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Orbital magnetism of an active particle in viscoelastic suspension
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We consider an active (self-propelling) particle in a viscoelastic fluid. The particle is charged and constrained
to move in a two-dimensional harmonic trap. Its dynamics is coupled to a constant magnetic field applied
perpendicular to its plane of motion via Lorentz force. Due to the finite activity, the generalized fluctuation-
dissipation relation (GFDR) breaks down, driving the system away from equilibrium. While breaking GFDR,
we have shown that the system can have finite classical orbital magnetism only when the dynamics of the system
contains finite inertia. The orbital magnetic moment has been calculated exactly. Remarkably, we find that
when the elastic dissipation timescale of the medium is larger (smaller) than the persistence timescale of the
self-propelling particle, it is diamagnetic (paramagnetic). Therefore, for a given strength of the magnetic field,
the system undergoes a transition from diamagnetic to paramagnetic state (and vice versa) simply by tuning the
timescales of underlying physical processes, such as active fluctuations and viscoelastic dissipation. Interestingly,
we also find that the magnetic moment, which vanishes at equilibrium, behaves nonmonotonically with respect
to increasing persistence of self-propulsion, which drives the system out of equilibrium.

DOI: 10.1103/PhysRevE.104.034613

I. INTRODUCTION

Inertia can have a profound effect on dynamics. It can be
a system of particles forming a rigid body or a fluid, and
inertia can be equally important in the dynamics of both. From
celestial bodies to a spinning top in everyday life, it is evident
that the effect of inertia is ubiquitous in rigid body mechan-
ics. In case of fluids, at high Reynolds number [1], inertia
plays important role from simpler problems of fluid mechan-
ics, such as inviscid flows, potential flows, laminar flows,
etc., all the way to one of the most challenging problems—
turbulence [1,2].

However, with respect to the inertial dynamics mentioned
above, the dynamics in the world of motile microorganisms
(e.g., bacteria, green algae, sperm cells, white and red blood
cells, or even smaller-scale objects such as motor proteins)
and synthetic microswimmers (e.g., active colloids [3]) are
fundamentally different [4,5]. First, unlike the passive parti-
cles, the microorganisms can self-propel, consuming energy
from their surrounding. They spontaneously generate flow
into the system, driving it far from equilibrium [6]. Second,
because of their size limitation and the highly viscous medium
in which the microorganisms self-propel, the typical Reynolds
number is around 10−4 or even smaller [7,8]. The typical time
required for the microswimmers at low Reynolds number to
dissipate their momenta is around 10−7 s [8]. Therefore, for all
practical purposes, throughout their journey, the momentum
of such swimmers remains constant over time. Consequently,
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the inertia has a negligibly small effect on the dynamics of
such self-propellers. Most of the research on active systems
so far has been done in this low Reynolds number limit where
one considers Stokes flow including active stresses (namely,
active hydrodynamics [9]) and/or overdamped Brownian mo-
tion including self-propelling forces and torques [5].

Clearly, if we push the envelop further considering larger
self-propelling objects moving in a medium with lower vis-
cosity, the inertial effect will become prominent. Typically,
active particles moving in a low-viscosity medium starting
from millimeter size (and onwards) are strongly influenced
by inertial forces and torques. Macroscopic particles of gran-
ular material with built-in self-propelling or self-vibrating
mechanisms (e.g., an internal vibration motor or vibrating
plate), miniature robots and the like [10–20]), macroscopic
swimmers [21–24], and flying insects [25] are apt examples
where inertia can play a significant role in their dynamics,
both in the single particle level as well as in the collective
level. Recently there have been studies from theoretical as
well as experimental perspectives, focusing on inertial effects
of self-propelled particles [12,26–30]. Self-propelling robots
can be fabricated in the macroscopic length scales [31,32] to
explore the inertial effects. An active Langevin model includ-
ing inertia can describe the dynamics of inertial self-propellers
well [33–35]. It is observed that by fine tuning inertia, some of
the fundamental properties of active systems are qualitatively
modified. For example, it has been shown experimentally as
well as theoretically that inertia can induce delay between the
orientation dynamics and velocity of active particles, which
has a profound influence on their long-time dynamics [12].
In the presence of inertia, different dynamical states are de-
veloped by self-propelling particles confined in a trap. The
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transition between these dynamical states is continuous or
discontinuous and crucially depends on the inertia present
in the system [26]. One of the fundamental features of ac-
tive Brownian systems is motility-induced phase separation
(MIPS). It is strongly influenced and suppressed by the pres-
ence of inertia. It has also been shown that due to inertia, the
coexisting phases of high and low particle density, obtained
with MIPS, have widely different kinetic temperatures, which
is in contrast with equilibrium phase separation [36].

