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Defects in conformal crystals: Discrete versus continuous disclination models
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We study the relationship between topological defect formation and ground-state 2D packings in a model of
repulsions in external confining potentials. Specifically we consider screened 2D Coulombic repulsions, which
conveniently parameterizes the effects of interaction range, but also serves as simple physical model of confined,
parallel arrays of polyelectrolyte filaments or vortices in type II superconductors. The countervailing tendencies
of repulsions and confinement to, respectively, spread and concentrate particle density leads to an energetic
preference for nonuniform densities in the clusters. Ground states in such systems have previously been modeled
as conformal crystals, which are composed of locally equitriangular packings whose local areal densities exhibit
long-range gradients. Here we assess two theoretical models that connect the preference for nonuniform density
to the formation of disclination defects, one of which assumes a continuum distributions of defects, while the
second considers the quantized and localized nature of disclinations in hexagonal conformal crystals. Comparing
both theoretical descriptions to numerical simulations of discrete particles clusters, we study the influence of
interaction range and confining potential on the topological charge, number, and distribution of defects in ground
states. We show that treating disclinations as continuously distributable well captures the number of topological
defects in the ground state in the regime of long-range interactions, while as interactions become shorter range,
it dramatically overpredicts the growth in total defect charge. Detailed analysis of the discretized defect theory
suggests that that failure of the continuous defect theory in this limit can be attributed to the asymmetry in the
preferred placement of positive vs negative disclinations in the conformal crystal ground states, as well as a
strongly asymmetric dependence of self-energy of disclinations on sign of topological charge.
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I. INTRODUCTION

Canonical forms of crystalline order arise as low-
temperature phases of atoms, particles, or molecules stabi-
lized by short-ranged, cohesive interactions. Such interactions
typically give rise to translationally periodic ground states,
and in such systems, topological defects appear only as ex-
citations of a thermodynamically stable defect-free crystal
[1]. Low-temperature states formed by confined and mutually
repulsive systems tend to break the prevailing paradigm of
crystalline ground states, provided that either the interactions
or the confining field acts over long range. Examples of
such systems include multivortex arrays of confined super-
conductors [2–7], one-component plasmas [8–11], confined
polyelectrolyte bundles [12,13], trapped, dipolar colloids [14],
and particles at liquid crystalline interfaces [15]. In these
systems, gradients in the pressure throughout the structure
lead to a generic thermodynamic preference for nonuniform
local density throughout the structure, which is generically
incompatible with periodic lattice order of regular lattices.

For 2D ordered structures, the focus of this article,
isotropic repulsion tends to favor locally equitriangular
packing, in which six neighboring particles are distributed
symmetrically around any given particle (see, e.g., Fig. 1).
At the same time, the energetic preferences for nonuniform
local density then favor ground states where this locally

triangular motif is isotropic dilated and contracted throughout
the structure. That is, such states can be modeled by conformal
deformations of uniform triangular lattices, and hence, they
are known as conformal crystals [16,17]. Conformal crystals
are characterized by unusual structural features, most notably
patterns of long-range bending of lattice rows and associated
excess densities of disclination defects [10]. Disclinations are
pointlike rotational defects in the bond orientation, and in
hexagonal crystals, they take the form of points that deviate
from sixfold packing [18]. These defects are characterized by
a topological charge Q, which characterizes the angular deficit
of the bond-angle winding around the disclination, 2πQ/6
(i.e., Q = +1 and −1 correspond to five- and sevenfold
defects).

The connection between nonuniformity of local spacing
and these anomalous structure features has been the sub-
ject of several previous studies, nearly all of which connect
these ground states to geometric properties of conformal maps
[10,13,14,16,17,19]. Several of these studies have noted a
connection between conformal maps and Gaussian curvature
of 2D surfaces [13,14]. In short, gradients in local density can
be characterized by a nonzero Riemannian curvature of the
lattice. Interpreting this curvature as the Gaussian curvature
of a 2D surface, the ground state of the conformal crystal
can be mapped onto this non-Euclidean surface such a way
as to preserve the locally isotropic packing. Building on the
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FIG. 1. Conformal crystal ground state of N = 194 parallel fil-
aments, where semitransparent green illustrates radially confining
potential field. Bond network (shown in black) highlights variable
area density and predominance of local sixfold symmetry of order,
with defects shown as red and blue filaments, respectively, for five-
and sevenfold disclinations. The 2D pattern was computed numeri-
cally for the 2D screened Coulomb repulsion model described in the
paper.

well-established theories that connect nonzero Gaussian cur-
vature to topological defect formation in cohesive (i.e.,
uniform density) crystals [18,20–23], it has been proposed
[13,14] that the ground-state defects patterns of conformal
crystals should follow those that would form in their non-
Euclidean analogs. Namely, according to this picture, the
local density of disclinations in conformal crystal ground
state should tend to “neutralize” the frustration imposed by
Gaussian curvature, following a heuristic picture of defect
screening of curvature-induced stresses in cohesive crystals
[24].

In this article, we revisit the connection between gradients
of local density and patterns of disclinations in ground states
of 2D conformal crystals. In particular, we aim to understand
the role of two approximations underlying the proposed con-
nection between disclination distributions of preferred density
gradients in physical systems forming these structures. This
sequence of approximations is show schematically in Fig. 2.
The first is coarse graining over discrete particle in the lattice-
like order, replacing these with smoothly varying fields that
model long-wavelength gradients in the local densities and
bond-orientational order in the structure. Such an approxima-
tion is standard to continuum theory descriptions of a variety
of geometrically frustrated systems [1,25], including liquid-
crystalline and crystalline systems, and the accuracy of this
approximation generically improves as the global dimensions
far exceed the interparticle spacing (i.e., the thermodynamic
limit). In this continuum-field description, topological de-
fects (e.g., disclinations and dislocations) correspond to order
parameter configurations that are continuous except at sin-

FIG. 2. Schematic illustration of three theoretical frameworks for conformal crystal ground states: (a) a discrete cluster of N = 100
confined, repulsive particles with 6 discrete Q = +1 (i.e.m fivefold) disclinations shown in red. [(b), (c)] The “Taylor” picture in which
defects are models as quantized and localize points, shown as a red point in (b), and the corresponding inhomogeneous pattern of local particle
density, as a continuous field in (c). [(d), (e)] The “Nye” picture, in which disclination (d) and particle (e) distributions are continuously
distributed fields. Rendered patterns correspond to harmonic confinement in the limit of short-range (2D Coulomb) interaction described in
the paper.
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gular pointlike regions where they cannot single-valued. In
this way, these topological defects play the role of discrete
“quasiparticles” to control underlying the long-wavelength
order parameter distortions. In this article, we call a physi-
cal theory that based on the discrete degrees of freedom of
topological defects, the Taylor description, in analogy to the
theory of solids based on stresses generated by individual
and discrete dislocations [26,27]. A second approximation,
which we call the Nye description, assumes that defects are
sufficiently numerous and reconfigurable that the they may be
considered as continuous field itself [28,29]. The canonical
example of this by Nye’s definition of the “geometrically
necessary” dislocation density needed to neutralize stress in a
plastically deformed crystal, which predicts the local density
and orientation of dislocations in terms of the row curvatures.

In this language, the perfect neutralization of frustration
by defects [24,30,31] relies on the Nye description, assuming
that the elementary defects, disclinations, are well described
by a continuous distributions that smear out their topological
charge over large fractions of the crystal domain, as we outline
in more detail below. While intuitive and at least qualitatively
correct for capturing certain features of defect pattern, there is
reason to question about the accuracy of Nye picture when ap-
plied to multidisclination ground states of conformal crystals.
For one, while dislocations are characterized by a microscopic
size, the Burgers vector, which can be taken to be arbitrarily
small compare the system size, the effective charge Q per
disclination defect, associated with the deficit or excess wedge
angle in the Volterra construction 2πQ/6, cannot be arbitrarily
small, even in the continuum limit. Hence, conformal crystal
ground states do not in general possess a thermodynamically
large total disclination charge even when the lattice spacing
becomes vanishingly small compared to the system size. As
a consequence, the gradients of local density that can be
achieved in conformal crystals with discrete defects (i.e., in
the Taylor description) may be far more limited in magnitude
and pattern than those that can be achieved when assuming a
continuous distribution of defects (i.e., the Nye description).

In this article, we employ a 2D model of long-range re-
pulsive particles subject to power-law confining potentials to
investigate the optimal patterns of disclinations that form in
their ground states based on the conformal crystal descrip-
tion. Specifically, we compare the patterns of ground states
predicted by three methods of calculation: (1) numerical sim-
ulation of ground states (i.e., discrete particle packings with
discretely distributed defects), (2) a model of conformal crys-
tals with discrete numbers of disclinations (i.e., continuum
distribution of density with discretely distributed defects), and
(3) “frustration-neutralizing” predictions based on energeti-
cally optimal local particle density (i.e., continuum density
and defect distributions). These three classes of models, which
we compare in this study, are depicted schematically in Fig. 2.

Our focus on a model with screened 2D repulsions is
motivated, on one hand, by the structure of confined as-
semblies of repulsive, linelike elements. Examples of such
systems include vortex arrays in confined type II supercon-
ductors [2,4] or confined arrays of stiff polyelectrolytes in
an aqueous medium [32,33] (i.e., in the Debye-Hückel limit),
in which mobile counterions screen long-range electrostatic
forces. More broadly, the choice of this class of interactions

also provides a convenient parametrization to explore the role
of variable finite range of repulsion on the emergent structure
of the ground state. For this model, we solve exactly for the
energetically optimal density patterns as a function of the
screening length as well as the power law of the confining
potential. The optimal patterns of local particle density exhibit
a dependence on repulsive range: for long-range repulsions,
local density increases with radial distance from the poten-
tial minimum; when repulsions become short-ranged, local
density decreases with radial distance. Consistent with the
generic trends of the frustration-neutralizing picture [13,14],
simulations and model predictions show that these two classes
of particle density gradients are accompanied by respective
excess in Q < 0 (radially increasing density) or Q > 0 (radi-
ally decreasing density) disclination defects in their predicted
ground-state structure. A more detailed analysis of the total
disclination charge as function of screening length shows a
breakdown in the predictions of the frustration-neutralizing
picture, which specifically dramatically overestimates growth
of the number of Q = +1 (fivefold) disclinations with de-
creasing screening length.

