~") than in system A,
and (f) the estimate given by Eq. (27) is much less accurate
than in system A. Moreover, the simulation data in the case of
system A agree very well with HCS theoretical estimates for
0, ax, am, and aj; [24], in sharp contrast to system B.

Figure 8 is supplemented by Fig. 9, which presents snap-
shots (at s = 100) of systems A and B with = 0.2 and § =
0.25 [36]. While system A does not present any visible sig-
nature of instability, system B exhibits clusters and vortices.
Furthermore, the color code in Figs. 9(a) and 9(c) shows that
disks in system B have typically less rotational energy than
translational energy, in contrast to what happens in system
A. The loss of rotational energy (relative to the translational
one) in system B is stronger in the particles belonging to the
clusters, which are also those participating in the vortices and
moving with a higher translational velocity.

Therefore, from Figs. 8 and 9 we can conclude that a dilute
HD gas with coefficients of restitution « = 0.2 and g = 0.25
is stable against perturbations of (reduced) wave number k =
1.253 (system A), while it is unstable against perturbations
of (reduced) wave number k = 0.886 (system B). Thus, the
true critical wave number k., for « = 0.2 and 8 = 0.25 must
be 0.89 < k. < 1.25. In contrast, in our approximation we
obtain k; = 0.822 but kj — oo. As a consequence, a more
accurate theoretical treatment of very inelastic particles (o =
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FIG. 10. MD temporal evolution of (a) the rotational-to-
translational temperature ratio 6, (b) the excess translational velocity
kurtosis ayg, (c) the excess angular velocity kurtosis ag, (d) the
translational-angular correlation cumulant a,;, (¢) the KLD D, and
() the ratio 4D/ (0%, /acen — 1)* [see Eq. (27)]. The (blue) thin
solid, the (red) thin dashed, and the (green) thick dash-dotted lines
correspond to systems A, B, and C, respectively (see Table II), in the
three cases with @« = 0.7 and 8 = 0.25. The horizontal dashed lines
in panels (a—d) are theoretical values [24].

0.2) demands for the inclusion of velocity cumulants in the
description.

Let us consider now the case of less inelastic particles,
namely o = 0.7, but still with 8 = 0.25. In such a case, the
theoretical wave numbers are k; = 0.721 and k; = 0.626,
so that the clustering instability is preempted by the vor-
tex one and the theoretical critical wave number is k. =
0.721. Systems A (k = 1.253) and B (k = 0.886) are ex-
pected to be stable if («, 8) = (0.7, 0.25), despite the fact
that Figs. 8 and 9 showed the instability of system B at
(o, B) = (0.2, 0.25). To complement the picture, we have also
considered the point («, 8) = (0.7, 0.25) for a third system C
(see Table II) for which k = 0.627; since k < k., system C is
expected to be unstable. The simulation results are displayed
in Figs. 10 and 11, which confirm that systems A and B are
stable, while system C is unstable [36]. Note that in Fig. 10(f),
due to the low signal-to-noise ratio of the evolution curves of
both D and (O’CZCH Jacen — 1)*/4 in systems A and B, only the
steady-state ratio 4D/ (02 /acen — 1)* is shown in the case of
those systems.
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FIG. 11. MD snapshots at s = 100 collisions per particle show-
ing the positions [left panels (a, c, e)] and translational velocities
[right panels (b, d, f)] in the cases of systems A [top panels (a, b)], B
[middle panels (c, d)], and C [bottom panels (e, )] (see Table II),
in the three cases with o = 0.7 and B = 0.25. In the left panels,
the color code refers to the ratio between the rotational and the
translational kinetic energies of each particle.

Thus, according to our MD simulations, the true criti-
cal wave number for (o, ) = (0.7, 0.25) lies in the interval
0.63 < k. < 0.89, in close agreement with the theoretical pre-
diction k. = 0.721. Moreover, k < k| and, as can be observed
from Figs. 10 and 11, clustering is indeed present, which
means that the theoretical prediction is pretty reliable for this
moderately inelastic case.

VI. CONCLUDING REMARKS

In this work, we have carried out a detailed linear stability
analysis of the HCS of a dilute gas of inelastic and rough HD
or HS within a common framework, thus extending previous
HS results [10] to the case of HD gases. First, the NSF
equations have been linearized around the HCS solution by
a formally exact analysis. Next, the final results have been
obtained by the introduction of the approximate expressions
of the transport coefficients derived in the companion paper
I [16], which are nonlinear functions of the coefficients of
normal () and tangential (8) restitution, the reduced mo-

ment of inertia (x), and the numbers of degrees of freedom
(d, and d,).

As happens with rough HS [10] and the case of d;-
dimensional smooth particles [5,21,22], there are two lon-
gitudinal (sound) modes that are always stable, whereas the
third longitudinal (heat) mode and the (d; — 1)-fold transverse
(shear) modes become unstable for long enough wavelengths.
The heat mode is associated with cluster instabilities, while
the shear modes are related to vortex formation. This anal-
ysis has allowed us to determine the critical length L., such
that systems with a size L > L. are unstable under linear
perturbations. The outcome highlights that, in general, two-
dimensional HD systems become unstable for smaller reduced
wavelengths than their three-dimensional HS counterparts.
Additionally, the dual role of roughness, according to which
small and large levels of roughness make the system less un-
stable than the frictionless system, previously observed in the
HS geometry [9,10], still holds in the HD case. Moreover, we
have established that the region in the parameter space where
cluster instabilities dominate against vortices (i.e., kj > k) is
generally larger for HD than for HS.