The physics of the charged, passive Brownian particle
under an electromagnetic field has been studied previously
[37–40]. Being motivated by the aforementioned recent find-
ings on inertial active systems, here we will report the
magnetic properties of a charged, active Brownian particle
suspended in a viscoelastic medium and moving under con-
stant external magnetic field. In particular, we will show that
if the active particle possesses finite inertia, only then can
such a system exhibit orbital magnetism and goes through a
transition from the paramagnetic to the the diamagnetic state
in a different regime of parameter space from the model.
The transition between paramagnetic and diamagnetic states
depends crucially on the interplay of different timescales re-
lated to the physical processes (e.g., active fluctuations and
dissipation) involved in the dynamics of the system.

Before going into the details of our findings, we will
introduce here the medium in which the active particle is
suspended. We consider the medium to be viscoelastic with
transient elasticity. The elastic forces exerted by the medium
on the self-propelling particles dissipate within a finite time
beyond which particles are dragged only by the viscous
forces. Theoretically one can also consider the viscous limit
of the problem where elastic forces dissipate very fast and
only viscous forces are left to drag the suspended particles. In
experiments, usually polymers are added to the viscous fluids
to make them transiently viscoelastic [41].

Viscoelasticity can trigger fast transitions of a Brownian
particle in a double-well optical potential [42]. It can add
remarkable features to the dynamics of the active system
suspended in it. For example, it enhances rotational diffusion
of the active particles [43,44]. In a viscoelastic environment,
the self-propelling colloids exhibit a transition from enhanced
angular diffusion to persistent rotational motion beyond a
critical propulsion speed [45]. Viscoelasticity can enhance or
retard the swimming speed of a helical swimmer, depend-
ing on the geometrical details of the swimmer and the fluid
properties [46]. Natural active systems are often found in
a viscoelastic environment. Hence it is imperative to study
viscoelastic effects on their dynamics [47,48]. Theoretically
it has been shown that elasticity in a non-Newtonian fluid
can suppress cell division and cell motility [49]. In a vis-
coelastic environment active pulses can reverse the flow [50].
In the case of chemically powered self-propelling dimers,
fluid elasticity enhances translational and rotational motion at
the single-particle level, whereas in the multiparticle level, it
enhances alignment and clustering [51].

In this article we consider a viscoelastic medium in which
an inertial particle self-propels in two dimensions. The parti-
cle is confined in a two-dimensional (2D) harmonic potential.
The particle is charged and subject to a constant magnetic
field perpendicular to the plane of its motion [52–55]. We
will focus on how the particle responds to the presence of an