We then study a discrete-disclination model of conformal
ground states, in which patterns of local density are fully
determined by number, charge, and spatial arrangement of
multiple pointlike disclinations. This model predicts a dras-
tically different pattern of optimal disclinations depending
on the long- vs short-range nature of repulsions and corre-
sponding negative vs positive charge of favorable defects in
the packing: highly concentrated arrangements of Q = −1
defects populate the centers of long-range repulsive clusters;
while split arrays of Q = +1 decorate edges of clusters when
interactions become short-ranged. We show that this discrete-
defect theory correctly captures the saturation of total defect
charge in the limit of vanishing screening length observed
in the simulated ground states. Based on this comparison,
we argue that a naive application of frustration-neutralizing
approximation (i.e., continuously distributed defects) fails to
accurately predict the number of positive defects that form
in the limit of short-range interactions for two reasons. The
approximation fails to capture the position dependence of
dislination energetics, and further, it does not account for the
anharmonic dependence of the defect energetics on disclina-
tion charge (i.e., self-energies remain finite for Q � −1 but
diverge Q � +1).

The remainder of this article is organized as follows. We
begin in Sec. II with an overview of the conformal crystal
model, and in particular, the condition that relates discli-
nation charges to particle density gradients. We review the
assumptions of the frustration-neutralizing prediction for the
continuum distribution of disclinations based on the energet-
ically optimal particle density. In Sec. III we introduce our
2D model assembly, specifically in the context of parallel
and linelike columnar elements in confined in (cylindrical)
power-law potentials interacting through (2D) screened repul-
sions. We describe the exact solutions for the energetically
optimal particle densities assuming continuously distributed
defects in Sec. III A, followed by our approach to the discrete
disclination model of ground-state energetics in Sec. III B and
numerical simulation methods for discrete-particle ground
states in Sec. III C. In Sec. IV we describe the comparison
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of fluid density predictions to simulated ground-state structure
for both quadratic and quartic potentials, specifically contrast-
ing the emergent defect patterns for long- and short-range
repulsion, characterized respectively by excess negative and
positive disclinations. We then contrast these results with pre-
dictions of the discrete defect model in Sec. V and focus on
the role of localization and spreading of discrete disclinations
in optimal structures. In Sec. VI we discuss the origins of the
contrasting behaviors in terms of an asymmetric dependence
of defect energetics on the sign of the disclination charge in
Sec. V.

II. ELEMENTS OF THE CONFORMAL CRYSTAL MODEL

In this section, we overview the theoretical elements of the
conformal crystal model and its connection to ground states
of confined, long-range repulsive particles. The notion of a
conformal crystal was introduced by Rothen and colleagues
[16,17], and it has been described and applied to numer-
ous physical scenarios [7,10,13–15]. Here we summarize the
key assumptions of the model and the mathematical connec-
tion between local density, lattice curvature, and disclination
defects.

This model is most conveniently described in terms of
complex functions that describe mappings of 2D plane and
well-known mathematical properties of analytic functions
(see, e.g., [34]). A conformal crystal is defined as a confor-
mal mapping of a regular 2D lattice (the reference state) to
distorted configuration on the plane (the conformal crystal)
[16]. The distortions of the conformal map correspond to
locally isotropic swelling of the neighbor spacing in the lat-
tice, and furthermore, the map is angle preserving, such that
the local bond angles in the conformal crystal are preserved
from the uniform reference state. Specifically, we consider
in an initially equitriangular lattice for the reference state, in
which case the conformal crystal corresponds to a state where
six neighbors are (nearly) equally distributed around (almost)
every point. Notably, conformality must strictly brake down
at the core of disclinations, as these points are nonanalytic.
Hence, like crystals which have (singular) point- or linewise
sets where positional and orinetational order parameters can-
not be defined, we nevertheless refer to states that include
one or more nonanalytic points (i.e., defects) as conformal
crystals.

The motivation for the conformal crystal model derives
largely from observations from experiment or simulation that
suggest that ground states adopt locally isotropic arrange-
ments, in which neighbors are everywhere symmetrically
arranged around every particle, but with long-range gradients
in neighbor spacing. Physically, this condition most likely
arises from the near-field effects of repulsive interactions
with neighbors. In most cases repulsions grow large (if not,
diverge) with vanishing separation (e.g., Coulomb or dipo-
lar), so that to a first approximation forces on particles are
dominated by the nearest neighbors, and force balance on
each particle generically satisfied by symmetric (i.e., n-fold)
arrangements of equally spaced neighbors. Of course, this
argument ignores the effects of longer-range gradients in the
pressure distribution arise from an external potential and the
long-range effects of interaction. Hence, one should expect

the locally isotropic condition to strictly apply only in the con-
tinuum limit where the neighbor spacing becomes arbitrarily
small compared to the scale of gradients in the pressure or
density.

The structure of conformal crystals and their defects is
defined by conformal map that takes a point in the uniform
reference lattice r0 = (x0, y0) to its location in the conformal
crystal r = (x, y). Using the notation of the complex plane,
these points are z0 = x0 + iy0 and z = x + iy, and with well-
known properties of analytic functions, it is straightforward
to show that if z(z0) is an analytic function, then the map
is conformal, or “locally isotropic” in the sense introduced
above. As described in the Appendix A, this can be captured
by the deformation gradient, which describes the map from
length element dz0 in the uniform lattice to the conformally
deformed one dz,

dz = �(z)eiθ (z) dz0, (1)

where �(z) and θ (z) describe, respectively, the local swelling
and rotation angle of patch at z. If the density of the reference
lattice is ρ0, this density in the conformal lattice is

ρ(z) = �−2(z)ρ0. (2)

Because �(z)eiθ (z) is also an analytic function, it can be shown
that (see Appendix A) gradients in angle and density are not
independent. Expressing this condition in terms of functions
of Cartesian coordinates, r = x x̂ + y ŷ, gives

∇⊥θ (r) = −1

2
ẑ × ∇⊥ ln ρ(r), (3)

where ∇⊥ = x̂∂x + ŷ∂y is the in-plane gradient and ẑ = x̂ × ŷ
is the plane normal. Gradients in the θ (r) imply the spatial
variation of bond directions and, hence, curvature of the rows
along the direction of ∇⊥θ (r). Hence, Eq. (3) implies that
bending of the rows of the conformal crystals is accompanied
by proportional gradients in the logarithm of the local density
normal to the rows.

To relate this condition to areal distribution of disclina-
tions, s(r), we consider changes θ (r) around closed loops, or
Burgers circuits [1], enclosing a region D of the conformal
lattice. In order that the conformal distortion be consistent
with a well-defined (sixfold) bond order parameter away from
disclination cores, changes in the θ (r) around any closed loop
must occur in integer multiples of 2π/6, that is,∮

∂D
ds · ∇⊥θ (r) =

∫
D

d2r
(

− 1

2
∇2

⊥ ln ρ
)

= 2π

6
QD, (4)

where we have used the Eq. (3) Stokes law to convert the
contour integer into an integral over the area of D. Here
QD is an integer reflecting the total topological charge of
disclinations enclosed in D, which does not change with any
continuous change of ∂D that encloses the same set of defects.
Accordingly, the area integrand of Eq. (4) must define the
areal density of disclinations from Eq. (4),

− 1
2∇2

⊥ ln ρ = s(r), (5)

where

s(r) =
∑

α

sαδ(2)(r − rα ) (6)
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is the sum of pointwise disclinations at positions rα and with
charges sα = 2πQα/6, where Qα = 0,±1,±2, . . . is required
for single-valued sixfold bond order away from the disclina-
tion cores. In this way, Eqs. (5) and (6) show that disclinations
act as monopole sources for density gradients in conformal
crystals, with (ln ρ)/2 playing the role of a potential. These
equations serve as constraints on the spatial patterns of density
variation that are possible in conformal crystals.

One approach to understand the structure of conformal
crystal states of confined repulsive particles, outlined first by
Mughal and Moore [10], is to consider a continuum vari-
ational approach to the optimal patterns of density. In this
approach, we have a simplified form of the energy functional
in terms of particle density,

Econt[ρ(r)] = 1

2

∫
d2r

∫
d2r′ρ(r)Vint (|r − r′|)ρ(r′)

+
∫∫

d2rU (r)ρ(r), (7)

where Vint (r) is the pair potential, while U (r) describes a
spatially confining potential field. Ignoring any constraints on
the density imposed by local correlations in the packing, this
energy is readily optimized subject to the constraint of fixed
particle number,

N =
∫

d2r ρ(r), (8)

yielding an self-consistency condition in terms of a spatially
constant chemical potential

μ =
∫

d2r′ Vint (|r − r′|)ρ f (r′) + U (r). (9)

Here μ is Lagrange multiplier that is chosen to set N , and
ρ f (r) refers to the density pattern that minimizes Econt, which
we call the optimal fluid density, since no constraints are
imposed on gradients of ρ f (r), i.e., through the combined
conditions of Eqs. (5) and (6).