The most surprising consequence of our analysis is the ap-
pearance of a region of absolute instability, where the critical
longitudinal wave number diverges (k; — oo or, equivalently,
L. — 0). The boundary of this region is defined by the condi-
tion A* = w*, which, while residually present in HS systems,
is especially relevant in the HD case (see Fig. 3). In fact, the
HS region of absolute instability vanishes if « > 0.277 (what
includes the case of a uniform mass distribution, k = %) but it
always emerges in the HD case, regardless of the value of «.

The absolute instability zone for HD is a very peculiar
prediction, and one must be wary of it. First of all, we have
established that this region materializes for very inelastic
systems (at least o < 0.426 if x = 0.302 and o < 0.392 if
K = %). Even for the smooth case, one can face a similar
issue in standard approximations [5,21], which disappears if a
more consistent approach is employed [22]. In addition, it is
known for HS that velocity cumulants in the HCS may play
an important role [26-28], its effect being even more notice-
able for HD [24]. Therefore, to study whether the absolute
instability phenomenon actually exists or is an artifact of the
performed approximations, we have carried out event-driven
MD simulations which address this question.

To deal with the problem, small system sizes must be tested
in the simulations, which implies a small number of particles
in the dilute case. Because of that, we have chosen not to
rely only on a visual determination of clustering or vortices
via snapshots. This fact was the clincher to use a coarse-
grained KLD (with a binomial distribution as the reference
probability distribution) to monitor the presence of spatial het-
erogeneities. Moreover, instead of analyzing deviations from
Haff’s cooling law as indicators of instability [19,37], we have
focused on the temporal evolution of quantities (such as the
rotational-to-translational temperature ratio 6 and velocity cu-
mulants) that are unaffected by the velocity scaling performed
in our simulations.

Two-dimensional MD simulations of HD with a uniform
mass distribution (k = %) were established under three differ-
ent setups (A, B, and C), as summarized in Table II. The solid

fraction ¢ = %ncr2 of each system is low enough as to expect
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the Boltzmann description for dilute gases to be applicable.
For instance, the Enskog factor is 1.006 (systems A and C) and
1.012 (system B). The reliability of the Boltzmann equation
is also supported by the good agreement between theory and
simulations observed for the temperature ratio # and the cu-
mulants ay, ap, and a;; in Fig. 8 for system A and in Fig. 10
for systems A and B.

The high-inelasticity point (c«, 8) = (0.2, 0.25) lies inside
the theoretical region of absolute instability. However, accord-
ing to Figs. 8 and 9, although system B (k ~ 0.89) is indeed
unstable, system A (k ~ 1.25) is not. Thus, the (reduced) crit-
ical wave number at (o, 8) = (0.2, 0.25) does not diverge but
is bounded as 0.89 < k. < 1.25; this critical value is anyway
relatively high, as compared with HS values or with values in
other regions of the HD parameter space (see Figs. 4 and 5).
The picture is complemented with the moderate-inelasticity
point (o, B) = (0.7, 0.25), in which case systems A and B are
stable, while system C (k ~ 0.63) is not (see Figs. 10 and 11).
The determined range 0.63 < k., < 0.89 is now consistent
with the theoretical prediction k. = 0.721.

It is worth noting that in the cases where our MD sim-
ulations indicated instability (system B in Fig. 8, system
C in Fig. 10), the temperature ratio € reached small but
nonzero stationary values after a certain number of collisions
per particle. This implies a dramatic loss of rotational en-
ergy relative to the translational one, which is stronger in
the particles involved in cluster and vortex formation. The
fact that lim,_, ., 6(¢) # 0 in the unstable regime contrasts
with results for moderately dense HD systems reported in
Ref. [19], according to which 6(t) ~t~%% — 0. A possible
explanation is that the different cooling power laws observed

in Ref. [19] may be present in a transient evolution stage,
but for a sufficiently large number of collisions per particle
both average energies reach a common decay and thus an
asymptotic stationary value 6 # 0 is obtained.

While signaling a region of strong instability, the predicted
high-inelasticity region of absolute instability seems to be
a consequence of the neglect of HCS velocity cumulants in
the derivation of the NSF transport coefficients carried out in
paper I [16]. This calls for a more complex and consistent
treatment which we plan to undertake in the near future [24].
We will also carry out a similar work for stochastically
driven granular gases, in which case the ansatz of a semi-
Maxwellian form for the velocity distribution function of the
base reference state is more accurate than in the free cooling
situation.

To conclude, we hope this work encourages further inves-
tigation on this topic, such as better approximations, more
computer simulations by both MD and the direct simulation
Monte Carlo (DSMC) method, and even experimental tests
about the impact of roughness on the hydrodynamic properties
and stability of HD and HS granular gases.
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