external magnetic field. We quantify the response by evalu-
ating the classical, orbital magnetic moment of the particle
and its characteristic features with respect to the timescales
signifying various physical processes occurring within the
system, such as (1) the timescale related to the correlation
of active fluctuations (due to self-propulsion) and (2) the
timescale related to dissipation. The timescale associated with
active fluctuations originates from the persistence of the self-
propeller to move along a certain direction despite random
collisions from surrounding fluid particles. The timescale as-
sociated with dissipation signifies the characteristic time of
the surrounding viscoelastic fluid within which the elastic dis-
sipation dominates and beyond which the viscous dissipation
dominates. Note that here we consider the elastic dissipation
being transient decays within a finite time, whereas the vis-
cous dissipation prevails for a long time. When these two
timescales are equal, the generalized fluctuation-dissipation
relation (GFDR) [56] holds and the system remains non-
magnetic with zero magnetic moment. Conversely, when
the fluctuation and dissipation timescale are unequal, GFDR
breaks down and the system shows nonzero magnetic moment
under the influence of an external magnetic field. Depending
on these two competing timescales, our analysis reveals that
the particle can exhibit either paramagnetic or diamagnetic
behavior. In particular, we show that when the persistence
in active fluctuation dominates over the dissipation, the par-
ticle manifests paramagnetism, and when the dissipation
dominates over the self-propulsion, the particle exhibits dia-
magnetism. Therefore, fixing the external magnetic field to
a nonzero constant value, when the timescales of these two
physical processes, namely, active fluctuations and dissipa-
tions (due to elasticity and viscocity of the medium), are
tuned, the particle undergoes a transition from diamagnetic
states to paramagnetic states and vice versa. Importantly, it has
also been shown that all these magnetic characteristics of the
system crucially depend on the presence of inertia. If inertia
of the particle is negligibly small compared to the dissipative
as well as active forces, all the existing forces in the system
cancel each other, providing a zero net force, and then the
magnetic moment vanishes. As a result the particle loses its
magnetic characteristics.

In the next section, we address the model by which the
problem is described in detail. The results are systematically
detailed in the subsequent sections, and finally we conclude.

II. MODEL AND METHOD

A. Model

We consider an active (self-propelling) particle suspended
in a viscoelastic medium at temperature T . The particle is at
position r(t ) = x(t )x̂ + y(t )ŷ and at velocity ṙ = v at time t
where (x̂, ŷ) are the unit vectors along X and Y . The particle
has charge |q| and is constrained to move on an X -Y plane. It
is confined within a 2D harmonic trap, U (x, y) = 1

2 k(x2 + y2)
where k is the spring constant. The particle is subjected to an
external constant magnetic field B = Bẑ where ẑ is the unit
vector along Z . The equation of motion of the particle is given
by

mr̈ = −γ

∫ t

0
g(t − t ′)v(t ′)dt ′ + |q|

c
(v × B) − kr +

√
Dξ(t ),

(1)

034613-2



ORBITAL MAGNETISM OF AN ACTIVE PARTICLE IN … PHYSICAL REVIEW E 104, 034613 (2021)

where m is the mass of the particle. To take inertia into
account, in the equation of motion of the particle [Eq. (1)],
we consider r̈ = v̇ as the acceleration of the particle.

As the particle is self-propelling, despite the random colli-
sion with the particles of the surrounding viscoelastic fluid,
it remains persistent to move along a certain direction up
to a finite timescale. Moreover the dynamics of the particle
contains finite memory due to the elasticity of the fluid, and
therefore the dynamics is non-Markovian [57]. The first term
in the r.h.s. of Eq. (1) represents the drag force on the particle
because of the friction with the surrounding medium. Due to
the elasticity present in the medium, the drag at time t not
only depends on the velocity of the particle at that particular
time t , rather it depends on the weighted sum of all the past
velocities within the time interval between 0 and t . As we
consider the time evolution of the particle to be stationary, the
weight function g should be a function of (t − t ′), with t � t ′.
In particular we choose the weight function (in other words,
friction kernel) as

g(t − t ′) = 1

2t ′
c

e
− (t−t ′ )

t ′c , t � t ′. (2)

The above kernel gives the maximum weight to the current
velocity v(t ), whereas the weight to the past velocities decays
exponentially with the rate 1/t ′

c. The time t ∼ t ′
c is the time re-

quired for elastic dissipation to decay substantially. Therefore,
for time t > t ′

c, the viscous dissipation dominates. In the limit
t ′
c → 0, g(t − t ′) = δ(t − t ′) and consequently the system is

left with only viscous dissipation. The friction kernel g(t − t ′)
captures the Maxwellian viscoelasticity formalism, where at
large enough time the fluid becomes viscous through a tran-
sient viscoelasticity, allowing the elastic force to relax down
to zero [57].