Notwithstanding the fact that the continuum formulation of
Eq. (7) does not enforce the local correlations of the conformal
crystals or discreteness of particles themselves, one approach
has been to use this optimal fluid density in combination
with the relationship between ρ(r) and defects in conformal
crystals in Eq. (5) to predict the expected distributions of
disclinations in their ground states [10]. This gives a fluid
disclination density

s f (r) = − 1
2∇2

⊥ ln ρ f . (10)

The fluid dislocation distribution is equivalent to the frustra-
tion distribution of disclinations proposed in Refs. [10,13],
and one can view this that Nye picture of disclinations, which
assumes that defects are sufficiently numerous and mobile
that effectively their arrangements may give rise to whatever
pattern of fluid density that optimizes the Econt. This predic-
tion (or its equivalent) has been tested against several models
of confined and long-range repulsive particles, and to some
extent, this relation works well to predict at least the sign
and spatial distribution of disclinations that are observed in
numerically simulated ground states.

In the following, we explore the validity of this fluid defect
density model for particles repelling through screened 2D

Coulomb repulsions and test the underlying assumption that
optimal fluid density patterns can, in general, be realized in
(locally isotropic) conformal crystals.

III. CONFINED GROUND STATES OF SCREENED, 2D
COULOMB REPULSIONS

We investigate a general class of 2D ground states of N
repulsive particles confined by an external potential, U (r)

E =
N∑

i< j

Vint (|ri − rj|) +
N∑
i

U (ri), (11)

where ri is the position of the ith particle. Here we consider
repulsions corresponding to screened Coulomb interactions,

Vint (r) = v0K0(κr), (12)

where K0(·) is the modified Bessel function of the second
kind, v0 parameterizes the strength of repulsions (e.g., linear
charge density of parallel filaments), and κ−1 parameterizes
the screening length of repulsions [i.e., crossover from loga-
rithmic, Vint (κr � 1) � −v0 ln(κr), to exponential Vint (κr �
1) � v0e−κr decay]. Here we consider axisymmetric confin-
ing potentials, U (r) = U (|r|), where potential increases with
distance from the origin r = 0, e.g., the center of a confining
field. In what follows we study two examples of confining
potentials of power-law form

U (r) = u0rn, (13)

where n > 0 and u0 parameterizes the confinement strength.
In addition to the screening length, κ−1, this ratio between
the strength of interactions and confining potential defines the
characteristic length scale,


 ≡ (v0/u0)1/n. (14)

As described below, it is convenient to parametrize units of
length in numerical simulation in units 
.

We employ and compare three approaches to the optimal
defect structure in ground states of Eq. (11): fluid density
(continuum defect) model, discrete defects in conformal crys-
tals, and numerical simulations of discrete particles.

A. Fluid density model for disclination density

Here we extend the variational fluid density approach
Mughal and Moore [10] to the case of screened Coulomb
repulsions in axisymmetric confining potentials. As detailed
in Appendix B, the optimal fluid density ρ f (r) solved for ar-
bitrary screening length and axisymmetric confining potential,
where r is the radial distance from the center of the potential
(i.e., where ∇⊥U = 0). This method relies on recasting the
self-consistent chemical potential in Eq. (9) as

μ = U (r) + φ(r), for r � R, (15)

where R is finite size of the confined density [i.e., ρ f (r >

R) = 0] and φ(r) is the potential generated by repulsions

φ(r) =
∫

d2r′ Vint (|r − r′|)ρ f (r′). (16)

Here it is convenient to parametrize the solutions in terms
of optimal radius of clusters R, which effectively controls
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the total particle number N . Using the fact that Vint (r) is the
Green’s function for 2D screened electrostatics—i.e., (∇2

⊥ +
κ2)Vint (r) = 2πv0δ

(2)(r)—it is straightforward to show that
Eqs. (15) and (16) are solved by

ρ f (r) = 1

2πv0
[κ2[μ − U (r)] + U ′′(r) + r−1U ′(r)], (17)

where U ′(r) = ∂rU (r). The chemical potential is linked self-
consistently to the potential field φ(r) via Eq. (16) yielding

μ(R) = 2RI0(κR)K0(κR)U ′(R)

1 − κR[I1(κR)K0(κR) − I0(κR)K1(κR)]
+ U (R),

(18)

where In(·) is the modified Bessel function of the first kind.
The relationship between particle number and cluster size
follows directly from the integral N (R) = 2π

∫ R
0 dr rρ f (r).

Applying these results to the case of power-law potentials,
U (r) = u0rn, we find the optimal fluid density patterns

ρ f (r) = ρ0[ fn(κR) + n2(κr)n−2 − (κr)n], (19)

where

ρ0 = u0

2πv0
κ2−n = κ2

2π (κ
)n
, (20)

and

fn(x) ≡ xn

{
1 + 2nI0(x)K0(x)

1 − x[I1(x)K0(x) − I0(x)K1(x)]

}
. (21)

The total particle number (as a function of optimal cluster
radius) takes the form

N = 2πρ0κ
−2gn(κR), (22)

where

gn(x) ≡ 1

2
x2 fn(x) +

(
n − x

n + 2

)
xn. (23)

Notably this shows that the reduced size κR of the cluster is
only function of a single parameter, the scaled particle number

N̄ ≡ N (κ
)n = N (κnv0/u0), (24)

via the equation of state

N̄ = gn(κR). (25)

Before moving onto to the prediction of fluid defect den-
sity, we briefly comment on the general dependence of ρ f (r)
on the range of interactions and the natural of the confining
potential (i.e., the power law n). From Eq. (19) the optimal
density includes two spatially varying terms. The first of these
grows as n2rn−2 is nondecreasing for n � 2 (i.e., quadratic or
steeper), while the second decreases as −κ2rn. The relative
dominance of these two terms is determined by radius: for
r � nκ−1 the density is nondecreasing, while for r � nκ−1

the density decreases with radius.
To understand the physical origins of these competing

terms, it is instructive to consider the limiting cases of in-
finitely long- and short-range interactions. In the former case,
where κ → 0, repulsive forces decrease to 2D electrostatics.
Assuming a power-law density profile ρ f (r) ∝ rα , Gauss’s
law gives an outward force from interactions Fint ∝ rα+1,

which is balanced by the inward force of potential, Fpot =
−∂rU ∝ −nrn−1. Force balance then requires α = n − 2 and

ρ f (r) ∝ rn−2 for κ → 0, (26)

illustrating the general tendency for long-range repulsions
to spread density out to large radii [i.e., ρ f (r) is convex].
Alternately, in the limit with κ → ∞, interactions become
localized such that potential becomes proportional to the local
density, φ(r) ∝ v0κ

−2ρ f (r), indicative of the local compress-
ibility of the fluid. From Eq. (16), we then have

ρ f ∝ κ2[μ − U (r)] ∝ C0 − rn for κ → ∞, (27)

which illustrates the countervailing tendency of the confining
potential to concentrate particle density towards its minimum
when interactions become short ranged. Hence, as we observe
below, as the interactions vary from long ranged (κR → 0) to
short ranged (κR → ∞), the optimal fluid density varies from
nonconvex to convex, respectively, corresponding to transi-
tions in the charge, number and spatial pattern expected from
disclinations.

From Eq. (10) the fluid disclination profile is

s f (x = κr) = κ2n2xn 4xn + fn(κR)[x2 − (n − 2)2]

2[x2 fn(κR) + (n2 − x2)xn]2
. (28)

Averaging this distribution over the cluster yields the total
fluid disclination number,

Q f = 6
∫ R

0
dr rs f (κr) = −3R

ρ ′
f (R)

ρ f (R)

= −3n
(n − 2)n(κR)n−2 − (κR)n

fn(κR) + n2(κR)n−2 − (κR)n
, (29)

where we have used the area integral of Eq. (10).
Returning again to the limiting case of long-range inter-

actions, we can show that predicted fluid disclination density
becomes

s f (r) = −π (n − 2)δ(2)(r), κR → 0, (30)

with nonpositive disclinations (for n > 2) concentrated at the
core of the cluster. In the opposite limit of short-range inter-
actions, fluid disclination density becomes

s f (r) = n2rn−2Rn

2(Rn − rn)2
, κR → ∞, (31)

which is positive and concentrated at the rim of the cluster
r → R. Considering the total disclination number in the limits
of long-range interactions, Q f approaches a minimal value
Q f (κR → 0) → −3(n − 2), while in the opposite limit of
short-range interactions, the total fluid disclination prediction
is positive and grows unbounded, as Q f (κR → ∞) → 3κR.
We return these predictions for ground-state defect patterns
below.

B. Discrete disclinations in conformal crystals

The fluid density model of the previous section considers
that minimal energy pattern of particle density independent of
the constraints imposed by local correlations in the conformal
crystal. Here we consider a second approach to model the
ground-state energetics that explicitly constructs the particle
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density patterns enforcing geometric connection between den-
sity gradients and density of spatially localized and quantized
topological charge disclinations. Specifically, we consider
density patterns ρd (r) that are parametrized by the distri-
butions of disclinations s(r) = ∑

α sαδ(2)(r − rα ), and then
optimize Econt with respect to number, charge, and positions
of defects in the cluster. This mesoscopic defect theory ac-
counts for the fact that multidisclination conformal crystals
may or may not actually realize the optimal fluid density
patterns ρ f (r).

To construct this theory we rewrite Eq. (5) in the form of a
Poisson equation

∇2
⊥ψ (r) = s(r), (32)

where ψ (r) is a potential related to the density

ρd (r) = e−2ψ (r). (33)

For our calculations we will assume that the boundary of the
cluster maintains a constant circular radius of r = R, which
we find to be in good agreement with simulated clusters as
described below. Boundary conditions are required to solve
Eq. (32) for the density given a set of disclinations. Here
we opt for Dirichlet boundary conditions, which require the
density [and ψ (r)] to be constant on boundary. This condition
is consistent with the axisymmetry of the optimal density
fluid density patterns at the outer edge. Beyond this, by
Chebyshev’s principle [35], Dirichlet conditions minimize the
variation of density in simply connected (i.e., defect-free)
domains, and conjectured to do so in multiply connected do-
mains. As the variation of density in the defect cores is shown
to be energetically costly, we conjecture that such a condition
should be favored by minimization of Econt.