The second term in the r.h.s. of Eq. (1) represents the
Lorentz force [58] caused by the magnetic field which couples
X and Y . The third term in the r.h.s. of Eq. (1) represents the
harmonic confinement. The term with ξ appeared in Eq. (1)
represents active, colored (and thereby athermal) noise. The
moments of ξα (t ) are given by

〈ξα (t )〉 = 0, 〈ξα (t )ξβ (t ′)〉 = δαβ

2tc
e− |t−t ′ |

tc , (3)

where (α, β ) ∈ (X,Y ). Here tc is the noise correlation time.
The effective noise in the dynamics has finite correlation,
and it decays exponentially with time constant tc, repre-
senting the persistence of the self-propeller. Up to t = tc,
the self-propeller remain quite persistent to move along a
direction that is the same as its previous steps, despite
making random collisions with surrounding fluid particles.
When t > tc, change of direction with respect to the pre-
vious step becomes more probable. In the limit of tc → 0,
with D = 2γ KBT , the active fluctuations become thermal
and the system becomes passive. Therefore, in the current

model for active (self-propelling) particles, finite and nonzero
tc quantifies the activity of the system. Thus we model the
dynamics of the particle as an active Ornstein-Uhlenbeck pro-
cess (AOUP) [59,60]. But with inertia and elastic forces from
the medium, the dynamics can be represented with the gen-
eralized Langevin’s equation [57]. One may note that when
tc = t ′

c, we get 〈ξα (t )ξβ (t ′)〉 = δαβg(t − t ′), which is the gen-
eralized fluctuation dissipation relation (GFDR). Here we will
explore both the situations where GFDR holds and where it
does not hold (i.e., for both tc = t ′

c and tc 	= t ′
c). A special case

where the elasticity of the fluid dissipates very fast compared
to the active fluctuations (i.e., for t ′

c → 0 and tc > 0) will also
be discussed in greater detail.

B. Method

Now we solve the model (1) to evaluate the magnetic
moment of the particle, M = |q|

2c r × v, in steady states. In-
troducing the complex variable z = x + jy ( j = √−1), we
rewrite Eq. (1) as

z̈(t ) +
∫ t

0
�g(t − t ′)ż(t ′) dt ′ − j ωcż(t ) + ω2

0z(t ) = ε(t ), (4)

where the parameters are � = γ

m , ωc = |q|B
mc , ω0 =

√
k
m , and

ε(t ) =
√

2�KBT
m [ξ x(t ) + j ξ y(t )].

By performing the Laplace transform of the complex
variable z(t ) and ż(t ) we get L{z}(s) = ∫ ∞

0 e−st z(t ) dt and
L{ż}(s) = sL{z}(s), where

L{z}(s) =
(

1
t ′
c
+ s

)
L{ε}(s)

s3 + (
1
t ′
c
− jωc

)
s2 + (

�
t ′
c
− j ωc

t ′
c

+ ω2
0

)
s + ω2

0
t ′
c

. (5)

Here we are interested only in the steady-state solutions
obtained in t → ∞ limit where the influence of the initial
conditions is reduced to zero with time. Therefore we consider
z(0) = 0 and ż(0) = 0 without losing the generality of the
solution.

The denominator in the Eq. (5) can be factorized as
follows:

D = (s − s1)(s − s2)(s − s3). (6)

The roots of Eq. (6) can be found using Cardano’s method.
Substituting Eq. (6) in Eq. (5) and using the method of partial
fraction,

L{z}(s) =
3∑

k=1

ak

s − sk
L{ε}(s), (7a)

L{ż}(s) =
3∑

l=1

bl

s − sl
L{ε}(s), (7b)

where (ai, bi ) are found solving

a1 + a2 + a3 = 0; a1(s2 + s3) + a2(s3 + s1) + a3(s2 + s1) = −1, a1s2s3 + a2s3s1 + a3s2s1 = 1

t ′
c

,

b1 + b2 + b3 = 1; b1(s2 + s3) + b2(s3 + s1) + b3(s2 + s1) = − 1

t ′
c

, b1s2s3 + b2s3s1 + b3s2s1 = 0.
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By taking the inverse Laplace transform of Eq. (7a) and Eq. (7b), we get z(t ) and ż(t ) as

z(t ) =
3∑

k=1

ak

∫ t

0
esk (t−t ′ )ε(t ′) dt ′, (8a)

ż(t ) =
3∑

l=1

bl

∫ t

0
esl (t−t ′′ )ε(t ′′) dt ′′. (8b)

The average orbital magnetic moment of the particle is rewritten as

〈M(t)〉 = |q|
2c

〈|r × v|〉ẑ = Mẑ = |q|
2c

Im[〈z(t )ż∗(t )〉]ẑ. (9)

Here Im(. . . ) denotes the imaginary part, and “∗” denotes the complex conjugation. Using Eq. (8) in Eq. (9), we obtain the
magnitude of the steady-state magnetic moment of the self-propelling particle at t → ∞ limit as

M = lim
t→∞

|q|�KBT

m c tc
Im

(
3∑

k,l=1

ak b∗
l

∫ t

0

∫ t

0
esk (t−t ′ )es∗

l (t−t ′′ )e− |t ′−t ′′ |
tc dt ′ dt ′′

)

= |q|�KBT

m c tc
Im

(
3∑

k,l=1

ak b∗
l

[
t2
c

(1 + sitc)(−1 + s∗
j tc)

+ 2tc
(si + s∗

j )
( − 1 + s2

i t2
c

)
])

, (10)

which is the main result of the paper. Below various features
of M in different parameter spaces will be demonstrated in
detail.

III. DISCUSSION

In Fig. 1 we have plotted M as a function of tc and t ′
c

with different values of (ω0, ωc, �). From this exact result, the
following magnetic features of the system become apparent.

First, along the diagonal t ′
c = tc, where GFDR holds, the

average orbital magnetic moment M = 0. Therefore, along
the diagonal, the system becomes nonmagnetic even if the
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FIG. 1. 〈M(∞)〉 [Eq. (10)] as a function of tc and t ′
c: (a) with

ωc = 1, ω0 = 1, and � = 1, (b) with ωc = 1.5, ω0 = 1, � = 1,
(c) with ω0 = 1.5, ωc = 1, � = 1, and (d) with � = 3, ω0 = 1,
ωc = 1. Both KBT and |q|

mc are assumed to be unity.

dynamics contains memory. It is reminiscent of the exact
result stating that the thermal average of magnetization of any
classical system in equilibrium is zero [61].

Second, on the t ′
c-tc plane where t ′

c > tc, the system
becomes diamagnetic as M < 0. In this regime (elastic) dis-
sipative forces dominate over the self-propulsion. Moreover,
the externally applied magnetic field induces a magnetic field
within the system of charged particles which opposes the
external magnetic field itself. Therefore the system is diamag-
netic when t ′

c > tc.
However, on the tc-t ′

c plane where tc > t ′
c, the self-

propulsion persists for a longer time as compared to the elastic
dissipation of the particles. As a result the induced magnetic
field within the system follows the external magnetic field.
Hence the system becomes paramagnetic.