With these boundary conditions, multidisclination solu-
tions can be constructed by superposition. The Green’s
function for Poisson’s equation with Direchlet boundary con-
ditions on the 2D disk and a monopole source at r0 has
the form

G(r, r0) = 1

4π
ln

[
R2 + r2r2

0/R2 − 2rr0 cos(θ − θ0)

r2 + r2
0 − 2rr0 cos(θ − θ0)

]
,

(34)

where (r, θ ) are polar coordinates. From this, the general
solution for ψ (r) takes the form

ψ (r) ≡ ψ (R) − δψ (R), (35)

where

δψ (r) =
∫

d2r′G(r, r′)s(r′) =
∑

α

G(r, rα )sα (36)

and ψ (R) is (constant) at r = R since G(r, r′) for r → R.
Using this result, we can relate the density of the conformal
crystal to the defect positions rα and topological charges sα ,

ρd (r) = ρR exp

[
2

∑
α

sαG(r, rα )

]
, (37)

where ρR = e−2ψ (R) is the density at the cluster boundary,
which is set by normalization,

ρR = N∫ R
0 dr r

∫ 2π

0 dθ e
[

2
∑

α sαG(r,rα )
] . (38)

Given these solutions, the energy of interactions and con-
finement is computed by inserting ρd (r) into Eq. (7), and
minimizing Econt over R.

For the general nonaxisymmetric defect configurations,
determining ρd , computing its energetics, and minimizing
of cluster size requires numerical integration over the disk
area. It is instructive to consider the axisymmetric solution
of ρaxi(r) when defects are confined to origin, also presented
in Ref. [10]. Here we consider a defect of charge s0 = π

3 Q0 at
r = 0. The axisymmetric potential is ψ (r) = Q0

π
6 ln(r/R) +

ψ (R), corresponding to density

ρaxi(r) = N
(1 − Q0π/6)

πR2

( r

R

)−Q0/3
, (39)

where e−2ψ (R) = N (1 − Q0/6)/(πR2) is set by normalization.
This power-law form for the density profile illustrates the
geometric distinction between positive and negative discli-
nations. For Q0 < 0, the density is concave, decreases with
radius and is finite everywhere on the disk. In contrast, for
positive disclinations, the density is convex, decreases with
radius and diverges as the defect core. We note further that
this central monopole solution agrees exactly with the fluid
disclination density predicted for the limit of long-range inter-
actions, in Eq. (30), which for smooth confining fields (n � 2)
corresponds nonpositive topological charge. We return to the
consequences of this asymmetric dependence on sign of topo-
logical charge below.

C. Numerical simulation of ground states

To test and compare the validity of the two theoretical mod-
els for defect ground states in conformal crystals, we carry out
numerical simulations of confined ground-state clusters of the
2D screened, Coulomb particle model. We consider clusters of
a fixed number of particles, N = 100, 200, 500, 1000, 2000,
or 5000, confined to either a quartic or parabolic potential.

The objective of the simulations is to survey optimal defect
configurations spanning from long-range (κR � 1) to short-
range (κR � 1) interactions. As the equilibrium radius R is
not fixed in the simulations, we instead define our simulation
parameters based on the predicted dependence of cluster size
on particle and interactions. Specifically, for a given number
of particles, N , we chose normalized screening lengths κ
,
such that we could target fluid density cluster sizes over the
range κR = 0.1 to 30.

For each target κR and N , we generate 600 random ini-
tial configurations and find the lowest energy configuration
via multidimensional minimization, where initial positions
are randomly placed within area that is 10 times the di-
mension of the target equilibrium cluster size (based on
fluid density model predictions). After testing three mini-
mization algorithms—conjugate gradient [36], FIRE [37], and
quickmin [38]—we find that FIRE leads to the lowest en-
ergy and residual force, and therefore, implement this for
our model with LAMMPS [39]. The stopping criteria is
that the total residual force at the whole system is less
than 10−5 v0/
 for N = 100, 200, 500 and 10−4 v0/
 for N =
1000, 2000, 5000. For each resulting structure the equilibrium
radius R of the cluster is determined by the radial position of
the outermost filament.
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We select the resultant configuration with the lowest energy
for each parameter, analyze its packing via Delaunay triangu-
lation [40] and identify the outer edge of cluster, from which
the mean radius R of the cluster can be measured. Discli-
nations in the structure are identified as points that deviate
from sixfold bond coordination. For particles in the interior
of the cluster, the charge is Q = 6 − z, where z is the local
coordination of the vertex in the bond network. For sites on
the edge, we take the definition of edge disclinations as Q =
4 − z, which is known to be consistent with fixed Euler char-
acteristic of the disk, i.e., the total disclination charge, interior
plus boundary, remains +6 [22]. While these two populations
of defect types are topologically conserved, their effects on
the far-field density gradients in the packing is likely very
different. For example, in the context of caplike domains of
curved crystals, it is well understood that free boundaries
screen the elastic effects of disclinations [23,41], and hence, in
such cases only defects in the interior are tracked. Below and
in Appendix C we describe procedure to count disclinations
only in the interior of the cluster ground states and use these
in comparison to model predictions.

We also extract a measure of the local density in the sim-
ulated packing via the Voronoi tessellation, which is dual to
the Delaunay triangulation. If particle i at ri has a Voronoi
polygon of area Ai, we define the local density as

ρlocal(ri ) = A−1
i . (40)

Analyzing the distribution of local density over the cluster
provides a direct comparison to predicted particle density pat-
terns in the fluid density and discrete defect theories described
above.

IV. DISCRETE PARTICLE GROUND STATES VS FLUID
DENSITY MODEL

In this section we present and compare results of ground-
state simulations and the fluid density model (i.e., continuous
disclinations as in the Nye picture) in terms of the gradient
patterns of particle density as well as defect distributions. We
consider two particular cases of power-law confining poten-
tials, harmonic (n = 2) and anharmonic, or quartic (n = 4),
which differ in terms of the relative tendency to concentrate
particles at the potential minimum. For both confinement
types we consider the variation of ground-state structure with
interaction range, from κR � 1 to κR � 1, which we show
has the effect of reducing the tendency of repulsions to spread
out the particle distribution. In the subsequent section, we dis-
cuss the comparison to predictions of the discrete disclination
model introduced in Sec. III B.

A. Harmonic confinement (quadratic potential)

We begin with the case n = 2 confinement. Using the
results for the fluid density model in Sec. III A above,
the predicted fluid density follows an concave, inverse
parabolic form

ρ f (r) = ρ0[4 + f2(κR) − (κr)2] for n = 2, (41)

where f2(x) is defined in Eq. (21). Hence the density al-
ways predicted to decrease with r, but the rate of decrease

is controlled by the screening. Note that the case of n = 2
is a special case for power-law confinement, which in gen-
eral (for n > 2) favor nonmonotonic density profiles (e.g.,
the quartic potential). The density tends toward uniform ρ f

in the κR → 0 limit of long-range repulsions and in the
opposite limit, κR → ∞, the density vanishes at the cluster
edge, ρ f (r) � ρ0κ

2(R2 − r2). Corresponding to this inverted
parabolic density is the predicted defect density,

s f (r) = 2κ2 ρ0ρ f (0)

ρ2
f (r)

for n = 2, (42)

which implies a radially increasing density of positive (i.e.,
fivefold) disclinations. Averaging over the cluster area, we
have the total predicted disclination charge,

Q f = 6(κR)2 ρ0

ρ f (R)
for n = 2. (43)

As shown below in Fig. 4(b), the predicted total fluid discli-
nation charge vanishes for long-range interactions, consistent
with a uniform density packing. However, because fluid discli-
nation density diverges at the cluster edge as s f (r → R) ∼
1/(1 − r/R)2 in the limit of short-range interactions, the to-
tal charge is also predicted to be unbounded in this limit,
Q f (κR → ∞) → 3κR.

In Fig. 3 examples are shown from simulated ground
states N = 500 harmonically confined particles, ranging from
long-range to short-range repulsions. For long-range and
intermediate-range cases, the interior of the cluster possesses
nearly uniform, equitriangular order. Because the cluster
boundaries adopt a circular symmetry, the net six “boundary
disclinations” of a disklike domain are retained within the
one or two layers of the cluster boundary [22]. For the case
of short-range interactions κ−1 = 0.1 R, we observe visible
gradients in the local density along the radial direction. Si-
multaneously we observe that multiple strings of alternating
five-to-seven defects, sometimes known as defect “scars,” are
incorporated in the interior of the cluster. Careful inspection
shows that each of these structures each has an excess fivefold
defect and possesses a net Q = +1 disclination charge.

In Fig. 4(a) we compare the equation of state relating equi-
librium size of clusters to scaled particle number, Eq. (25),
from the fluid density model to the measured size of simulated
clusters. Simulation results largely confirm the prediction that
reduced size κR of the clusters is only a function of scaled
particle number N̄ over the full range of screening length to
cluster size ratios. The fluid density model somewhat overpre-
dicts cluster radius in the short-range limit (i.e., κR � 1), for
fairly small N values, but as N increases the simulated results
tend to converge to the fluid density predictions.