Therefore, for a given strength of the external magnetic
field, the system exhibits a transition from the diamagnetic
state to the paramagnetic state and vice versa simply by tuning
the rate of the dissipation and the persistence timescale of self-
propulsion. Moreover, if the direction of the magnetic field is
reversed, the system shows opposite behavior regarding the
phases.

Third, while passing from diamagnetic states to the
paramagnetic states or vice versa, the system undergoes a
considerably large regime of nonmagnetic states with M = 0
on the tc-t ′

c plane. This regime includes the diagonal t ′
c = tc.

However, it also includes a regime across the diagonal where
tc 	= t ′

c (but they are comparable). It is to be noted that across
this regime, the magnetization of the system still remains zero.
This regime grows as one proceeds along the diagonal. It
confirms that if GFDR holds good, it implies that the average
orbital magnetic moment is always zero; however, the con-
verse is not true. The average magnetic moment can still be
zero even if the system is driven out of equilibrium where
GFDR does not hold good.
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Similarly, we also note that when tc � t ′
c, GFDR is

obviously broken and the system is far from equilibrium con-
ditions. Remarkably, in this regime, the paramagnetic moment
gets reduced further and approaches zero. Hence the system
becomes nonmagnetic. This is because for large enough tc,
due to high persistence in the dynamics, the self-propulsion of
the particles overcomes the influence of the external magnetic
field and induces a persistent rectilinear motion into them.
This hinders the particles from forming closed current loops
which are essential to exhibit finite magnetic moment [62].

Finally, apart from the fluctuation and dissipation
timescales, the parameters �,ω0 and ωc can also alter the
profile of M(tc, t ′

c). With increasing ωc, M increases up to
a maximum value beyond which M decreases with further
increase in ωc. Therefore M has a nonmonotonic dependence
on ωc. The other two parameters, namely, � and ω0, can only
reduce M monotonically.

For further insight, we consider the following special case
where the friction kernel is a δ function [note that in the limit
t ′
c → 0, the exponential friction kernel Eq. (2) becomes a δ

function], and the noise correlation is still exponential with
correlation time, tc. In this limit, only viscous dissipation takes
place, and the equation of motion [Eq. (1)] reduces to

mz̈ = −γ ż + j
|q|B

c
ż − kz + ε(t ), (11)

where j = √−1. This dynamics can be considered as an
inertial active Ornstein Uhlenbeck process (IAOUP). The
overdamped version of this, namely, the active Ornstein Uh-
lenbeck process (AOUP), is now commonly used to represent
overdamped motion of active Brownian particles and success-
fully used to describe important features like MIPS [59] and
dynamical heterogeneities of active systems at high densities
[63]. We have exactly solved the dynamics both analytically
as well as using computer simulation. Following a similar
procedure as before, the solution of the dynamics (11), z(t )
and ż(t ) can be obtained as

z(t ) =
∑

k=1,2

ak

∫ t

0
esk (t−t ′ )ε(t ′) dt ′, (12a)

ż(t ) =
∑
l=1,2

bl

∫ t

0
esl (t−t ′′ )ε(t ′′) dt ′′, (12b)

where sk are given by

s(1,2) = 1

2

[
−(� − i ωc) ±

√
(� − i ωc)2 − 4ω2

0

]
(13a)

and ak and bl are given by

a1 = 1

s1 − s2
, a2 = −a1, (14a)

b1 = s1

s1 − s2
, b2 = − s2

s1
b1. (14b)

Using the solutions in Eq. (12) and Eq. (9), the average
magnetic moment in the long-time limit is given by

Mr = Mt ′
c→0

= |q|KBT

mc

⎛
⎝ t2

c ωc{[
1 + tc

(
� + tcω2

0

)]2 + t2
c ω2

c

}
⎞
⎠. (15)

It is evident from the aforementioned exact result in
Eq. (15) that for tc = 0, Mr = 0, which is consistent with
equilibrium result, namely, the Bohr–van Leeuwen theorem
[61]. When tc > 0, the system goes away from equilibrium,
and therefore, it is intuitive that Mr also shoots up. When
tc > 0 but small, Mr = ( |q|KBT ωc

mc )t2
c , implying that in this limit

Mr increases with t2
c .

On the other hand, it is also evident from the aforemen-
tioned exact result in Eq. (15) that for tc → ∞, Mr = 0. From
the point of view of equilibrium physics, it is counterintuitive,
because in this limit the system is very far from equilibrium,
and hence the equilibrium result (Mr = 0) should not hold
good. However, on closer inspection one may note that in
this limit the persistence of the self-propulsion is so high that
it is not allowing the particles to form a close current loop
under the influence of the magnetic field, which is essential
to build up a finite magnetic moment within the realm of
classical equilibrium physics. Therefore the magnetic moment
vanishes in the tc → ∞ limit. But for finite and large tc,
Mr = ( |q|KBT ωc

mcω4
0

)t−2
c signifying that for large tc, Mr decreases

with t−2
c .

Taking all this together, we find Mr has a nonmonotonic
dependence on tc. We exactly determine the optimum tc (≡ τ0)
at which Mr is maximum by solving

dMr

dtc

∣∣∣∣
tc=τ0

= ω4
0τ

4
0 + �ω2

0τ
3
0 − �τ0 − 1 = 0. (16)

Here τ0 = 1
ω0

solves the equation, which implies the op-
timum tc or τ0 is independent of ωc (i.e., independent of
magnetic field), but it is inversely proportional to ω0 (i.e.,
varies inversely with the strength of the harmonic trap). The
value of the magnetic moment at τ0 is given by Mr (τ0) =
|q|KBT

mc [ ωc
ω2

c +(�+2ω0 )2 ]. Clearly Mr (τ0) can only decrease with ω0,
whereas it is nonmonotonic with ωc. [For small ωc, Mr (τ0)
increases with ωc but for large enough ωc it decreases and
finally limωc→∞ Mr (τ0) = 0.]

In Fig. 2 we show the behavior of Mr with tc for different
values of ω0 and ωc from both theoretical calculation as well
as simulation. Numerical simulation of the dynamics has been
carried out using Heun’s method algorithm. We perform the
simulation with a time step of 0.001 s and run the simulation
up to 104 s. For each realization the results are taken after
ignoring the initial 103 transients in order for the system
to approach steady state. The averages are taken over 104

realizations.
From Eq. (15), one can also analyze the behavior of Mr

with respect to �, ω0, and ωc. As � → ∞, it is evident from
the expression that Mr = 0. It implies that in high viscous
limit where inertia is negligibly small, the magnetic moment
decreases to zero, and it vanishes as Mr ∼ �−2. Therefore
the active particles can exhibit nonzero magnetic moment
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FIG. 2. Mr [Eq. (15)] is plotted with tc (at t ′
c → 0 limit) from

analytics (solid lines) as well as from numerical simulation (solid
points) for (a) various values of ω0, keeping ωc and � to be fixed as
unity, and (b) for various values of ωc, keeping ω0 and � as fixed to
unity. Both KBT and |q|

mc are also assumed to be unity.

only when the dynamics of the system contains considerable
inertia. Similarly from Eq. (15), it is evident that for large
ω0, Mr approaches zero as Mr ∼ ω−4

0 . Physically this occurs
because, as ω0 increases, the particles are constrained to move
in a smaller area, and therefore the area of the current loop
formed by the particles decreases. This eventually leads to
a zero magnetic moment. The dependence of Mr on ωc is
nonmonotonic. When ωc = 0, Mr = 0, and for small but finite
ωc, Mr increases with ωc (for small ωc, Mr � |q|KBT

mc t2
c ωc).