In Fig. 4(b) we plot the defect charge Q in the interior of
the simulated clusters as a function of κR and for a range
of particle numbers from N = 100 to N = 5000. Again, to
distinguish from boundary defects within the first few lay-
ers of the cluster, we count interior disclinations as those
within the inner 85% of radial thickness of the cluster (see
Appendix C for detailed discussion). We also plot the predic-
tion of total defect count from the fluid density model, Q f for
comparison. For small clusters (N = 100, 200), the boundary
threshold introduces some ambiguities in distinguishing from
between bulk and boundary of the cluster, due to the fact
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FIG. 3. Simulated ground-state configurations for harmonically confined clusters of N = 500 with variable screening length κ−1 =
10.0R, 1.0R, 0.1R. Delaunay triangulation shows the neighbor network, with site coordination indicated by black (6), red (5), and blue (7). The
purple circle denotes what is used that defines the “interior” region for bulk disclination charge count, 85% of the radial distance to the outer
boundary.

that the cluster possesses only a few layers of particles in
the radial direction. Notwithstanding this ambiguity, larger
cluster sizes tend to agree with the fluid defect prediction and
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FIG. 4. Comparison of size (a) and disclination charge (b) be-
tween fluid density model and simulated (discrete) particle ground
states for harmonic confinement (n = 2). (a) Comparison of the
equation of state in Eq. (25) for scaled cluster size vs scale particle
in the fluid density model to the equilibrium cluster size of simulated
clusters. (b) The predicted disclination charge in the fluid density
model compared to interior defect count (within the 85% of the radial
distance from the center), both plotted as functions of the reduced
cluster size κR. The numbers of particles in simulate clusters are
indicated by the legend in (b).

are defect-free in their interiors in the long-range repulsive
regime, κR � 1.

As the screening length decreases, the interior disclination
charge Q of simulated clusters increases, due to the excess
of interior fivefold defects, qualitatively consistent with fluid
defect prediction. However, while Q f grows arbitrarily large
as κR → ∞, we observe that interior defect charges increase
only to a finite value of Q � 6. For the exceptional case of
the largest particle number, N = 5000, we do observe up to
Q = 9 for the largest value of κR � 30; this falls far below
the fluid defect prediction Q f , which exceeds +103 for this
interactions range.

This suggests that fluid density profile may favor very
large numbers of positive disclinations for large κR, con-
formal crystals may not be able to achieve such states. As
a consequence, we expect the particle density profiles may
depart substantially from the fluid density prediction in the
large κR regime. In Fig. 5(a) we plot the radial profiles local
density of simulated clusters (extracted from Voronoi tessel-
lations) for the case of short-range repulsions, κR = 30, and
compare it the inverted parabolic prediction of ρ f (r) from
Eq. (41). We note that ultimately for large numbers of particles
(N � 500), density patterns of simulated clusters tend towards
fluid density predictions, approaching quantitative agreement
only for the largest numbers N = 5000. For smaller numbers
of particles, densities of the simulated clusters significantly
exceed fluid density predictions in the cluster center by large
amounts (up to 44%).

Taken together, this suggests the ability of conformal crys-
tal packings to achieve energetically optimal patterns density
(and disclinations) from finite particle numbers is limited and
becomes more limited as N decreases.

In Fig. 5(b) we consider a metric of “conformality,” which
is based on the variation of the bond lengths 
 between neigh-
bors in the packing, averaged over the triangular elements of
the Delaunay triangulation of a N = 5000 packing. Notably,
the deviations from equitriangular packing are most promi-
nent at the sites of disclinations and scars (i.e., chains of
multiple disclinations). Away from defect cores, deviations
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FIG. 5. (a) Comparison of local particle density measured from
simulated clusters under parabolic confinement with particle number
indicated in the legend. The values correspond to a target reduced
size of κR = 30, corresponding to the short-range interactions. Here
〈ρ〉 is the mean density of the cluster. The solid red curve shows the
prediction from the fluid density model. Local density in simulated
clusters are derived from the areas per cell of Voronoi tessellation of
ground-state clusters, as shown for example in the inset for N = 200.
Note that the areas of the outer most Voronoi cells cannot be defined,
and hence points for r � R are omitted from simulated density pro-
files. (b) Variation of neighbor spacing 
 in triangular elements of
the Delaunay triangulation for a packing at N = 5000. Mean and
variance, 〈
〉 and 〈(
)2〉 respectively, are defined with respect to
each triangle.

from equilateral packing remain only a few percent, despite
the large-scale gradients in density.

B. Anharmonic confinement (quartic potential)

We now turn to the case of anharmonic confinement, in
the form of a quartic external potential. For this case, the
optimal fluid density profile is described by the fourth-order
polynomial of radius,

ρ f (r) = ρ0[ f4(κR) + 16(κr)2 − (κr)4] for n = 4. (44)

Here we note that the character of this fluid density pro-
file is strongly dependent on interaction range as shown in
Fig. 8 below. For small κR, the profile is dominated by the
parabolic increase in density, leading to a convex pattern with
density spread to larger radii. In the opposite regime κR � 1,
the constant and quartic terms dominate, leading instead to
a concave pattern of radially decreasing density. Like the
case of harmonic confinement, here also the fluid density

is also predicted to vanish at the cluster edge in the limit
of very short-range interactions, ρ f (r) � ρ0κ

4(R4 − r4). The
crossover of ρ f (r) from convex to concave with interaction
range is also reflected in the fluid defect charge and its depen-
dence on interaction range,

Q f = 12ρ0
(κR)4 − 8(κR)2

ρ f (R)
for n = 4. (45)

For this case, the sign of the fluid defect charge varies with
interaction range. In the limit of long-range interactions,
this prediction tends towards a minimal, negative charge,
Q f (κR → 0) → −6. It crosses over from net negative to net
positive defects at κR = 2

√
2 and in the limit of short-range

interactions follows the same positive divergence as the har-
monic case, Q f (κR → ∞) ∼ κR.

Figure 6 shows how simulated ground-state patterns for
quartic potentials evolve with interaction range for three val-
ues N . Generally speaking, when repulsions are long-ranged,
the clusters exhibit low densities at the cores, punctuated with
excess negative disclinations (seven-, eight- or even ninefold).
To a large extent, these disclinations are localized towards
the center of the cluster. In the opposite, short-ranged repul-
sive regime, this pattern inverts, with the central region of
the cluster showing a (largely uniform) higher density than
its periphery. The excess charge of defects appearing in the
interior large κR patterns also flips from negative to positive.

Figure 7 compares the cluster size and interior disclination
charge of simulated clusters to the fluid density model. As
in the case of harmonic confinement, Fig. 7(a) shows good
agreement of the predicted dependence of κR with scaled
particle size N̄ , with the exception of modest error for small
particle numbers (i.e., N � 1000) in the limit of short-range
interactions. In Fig. 7(b) we observe that simulated ground
states follow the tendency towards Q → −6 predicted by the
fluid density model, and further, the qualitative crossover from
net negative to net positive defect states increasing from small
to large scaled sizes κR. However, as in the harmonic case,
the number of positive defects in the interior of the simulated
clusters saturates at a finite value for short-range interaction,
in disagreement with the unbound growth of Q f for κR � 1.

The asymmetric agreement between simulations and fluid
defect predictions suggests that limitations to approximate
optimal fluid density patterns in conformal crystals may be
much less restrictive for Q < 0 patterns for long-range repul-
sions than for the correspond Q > 0 patterns in the opposite
regime of short-range repulsions. This interpretation is con-
sistent with the comparison of the density profiles in Fig. 8. In
Fig. 8(a) we compare density profiles of the simulated ground
states to ρ f (r) first for long-range interactions, κ−1 = 10R.
This shows that simulated packings agree well with optimal
fluid density patterns, even for small values of N . In contrast,
the corresponding comparison in Fig. 8(c) for short-range
repulsion, κ−1 = 0.03R, shows (like the harmonic case) that
density in simulated packings significantly overshoots the pre-
diction from ρ f (r) in the center of the clusters for small N ,
and only converges to the predicted pattern for sufficiently
large N .

Figures 8(b) and 8(d) show the respective maps of devi-
ation from equilateral packing (i.e., strict conformality) in
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FIG. 6. Simulated ground-state configurations for anharmonically (n = 4) confined clusters of N = 500, 1000, and 2000 with variable
screening lengths. Delaunay triangulation shows the neighbor network, with site coordination indicated by black (6), red (5), blue (7), green
(8), and purple (9). The purple circle denotes what is used that define the “interior” region for bulk disclination charge count, 85% of the radial
distance to the outer boundary.

N = 5000 grounds states of long- and short-range poten-
tials. Like the case of harmonic confinement, these states
show only a few percent deviation from equilateral local
structure (that is, away from defect locations), notwith-
standing the over threefold gradients in mean edge length
throughout the structure. This finding suggests reasonable
grounds for comparison between simulated ground states and
conformal crystals.

In summary, for quartic potential, simulations follow the
predictions for the fluid density model to adopt net-negative
multidisclination patterns when repulsions are long ranged,
even for fairly modest numbers of particles, while the fluid
density model grossly overestimates the total charge of pos-
itive disclination ground states and poorly approximates the
density of simulated states for smaller N .

V. GROUND STATES IN THE DISCRETE DEFECT MODEL

The observations from the simulated ground states in the
previous section suggest overall that conformal crystal-like
states at finite N follow some of the basic trends predicted
by the fluid density model, in particular, the evolution from
convex to concave density profiles with decreasing interaction
range, and the corresponding evolution from net negative to
net positive disclination charge. However, extent of agreement
in terms of the total disclination charge and quantitative pro-
files of particle density vary considerably. Generally speaking,
simulated ground states follow the fluid density model for
long-range interactions, where disclinations are absent (n =
2) or negatively charged (n = 4), while for short-range inter-
actions the fluid density model grossly overestimates the total
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FIG. 7. Comparison of size (a) and disclination charge (b) be-
tween fluid density model and simulated (discrete) particle ground
states for anharmonic confinement (n = 4). (a) Comparison of the
equation of state in Eq. (25) for scaled cluster size vs scale particle
in the fluid density model to the equilibrium cluster size of simulated
clusters. (b) The predicted disclination charge in the fluid density
model compared to interior defect count (within the 85% of the radial
distance from the center), both plotted as functions of the reduced
cluster size κR. The numbers of particles in simulate clusters are
indicated by the legend in (b).

charge of positive defects, and poorly models the densities of
low-N clusters.