On the other hand, for large ωc, Mr � ( |q|KBT
mc ) 1

ωc
. Therefore,

Mr decreases with large ωc, and eventually it vanishes as
ωc → ∞. This nonmonotonic dependence of Mr on ωc for
different � and tc is depicted in Fig. 3, from both analytics
and simulation.

IV. CONCLUSION

In this work, we consider a system of noninteracting
charged particles, self-propelling in two dimensions, being
suspended in a Maxwellian viscoelastic medium, with con-
siderable inertia. They are confined in a harmonic trap and
subject to a Lorentz force due to an externally applied constant
magnetic field, perpendicular to the plane of their motion.
Due to the imbalance between elastic as well as viscous
dissipation (due to the medium) and active fluctuations (due
to self-propulsion), the system goes out of equilibrium. The
magnetic moment of the system can become nonzero, and the
system undergoes an interesting transition from diamagnetic
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FIG. 3. Mr [Eq. (15)] is plotted with ωc (a) for different tc and
(b) for different �, keeping other parameters fixed at unity.

phase to paramagnetic phase and vice versa. The transition
depends on the interplay between the timescales involved
in the dissipative processes and active fluctuations. In other
words, for a given magnetic field, the transition depends on
the interplay between two characteristic dimensionless num-
bers: the Weissenberg number (the ratio of elastic and viscous
forces of the suspension, which in our case is �t ′

c) and the
Péclet number (the ratio of advective transport due to activity
and diffusive transport in the suspension, which in our case is
ω0tc) of the system.

We have also determined how the magnetic moment of the
system depends on parameters like the cyclotron frequency
ωc related to the strength of the magnetic field, the natural
frequency ω0 related to the strength of the harmonic trap, and
the friction coefficient �. As � → ∞, the magnetic moment
vanishes, suggesting that the orbital magnetism of the ac-
tive viscoelastic suspension is exclusive for the active system
with significant inertia. Interestingly, we also find that even
if the system remains under deep nonequilibrium conditions
(in particular, when the particles are self-propelling with large
persistence timescale), still it can have zero magnetic moment,
as in the case of equilibrium.

The model we consider to show the aforementioned results
is a generalized Langevin equation with exponentially corre-
lated colored noise. From the fundamental point of view, the
following issues regarding the model used here are important
to note. First, in general, active fluctuations are athermal, and
therefore its strength D is not related to the temperature T
of the medium in which the active particles are suspended.
It is rather proportional to the square of the self-propulsion
speed of the particle [64–66]. In certain limits (for exam-
ple, at t ′

c → 0 together with |t − t ′| � tc), one can define an
effective temperature with the self-propulsion speed of the
active particle and relate it to D [67]. However, in general,
dynamics of active particles cannot be mapped always to an
equilibrium dynamics with an effective temperature which is
different from the actual temperature of the system [68]. Here
we consider D = 2�KBT (the fluctuation dissipation relation
or FDR) simply to have a transparent equilibrium limit of
the problem [59,69,70]. Moreover, it is evident that our main
result, the steady-state magnetic moment M in Eq. (10), will
not change qualitatively if �KBT in the expression of M is
replaced by the generic noise strength D.

Second, in addition to the active fluctuations, the dynamics
of an active particle suspended in a medium at temperature
T should also contain thermal fluctuations [64,67]. Thermal
fluctuations are Gaussian and delta correlated and maintain
FDR. Here in Eq. (15) with limit tc → 0 and also [54,55], it
has been shown explicitly that the Langevin dynamics with
only thermal fluctuation results in equilibrium where the clas-
sical orbital magnetic moment is zero. Hence, in the current
analysis, the additive thermal noise is excluded.

It is important to explore how the results qualify for rela-
tively denser system with significant interparticle interactions.
Work in this direction is in progress. We believe all the afore-
mentioned theoretical results are amenable to suitable experi-
ments, and they are important to implement magnetic control
on the dynamics of an active suspension by fine tuning its
physical properties together with the external magnetic field.
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