To investigate the physical origins of these discrepancies,
we turn to the discrete disclination model of conformal crys-
tals introduced in Sec. III B. Specifically, we aim to study
the role played by the finite number and discrete nature (i.e.,
quantization) of disclinations in selecting optimal energy pat-
terns. We first consider the energetics of the axisymmetric
patterns, or circular clusters possessing a single disclination
(of variable charge) at its center [as in Figs. 9(a) and 9(b)]. We
then compare to energetics of distributed multidisclinations
states with density patterns that break the axisymmetry of the
confining potential [as in Fig. 9(c)].

A. Centered disclinations

Here we consider the energetics of monopole disclination
patterns within confined 2D screened Coulomb model. We
first consider the axisymmetric density profiles described by
Eq. (39), for a centered disclination of charge Q, which is
required to be an integer, as opposed to the continuously
variable disclination charge implicit to the fluid density model
of Sec. III A. As described in Sec. III B, we evaluate the

energy for fixed Q, R, N , interaction and confining potential.
We then minimize the results with respect to R to obtain
the equilibrium cluster size, and compare the energetics of
variable integer disclination charge.

For this case of centered disclinations, the cluster energy
can be expressed in a compact form,

Ecen

N (u0/κn)
= 4N̄ (1 − Q/6)2 fint (κR)

(κR)4(1−Q/6)

+ 2
(1 − Q/6)

n + 2 − Q/3
(κR)n, (46)

where

fint (t ) ≡
∫ t

0
dy K0(y)y1−Q/3

∫ y

0
dx I0(x)x1−Q/3 (47)

characterizes the pairwise repulsive cost [see Eq. (7)], and the
scaled particle number is defined as above in Eq. (24). This
formulation shows that the energetics of centered defects is
parameterized effectively by three dimensionless quantities,
defect charge Q, scaled number N̄ , and ratio of cluster size
to screening length κR, with the last quantity being optimized
for equilibrium structures.

We consider the energetics of central-disclination configu-
rations with Q ranging from −7 to +5, for a both confinement
potentials, as well as a range of scaled particle numbers from
N̄ = 1 to 1032, which effectively allows us to span the range
of long-range (κR � 1) to short-ranged (κR � 1) repulsions.
Figure 10(a) shows results for the optimal centered disclina-
tion charge for harmonic confinement. For equilibrium sizes
κR � 2.23, Q = 0 (uniform, defect-free) states are energet-
ically favored over other axisymmetric patterns. Above this
size, there is a transition to preference for Q = +1 among all
centered defect states, which persists up to the largest cluster
sizes (or shortest interactions ranges), such as (κR) � 108.

Figure 10(b) shows the corresponding prediction for
central-disclination patterns for the anharmonic (quartic) con-
finement. For this case, the longest interaction ranges (or
smallest cluster sizes) adopt an optimal charge of Q = −6
that gradually increases in a stepwise fashion to a maximal
central charge of Q = +1 over the range from κR = 0.23 to
11.36. Hence, both the n = 2 and n = 4 cases show a rough
agreement with the defect count in simulated ground states
and the predictions of the fluid defect count Q f in the regime
of longer-range interactions, κR � 1. However, in the oppo-
site regime κR � 1, minimal energy central-defect patterns
remain capped at Q = +1, falling short of the maximal defect
charge observed in simulations (≈+6), not to mention the
divergent growth as κR → ∞ predicted by the fluid density
model.

B. Decentralized disclination rings

Here we consider the influence of discrete disclination
arrangements on the ground-state energetics. Specifically, in
contrast to the axisymmetric patterns which assume defect-
confinement to the geometric center of the cluster, here we
consider defect patterns that are spread into |Q|-fold rings sit-
ting at constant radius 0 � rd � R from the center, as shown
in Fig. 9(c). In Appendix D we describe the generalized form
of the conformal crystal density patterns and energetics for
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FIG. 8. Comparison of local particle density measured from simulated clusters under anharmonic (n = 4) confinement with particle number
indicated in the legend. The values correspond to target reduced sizes of κR = 0.1 (a) and κR = 30 (c) corresponding to the long- and
short-range interactions, respectively. The solid red curves shows the predictions from the fluid density model. Here 〈ρ〉 is the mean density
of the cluster. Insets show example Voronoi tessellations for N = 200 clusters. Panels (b) and (d) show deviations from equilateral neighbor
spacing from the Delaunay tessellations of N = 5000 ground states for κR = 0.1 and κR = 30, respectively.

these |Q|-fold rings. Critically, the “fission” of a single, cen-
tralized disclination charge allows for a much broader class
of density patterns than can be achieved by axisymmetric
defects, for example, the Q = +6 state shown in Fig. 9(c),
which is smooth everywhere but the singular positions of the
disclinations.

The energy is computed from Eqs. (D7) and (D8) for a
fixed number(|Q|), charge (±) of disclinations, scaled particle
number N̄ . The total energy of each configuration is numeri-

cally minimized cluster size κR for a series of variable radii
rd/R for the disclination ring.

For these nonaxisymmetric and decentralized patterns, we
focus only on the case of the quartic potential, as this scenario
exhibits a transition from negative charge to positive charge
disclinations with increasing κR. Here we consider |Q|-fold
patterns possessing 2 � |Q| � 40 symmetrically arrayed de-
fects. Notably, we find that for Q < 0 states, the optimal
pattern also always favors axisymmetric, centered states (as

FIG. 9. Predicted particle density profiles for conformal crystal with discrete disclinations: (a) centered Q = +1 defect, (b) centered Q =
−1, and (c) disclination ring of six Q = +1 disclinations at radius rd from the cluster center. The color profile indicates the local variation of
density relative to mean density 〈ρ〉.
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FIG. 10. Comparison of energetically favored central disclina-
tion conformal crystal (discrete disclination theory) to the predicted
defect charge from the fluid density model as function of re-
duced cluster size κR: (a) harmonic confinement; (b) anharmonic
confinement.

described in the previous section). It is only for the posi-
tive disclination states that decentralized ring patterns achieve
lower total energy than central Q > 0 states. Figure 11(a)
shows an example of results for N̄ = 800 000 (corresponding
approximately to cluster sizes κR ≈ 10), plotting the optimal
ring radius rd and energy of the |Q|-fold ring as function total
Q, showing a minimal energy for Q = +13 and rd = 0.775R.

We computed the optimal disclination ring pattern for
N̄ = 22 400 to 560 000 000, which corresponds to a range
of equilibrium cluster sizes κR � 5.5–30. The results of the
comparison between energetics of centered defect patterns to
split-ring patterns in shown in Fig. 11(b). Above a threshold
value of N̄ � 22 400, we find that split disclination patterns
of Q = +7 become stable over the axisymmetric patterns,
which at this threshold are have lowest energy in defect-free
(Q = 0) configurations. Hence, the transition from Q � 0 to
positively charged, split-ring configurations preempts the sta-
bility of the Q > 1 centered disclination patterns, which does
not occur until N̄ � 22 400 (κR � 5.5). Going beyond the
threshold between neutral and split ring configurations, we
find that the optimal charge increases from Q = +13 at N̄ �
800 000 (κR � 10) and then to Q = +17 at N̄ � 176 000 000
(κR � 25). This indicates a strong bias for positive disclina-
tions to spread out away from the cluster center and localize
much closer to its outer boundary. This is consistent with the
plot of optimal ring radius vs total disclination charge shown
in Fig. 11(a), which shows that minimal-energy values of rd/R
increase with Q.

Finally, we compare the total defect counts of both op-
timal split-ring configurations and axisymmetric (centered)

Q = −2

Q = −1

disclination rings

Q = +2

Q = +1

Q = −6
Q = −5

Q = −4
Q = −3

0 + 12+11 +13 +14Q
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r
d /
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E
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−

E
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=
0)
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(a)

(b)

Q

FIG. 11. Energetics of multidisclination ring conformal crystals
of anharmonically confined particles. (a) Energy and optimal ra-
dius rd of as function of variable disclination number Q for with
N̄ = 80 000 (or κR � 10). (b) Lowest energy configuration E (Q) vs
κR plot scaled by the uniform energy E (Q = 0), with starred points
indication energetically optimal disclinations configuration, and the
remaining curves denoting centered disclination configurations.

configurations of discrete dislcinations to both numerically
simulated ground states and the fluid-density model predic-
tions for quartic confinement in Fig. 12. We note that the
split defect configurations share the feature with the simu-
lated ground states in the short-interaction range that the total
disclination charge becomes positive, but remains relatively
constant in comparison to the divergent prediction of the fluid
density model. For example, for largest cluster size studied
κR � 30 we find an optimal charge of +17 split disclinations,
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FIG. 12. Comparison disclination charge of the optimal disclina-
tion rings to centered disclinations, predicted charge of fluid density
model and measured interior defect charge in N = 1000 simulated
clusters for anharmonicially confined (n = 4) ground states.
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which is larger than the +6 charge measured from the simu-
lated clusters and falls more than an order of magnitude below
the fluid density prediction of Q f (κR = 30) � 80. In the fol-
lowing section we discuss the comparison between these three
different predictions for optimal defect patterns.

VI. DISCUSSION

We have compared two distinct theoretical models for op-
timal disclination patterns in conformal crystal ground states
of confined 2D clusters of particles with screened Coulomb
repulsions. The fluid-density model provides analytic predic-
tions for energetically favored pattern of particle density in the
cluster. Applying the conditions of geometric compatibility
between bond order and disclinations in conformal crystal,
Eq. (5), but neglecting constraints of localization and quan-
tization of defect charge, yields a prediction, Eq. (10) for
the continuous fluid defect charge density s f (r) correspond-
ing to the energetically optimal particle density, which is
analogous to the Nye picture of continuous defects in bent
crystals. Consistent with previous studies that adopt this ap-
proach [10,13,14], we find that this fluid-defect model works
well to capture the basic trend increasing of net disclination
charge, and the corresponding crossover from convex to con-
cave radial profiles of density in the cluster, with the ratio of
equilibrium cluster size to screening length, κR. While this
model captures fairly well the quantitative features of optimal
clusters in the limit of long-range interactions κR � 1 where
net disclination charge is nonpositive, we find that it dramat-
ically overpredicts the total charge of positive disclination
ground states in the opposite limit of short-range interactions,
κR � 1. While Q f (κR → ∞) → ∞, simulated ground-state
clusters exhibit a bounded increase in the total disclination
charge that saturates for κR � 5. Notably, we observe also a
strongly N-dependent mismatch between the predicted fluid
density pattern and simulated clusters in this short-range inter-
action regime. For N � 103, simulated clusters overshoot the
predictions of particle density from the fluid model in the core
of the clusters, while no significant discrepancy is observed in
the long-range interaction regime, where defect patterns are
nonpositive in charge.

A second theoretical approach, akin to the Taylor theory of
solid dislocations, treats defects as quantized and monopole
sources of conformal distortion, according to the compati-
bility relation in Eq. (5). Consideration of the energetics of
the resulting density patterns that can be achieved for various
arrangements of elementary Q = ±1 disclinations, then pro-
vides a distinct set of predictions for the dependence of defect
pattern on interaction range. Largely speaking, the discrete de-
fect theories tend to agree well with both the simulations and
fluid density predictions in the long-range interaction regime,
where disclinations patterns are nonpositive in total charge.
As described in Sec. III A, the fluid density model predicts
that optimal defect patterns tend towards a central δ function
in the κR → 0 limit. Correspondingly, we find that central
patterns of discrete negative disclinations do well to capture
the observed increase in Q with cluster size in the κR � 1
regime. Central patterns of discrete disclinations, however,
fail to capture the observed growth in Q into the short-range
interaction regime, κR � 1. Notably, the optimal charge of

the axisymmetric disclination pattern never exceeds Q = +1
even in the limit of κR → ∞. Instead, we find that optimal
patterns of discrete positive disclinations break axisymmetry,
spreading into rings that are situated away from the cluster
center and tend towards its boundary with increased total
charge. Upon taking into account this sensitivity of Q > 0
ground states to discrete defect position, we predict a far
more modest increase of total defect charge for κR � 1 than
the fluid density model, in better qualitative agreement with
numerical simulation results.

Taken together, these results suggest a marked asymmetry
between the function of positive and negative disclinations
in ground states of this class of models. This is unlike the
more familiar picture of disclinations canonical crystals, i.e.,
formed by short-range cohesive bonding, which is based on
linearized continuum elasticity theory [1]. In that standard
description, the induced stress, elastic interactions, and cou-
pling to curvature simply flip sign as Q → −Q [18]. What
then accounts for the asymmetric behavior we find here for
conformal crystal ground states with respect to disclination
charge?

In part, the distinction derives from energetic preferences
for defects locations and its dependence on the range of in-
teraction. As shown in Sec. III A, the optimal patterns fluid
density in the long-range interaction (purely Coulomb) limit
corresponds to central, δ function distributions of disclina-
tion charge; that is, the optimal patterns of particle density
correspond directly to localized point sources of disclination
charge. In contrast, in the opposite limit of short-range repul-
sion, the optimal patterns of the fluid density model predict
continuous disclination charge that diverges cluster edges.
Hence, as interactions become more screened, optimal density
patterns favor delocalized defect distributions that are not
compatible with their discretized, pointlike nature of discli-
nations in the bond order field, and multidefect patterns lead
to suboptimal density patterns.

Spreading of multiple positive disclinations into rings con-
siderably improves their ability to approximate the optimal
fluid density patterns. For example, see the radially averaged
density profiles for anharmonically confined, short-range re-
pulsive particles (N̄ = 800 000, corresponding to κR ≈ 10)
shown in Fig. 13. The optimal fluid density pattern (shown
as red) is concave and according to the integrated fluid defect
charge would correspond to Q f � 20. The dashed blue line
shows the density profile of single centered Q = +1 defect,
which has the same sign of topological charge, but its sin-
gular, convex profile poorly approximates the energetically
preferred one. In comparison, we also show radial averages
of density in split disclination rings, which evidently better
approximates the optimal fluid density, with a roughly con-
stant density core region that tapers between the defect ring
and diminished density at the outer edge.

Notably the fact that the optimal location of discrete dis-
locations gets pushed to the outer edge for κR � 1 likely
also accounts for some of the saturation effects observed
in simulated clusters. That is, precisely where the preferred
total defect count is growing large, the optimal position
approaches arbitrarily close the free boundary of the clus-
ter. This, in combination with the presence of topologically
necessary disclinations on the boundary, compounds the
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FIG. 13. Comparison of the optimal fluid density profile to the
radially averaged density ρ̄(r) profiles predicted for different discrete
defect patterns in anharmonically confined clusters with the same
parameters as shown in Fig. 11. For disclination ring patterns, the
state with the energetically optimal rd is shown.

difficulty to count such defects as “interior” to the packing
(see Appendix C).

A second ingredient to the distinct behavior of posi-
tive and negative disclinations is the asymmetric dependence
of conformal crystal structure on the sign of topological
charge. As described in Sec. III B, disclinations act monopole
sources for conformal distortions of ln ρ(r) and as such
lead to near-field singularity at the location of disclinations,
ρ(r) ∼ |r − rd |−Q/3, where rd is the defect position, as in
Eq. (39). While this density pattern is singular for both signs
of Q, its value is bounded for negative charge but divergent for
positive charges. This leads to a strong effect on the asymme-
try of the “self-energy” associated with near-field repulsive
cost of locally under- or over-packing the region around the
disclination core. For example, in Fig. 14 the energy forms a
single, centered disclination (relative to the defect-free clus-
ter) vs topological charge Q in a harmonically confined array
of particles with 2D Coulomb repulsion (i.e., κ → 0). Due to
the asymmetry between local density, the self-energy deviates
considerably from the symmetric cost ∝ Q2 expected from
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FIG. 14. Dependence of “self-energy” of single disclinations on
defect charge Q for center defects harmonically confined (n = 2)
clusters with long-range interactions (κ → ∞). Red dots show pre-
dictions from the conformal crystal (i.e., discrete defect) theory,
and the dashed line shows the parabolic fit to the small Q limit,
highlighting a large asymmetry for Q → −Q. Note from Eq. (41)
that the optimal fluid density for κ → 0 is uniform, and hence, all
Q �= 0 states represent excitations of the ground state.

continuum theory of cohesive crystals [1]. Note that the en-
ergy to form a Q → −∞ disclination remains finite, while the
corresponding energy to form positive disclination diverges
at a finite value, Q → +6. This result implies that energy
cost of concentrate multiple Q < 0 disclinations is modest,
while there is strong incentive to split and separate Q > 0
disclinations into distant regions of a conformal crystal. This
is consistent with the observation that positive disclination
states are stable only in split-ring configurations in our dis-
crete defect calculations, while axisymmetric patterns with
Q < −1 are generically stable.

The asymmetric sensitivity of ground-state energetics to
sign of disclination charge raises another question about the
detailed structure of disclinations. Defect ground states of
frustrated cohesive crystals are known to exhibit complex
extend chains of alternating sign disclinations, known as scars
[20,24,30,31]. This is considered a mechanism to spread out
the stress of pointlike disclinations over larger area, leading
to lower elastic energy as the ratio of the macroscopic crystal
size grows large compared to the lattice spacing. Similarly,
we observed scarlike chains of Q = ±1 defects in many of
our simulated ground states, particularly as N grows large.
Understanding how the such configurations spread the singu-
lar density gradients in conformal crystals and how scarred
morphologies may or may not better approximate the en-
ergetically optimal fluid density patterns remains an open
challenge.

VII. CONCLUSIONS

In summary, despite the strong geometric analogy be-
tween curvature frustration in canonical (cohesive) crystals
and conformal crystal ground states of externally confined
patterns, the heuristic picture of “curvature screening” by
disclinations in the former class of systems does not simply
extend by analogy to physical predictions of ground-state
structure for the latter. An open challenge remains how to
bridge these two classes of geometrically frustrated systems.
One approach may be to study a generalized continuum elastic
description that incorporates the physical ingredients needed
to generate conformal crystal ground states (i.e., body forces
from the external potential and long-range intracluster inter-
actions), while at the same time parametrizing the preferences
for isotropic, locally crystalline correlations (i.e., local shear
and bulk elasticity). The compatibility conditions of such a
description may provide a more direct and intuitive means
to understand the emergent asymmetry in the sensitivity of
ground-state structure to disclination charge.
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APPENDIX A: COMPATIBILITY OF DENSITY AND
DISCLINATIONS IN CONFORMAL CRYSTALS

Here we derive the compatibility between disclinations in
the bond order field and gradients of the density in a conformal
crystals. Following, the original description by Rothen et al.
[16], it is particularly convenient to adopt the framework
of complex analysis (e.g., [34]). In particular, we construct
conformal crystals as a mapping from a planar, equitriangular
lattice in the complex plane z0 = x0 + iy0 to a conformally
distorted version of the lattice with coordinates z = x + iy.
This map is described by the complex function z(z0), where z0

is the coordinates in the undistorted reference lattice. Assum-
ing this map to be analytic everywhere by singular points (i.e.,
defects), a differential element of the reference states dz0 =
dx0 + idy0 (e.g., a neighbor bond in the lattice) is mapped to
the element

dz = dx + idy =
( dz

dz0

)
dz0

= (ξdx0 − ηdy0) + i(ηdx0 + ξdy0), (A1)

where ξ ≡ ∂x/∂x0 = ∂y/∂y0 and η ≡ −∂x/∂y0 = ∂y/∂x0,
according the Cauchy-Riemann conditions. Hence, the func-
tion describing the conformal distortion can be written in
the form dz/dz0 = �(z)eiθ (z), i.e., ξ = �(z) cos θ (z) and η =
�(z) sin θ (z), and Eq. (A1) can be written as a matrix trans-
form (

dx
dy

)
= �

(
cos θ − sin θ

sin θ cos θ

)(
dx0

dy0

)
, (A2)

which clarifies that an analytic map corresponds to rigid ro-
tation of dz0 by θ (z) and isotropic scaling of length by the
conformal factor �(z). Because z(z0) is analytic, the function
(dz/dz0) = ξ (z) + iη(z) is also an analytic function of z. Ap-
plying the Cauchy-Riemann conditions to this function (i.e.,
∂ξ/∂x = ∂η/∂y and ∂ξ/∂y = −∂η/∂x) we have

∂x
(
� cos θ

) = ∂y
(
� sin θ

)
,

∂y
(
� cos θ

) = −∂x
(
� sin θ

)
(A3)

or

∂xθ = �−1∂y�,

∂yθ = �−1∂x�. (A4)

Using this result and the fact that density of the conformal
crystal ρ(r) = �−2ρ0, where ρ0 is the uniform density of the
equitriangular reference state, we have the relation between
row curvature and density gradients in Eq. (3).

APPENDIX B: FLUID DENSITY OF CONFINED CLUSTERS
WITH 2D SCREENED COULOMB REPULSIONS

To solve mean-field equations, Eqs. (8) and (9), for the op-
timal fluid density pattern we introduce the potential function
φ(r) as

φ(r) ≡
∫

ρ f (r′)vint (|r − r′|) dr′, (B1)

so that stationary Eq. (9) becomes

φ(r) = μ − U (r) (B2)

Using the pairwise interactions, form Eq. (12) we have

φ(r) = v0

∫ R

0
dr′ ρ f (r′)v(r, r′), (B3)

where

v(r, r′) = r′
∫ 2π

0
dθK0(κ

√
r2 + r′2 − 2rr′ cos θ ) (B4)

Using the Bessel function identity [42],∫ π

0 K0(
√

a2 + b2 − 2ab cos x) dx

= π ×
{

I0(a)K0(b), a < b
I0(b)K0(a), a > b

, (B5)

yields

v(r, r′) = 2π ×
{

I0(κr′)K0(κr), r′ < r
K0(κr′)I0(κr), r′ � r

, (B6)

from which we get the φ(r) is

φ(r) = v0K0(κr)
∫ r

0
dr′ρ f (r′)I (r′)

+ v0I0(κr)
∫ R

r
dr′ρ f (r′)K(r′), (B7)

where I and K are

I (r) ≡ 2π I0(κr)r, (B8)

K(r) ≡ 2πK0(κr)r. (B9)

To solve Eq. (B7), we can introduce a new function ψ (r),

1

2
φ(r) + ψ (r) = v0K0(κr)

∫ r

0
dr′ρ f (r′)I (r′), (B10)

1

2
φ(r) − ψ (r) = v0I0(κr)

∫ R

r
dr′ρ f (r′)K(r′). (B11)

Differentiating both sides of Eqs. (B10) and (B11) with re-
spect to r yields

ρ f (r)I (r) = d

dr

[ 1
2φ(r) + ψ (r)

v0K0(κr)

]
, (B12)

−ρ f (r)K(r) = d

dr

[ 1
2φ(r) − ψ (r)

v0I0(κr)

]
. (B13)

Combining these to eliminate ρ(r) yields an inhomogeneous,
first-order equation for ψ (r),

I (r)
d

dr

[ 1
2φ(r) − ψ (r)

v0I0(κr)

]
+ K(r)

d

dr

[ 1
2φ(r) + ψ (r)

v0K0(κr)

]
= 0,

(B14)

which takes the following form:

p1(r)ψ ′(r) + p2(r)ψ (r) + p3(r) = 0, (B15)

where

p1(r) = 0, (B16)

p2(r) = 2π

I0(κr)K0(κr)
, (B17)
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p3(r) = I (r)

[
κ

2

I0(κr)K1(κr) − I1(κr)K0(κr)

I0(κr)2K0(κr)
φ(r)

+ φ′(r)

I0(κr)

]
. (B18)

Note that p2(r) � 0.
Solving for ψ (r) requires a boundary condition, which is

obtained from Eq. (B11) in the limit of r → R, since the
integrand on the right-hand side vanishes,

1

2
φ(R) = ψ (R). (B19)

From this and Eq. (B15), we have

ψ (r) = r

2
{κ[I1(κr)K0(κr) − I0(κr)K1(κr)]φ(r)

− 2I0(κr)K0(κr)φ′(r)}. (B20)

Inserting Eq. (B20) into Eq. (B12) or (B13) yields fluid the
general form of the density distribution in terms of the un-
known potential field

ρ f (r) = 1

2πv0

[
κ2φ(r) − φ′(r)

r
− φ′′(r)

]
, (B21)

which is essentially the linearized 2D Poisson-Boltzmann
equation for axisymmetric charge density.

Inserting Eq. (B2) into Eq. (B21), we can get the fluid
density distribution in terms of a general external potential,
give be Eq. (17). Then from the constraint on particle number
Eq. (8), we have the chemical potential μ in Eq. (18).

APPENDIX C: INTERIOR DISCLINATION COUNT IN
SIMULATED GROUND STATES

Here we describe our method to count the topological
defects in simulated 2D ground-state clusters. As discussed in
Sec. III C, the total topological defects (interior + boundary)
are always six due to Euler’s theorem (see [22]). We separate
topological defects as two types: inner topological defects
Qinner and boundary defects Qbdy. Qinner represents the total
topological charge of the system. Qbdy was used to satisfy the
Euler’s theorem and resolve the conflict between the locally
triangular arrangement of particles and the circular symmetry
of the confinement.

Our goal is to determine a method to count the total in-
terior defect charge, as it is only interior disclinations that
give rise to gradients in local areal density in our discrete
theory (analogous to the free boundary screening of topolog-
ical defect in 2D elastic crystals [42]). As a practical matter
it is not clear if this boundary layer should be one, two, or
more particular layers thick, as the circularity of the cluster
boundary tend to generically push whatever boundary discli-
nations are needed at least one layer into the cluster. Hence,
a rigorously motivated and generically application definition
is likely beyond reach. Instead, we opt for a simple and
practical definition, that Qinner simply counts all disclinations
within a fixed fraction, 85%, of radial distance from the po-
tential minimum (see purple circles in Figs. 3 and 6), and
the defects in the remaining outer annulus are classified as
“boundary” type.

See, for example, Fig. 15, which shows the accumulation
disclination charges Ndis(r) within radius fraction r

R for N =
1000 at κ−1 = 10.0R, 0.03R (their snapshots are in Fig. 6). As
described in the main text, results in for interior charge count
are based on a radial threshold of r/R = 0.85 (shown as the
blue line in Fig. 15).

APPENDIX D: MULTIDISCLINATION RINGS

Here we give the details of the calculation of multi-
disclination configurations from the discrete defect model of
conformal crystals introducted in Sec. III B. For M topolog-
ical defects in the cluster, the disclination density has the
general form

s(r) = q
M∑

α=1

δ(r − rα ), (D1)

where q = ±π
3 is the topological charge per disclination.

From this and Eqs. (32)–(36) for a |Q|-fold ring of ±1 charge
disclinations at radius rd , we have

δψ (r, θ )=± 1

12

|Q|∑
n=1

ln

[R2 + r2r2
d/R2 − 2rrd cos(θ − 2πn

|Q| )

r2 + r2
d − 2rrd cos(θ − 2πn

|Q| )

]
.

(D2)

From this the density follows:

ρ(r, θ ) = ρRH (r/R, rd/R, θ ), (D3)

H (x, y, θ ) =
|Q|∏
n=1

[1 + x2y2 − 2xy cos(θ − 2πn
|Q| )

x2 + y2 − 2xy cos(θ − 2πn
|Q| )

]1/6

, (D4)

where ρR = e−2ψ (R). Normalization sets

N =
∫ R

0

∫ 2π

0
ρ(r, θ )r dr dθ = e−2ψ (R)h(rd/R)R2, (D5)

where

h(x) =
∫ 1

0
y dy

∫ 2π

0
H (x, y, θ ) dθ, (D6)

or ρR = NR−2/h(rd/R)).
The total (scaled) confinement energy is

Econ

N (u0/κn)
= (κR)n

h(rd/R)

∫ 1

0
xn+1dx

∫ 2π

0
H (x, rd/R, θ ) dθ,

(D7)
and the total (scaled) interaction energy takes the form

Eint

N (u0/κn)
= N̄

2h2(rd/R)

∫ 1

0
x dx

∫ 2π

0
dθH (x, rd/R, θ )

×
∫ 1

0
y dy

∫ 2π

0
dθ ′H (y, rd/R, θ ′)

×K0[(κR)
√

x2 + y2 − 2xy cos(θ − θ ′)]. (D8)

Notably the total scaled energy (Econ + Eint )/N (u0/κ
n) is a

function of the dimensionless parameters N̄ , which is fixed for
a given cluster, and the variables Q, κR, and rd/R, which are
thermodynamic degrees of freedom for the cluster. In practice,
we evaluate the function h(rd/R) by numerical integration,
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FIG. 15. Under quartic confinement, the total disclination charges Ndis(r) within a radial fraction r
R for N = 1000 at κ−1 = 10.0R, 0.03R.

The blue line shows the r/R = 85% definition.

while the four-dimensional integral in Eq. (D8) is evaluated
using the Monte Carlo method in scikit-monaco packages was

used to calculate its value (109 sampling points are used,
resulting in relative error of ∼10−4).
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